Correction to: Improving cellular downlink throughput by multi-hop relay-assisted outband D2D communications

Kai Zhou ${ }^{1}$, Jinsong Gui ${ }^{1 *}$ and Naixue Xiong ${ }^{2}$

1 Correction

The original publication [1] misses four algorithms. The missing ones can be found in this Erratum.

Author details

${ }^{1}$ School of Information Science and Engineering, Central South University, South Road of LuShan, Changsha 410083, China. ${ }^{2}$ School of Computer
Science, Colorado Technical University, 4435 North Chestnut Street, Colorado Spring, CO 80907, USA.

Published online: 17 April 2018

Reference

1. Improving cellular downlink throughput by multi-hop relay-assisted
outband D2D communications. EURASIP J Wireless Commun Netw 2017,
209 (2017) https://doi.org/10.1186/s13638-017-0998-9
[^0]Algorithm 1: The first relay preselection for DTO-MROD
Run at eNB

Input: $T_{\text {cell, }}^{i} T^{i i}{ }_{\text {cell }}, V_{i} \subset l_{i, n e i} \subset \mathfrak{R}, d^{i i}, d_{t h}, R I E_{t h}, \forall i, j \in \mathfrak{R}=\{0,1, \ldots, N\}$

Output: $\alpha_{j i}, c_{j i}$

Initialize: $o=0, s=0, \alpha_{00}=1, \alpha_{j i}=0, c_{j i}=0, \Delta T_{j i}=0 ; D=\varnothing$
2. \quad For $i \in \mathfrak{R}$ do
3. $T_{t h}^{i}=b_{\text {cell }}^{i} \cdot \log _{2}\left(1+\gamma_{t h}\right)$
4. If $T_{\text {cell }}^{i}<T_{t h}^{i}$ then
5. For $j \in V_{i}$ do $\Delta T_{j i}=T_{\text {cell }}^{i}-T_{\text {cell }}^{\prime}$ End for
6. End if
7. End for
8. For i from 1 to N do
9. Find $\operatorname{argmax}_{(i j)} \Delta T_{j i}, j \in V_{i}$
10. If $\Delta T_{j i}>0$ then
11. If $d^{i} \leq d_{t h}$ then
12. If $o==0$ then $\left\{o=j ; \Delta T_{j i}=0\right.$; go to 9$\}$
13. Else if $s==0$ then $s=j$
14. End if
15. Else $\Delta T_{j i}=0$ and go to 9
16. End if
17. End if
18. If $R I E_{i}<R I E_{t h}$ then $\left\{\alpha_{s i}=1, c_{s i}=1+\operatorname{Rand}(9), \alpha_{0 s}=1\right.$, and $\left.D=D \cup\{(s, i)\}\right\}$
19. Else $\left\{\alpha_{o i}=1, c_{o i}=1+\operatorname{Rand}(9), \alpha_{00}=1\right.$, and $\left.D=D \cup\{(o, i)\}\right\}$
20. End if
21. End for

Algorithm 2: The second relay preselection for DTO-MROD

$$
\text { Run at } e N B
$$

Input: $T_{\text {cell, }}^{j} T^{k j}{ }_{\text {cell }}, V_{j} \subset l_{j, n e i} \subset \mathfrak{R}, c_{j i}, d^{k j i}, d_{t h}, e^{k}, e_{\text {th }}, \forall i, j, k \in \mathfrak{R}=\{0,1, \ldots, N\}$

Output: $\alpha_{k j i}, c_{k j}$

1. Initialize: $\alpha_{00}=1, \alpha_{k j}=0, c_{k j}=0, \Delta T_{k j}=0$
2. For $\forall(i, i) \in D$ do
3. $T_{t h}^{j}=b_{\text {cell }}^{j} \cdot \log _{2}\left(1+\gamma_{t h}\right)$
4. If $T_{\text {cell }}^{j}<T_{t h}^{j}$ then
5. For $k \in V_{j}$ do $\Delta T_{k j}=T^{k j}{ }_{\text {cell }}-T_{\text {cell }}^{j}$ End for
6. End if
7. End for
8. For $\forall(j, i) \in D$ do
9. Find $\operatorname{argmax}_{(k)} \Delta T_{k j}, k \in V_{j}$
10. If $\Delta T_{k j}>0$ then
11. If $d^{k j i} \leq d_{t h}, e^{k} \geq \min \left(e^{j}, e_{t h}\right)$ then $\left\{\alpha_{k j i}=1\right.$ and $\left.c_{k j}=c_{j i}+5\right\}$
12. Else $\Delta T_{k j}=0$ and go to 29
13. End if
14. End if
15. End for

Algorithm 3: The relay verification for DTO-MROD

Algorithm 4: The method for like-minded D2D Opportunistic Relay with QoS Enforcement (LIKE-DORE)

```
Run at \(e N B\)
Input: \(T_{\text {cell }}^{i}, T^{i}{ }_{\text {cell }}, d^{j i}, d_{t h}^{i}, \forall i, j \in \mathfrak{R}=\{0,1, \ldots, N\}\)
Output: \(\alpha_{j i}\)
    Initialize: \(\alpha_{00}=1, \alpha_{j i}=0, c_{j i}=0, \Delta T_{j i}=0, \forall i, j \in \mathfrak{R} ; D=\varnothing\)
    For \(i \in \mathfrak{R}\) do
        For \(j \in \mathfrak{R} \backslash i\) do
            \(\Delta T_{j i}=T_{\text {cell }}^{i}-T_{\text {cell }}^{i}\)
        End for
    End for
    For \(i\) from 1 to \(N\) do
        Find \(\operatorname{argmax}_{(j i)} \Delta T_{j i}, j \in \mathfrak{R}\)
        If \(\Delta T_{j i}>0\) then
            If \(d^{i i} \leq d_{t h}^{i}\) then \(\left\{\alpha_{j i}=1, c_{j i}=1+\operatorname{Rand}(9), \alpha_{0 j}=1\right.\), and \(\left.D=D \cup\{i\}\right\}\)
            Else \(\Delta T_{j i}=0\)
            End if
        End if
    End for
    For \(i \in \mathfrak{R}\) do
        If \(\alpha_{j i}==1\) then
            \(F_{i, w i f i}=0\)
            For \(m \in \mathfrak{R} \backslash j\) and \(l \in \mathfrak{R}\) do
            If \(\operatorname{Abs}\left(c_{m l}-c_{j i}\right)<=5\) then
                    \(F_{i, w i f i}=F_{i, w i f}+g_{m i} \cdot p_{m l} \cdot\left(1-0.2 \cdot \operatorname{Abs}\left(c_{m l}-c_{j i}\right)\right)\)
                    End if
            End for
            \(T_{d 2 d}^{j i}=\min \left(T_{\text {cell }}^{j i}, T_{w i f i}^{j i}\right)\)
            If \(T_{\text {cell }}^{i}>T_{d 2 d}^{j i}\) then \(\alpha_{j i}=0\) and \(c_{j i}=0\) End if
        End if
    End for
```


[^0]: * Correspondence: jsgui06@163.com
 ${ }^{1}$ School of Information Science and Engineering, Central South University,
 South Road of LuShan, Changsha 410083, China

