CORRECTION

Open Access

Correction to: Improving cellular downlink throughput by multi-hop relay-assisted outband D2D communications

Kai Zhou¹, Jinsong Gui^{1*} and Naixue Xiong²

1 Correction

The original publication [1] misses four algorithms. The missing ones can be found in this Erratum.

Author details

¹School of Information Science and Engineering, Central South University, South Road of LuShan, Changsha 410083, China. ²School of Computer Science, Colorado Technical University, 4435 North Chestnut Street, Colorado Spring, CO 80907, USA.

Published online: 17 April 2018

Reference

 Improving cellular downlink throughput by multi-hop relay-assisted outband D2D communications. EURASIP J Wireless Commun Netw 2017, 209 (2017) https://doi.org/10.1186/s13638-017-0998-9

* Correspondence: jsgui06@163.com

¹School of Information Science and Engineering, Central South University, South Road of LuShan, Changsha 410083, China

© The Author(s). 2018 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Algorithm 1: The first relay preselection for DTO-MROD

Run at *eNB*

 $\mathsf{Input:} \ T^{i}_{\mathit{cell}}, \ T^{ji}_{\mathit{cell}}, \ V_i \!\!\subset\!\! I_{i,\mathit{nel}} \!\!\!\subset\!\! \Re, \ d^{ji}, \ d_{\mathit{th}}, \ RIE_{\mathit{th}}, \ \forall i,j \!\in\! \Re \!=\! \{0,1, \, ..., \, N\}$

Output: α_{ji} , c_{ji}

1.	Initialize: $o=0$, $s=0$, $\alpha_{00}=1$, $\alpha_{ji}=0$, $c_{ji}=0$, $\Delta T_{ji}=0$; $D=\emptyset$
2.	For <i>i</i> ∈ℜ do
3.	$T_{th}^{i} = b_{cell}^{i} \cdot \log_2(1 + \gamma_{th})$
4.	If $T_{cell}^i < T_{th}^i$ then
5.	For $j \in V_i$ do $\Delta T_{ji} = T^{i}_{cell} - T^{i}_{cell}$ End for
6.	End if
7.	End for
8.	For <i>i</i> from 1 to N do
9.	Find $argmax_{(ji)} \Delta T_{ji}, j \in V_i$
10.	If ΔT_{ji} > 0 then
11.	If $d^{\prime\prime} \leq d_{th}$ then
12.	If $o == 0$ then $\{o=j; \Delta T_{\mu} = 0; go to 9\}$
13.	Else if <i>s</i> == 0 then <i>s=j</i>
14.	End if
15.	Else ΔT_{jj} = 0 and <i>go to</i> 9
16.	End if
17.	End if
18.	If $RIE_i < RIE_{th}$ then { $\alpha_{si}=1, c_{si}=1+Rand(9), \alpha_{0s}=1, and D=D \cup \{(s,i)\}\}$
19.	Else { α_{oi} =1, c_{oi} =1+Rand(9), α_{0o} =1, and <i>D</i> = <i>D</i> \cup {(<i>o</i> , <i>i</i>)}}
20.	End if
21.	End for

Algorithm 2: The second relay preselection for DTO-MROD

Run at eNB

Input: T_{cell}^{i} , T_{cell}^{kj} , $V_{j} \subseteq I_{j,nel} \subseteq \Re$, c_{ji} , d_{th}^{kj} , d_{th} , e^{k} , e_{th} , $\forall i, j, k \in \Re = \{0, 1, ..., N\}$

Output: α_{kji} , c_{kj}

- Initialize: $\alpha_{00}=1$, $\alpha_{kji}=0$, $c_{kj}=0$, $\Delta T_{kj}=0$ 1. 2. For $\forall (j,i) \in D$ do $T_{th}^{j} = b_{cell}^{j} \cdot \log_2(1 + \gamma_{th})$ 3. If $T_{cell}^{i} < T_{th}^{i}$ then 4. For $k \in V_j$ do $\Delta T_{kj} = T^{kj}_{cell} - T^{j}_{cell}$ End for 5. End if 6. 7. End for 8. For $\forall (j,i) \in D$ do 9. Find $argmax_{(kj)} \Delta T_{kj}, k \in V_j$
- 10. **If** $\Delta T_{kj} > 0$ **then**
- 11. If $d^{kji} \le d_{th}$, $e^k \ge \min(e^j, e_{th})$ then $\{\alpha_{kji} = 1 \text{ and } c_{kj} = c_{ji} + 5\}$
- 12. **Else** $\Delta T_{kj} = 0$ and *go to* 29
- 13. End if
- 14. End if
- 15. End for

Algorithm 3: The relay verification for DTO-MROD

Run at <i>eNB</i>		
$Input: I_{i,nel} \subset \mathfrak{R}, I_{j,nel} \subset \mathfrak{R}, V_m \subset \mathfrak{R}, \alpha_{iji}, \alpha_{kji}, c_{ji}, c_{kj}, \forall i, j, k, m \in \mathfrak{N} = \{0, 1,, N\}$		
$Output: lpha_{j\mu} lpha_{kqi}$		
1.	Initialize: $T^{kj}_{d_{2d}} = 0$, $T^{i}_{d_{2d}} = 0$	
2.	For i∈ℜ do	
3.	If α_{kji} == 1 then	
4.	$F_{i,w(f)} = 0; F_{j,w(f)} = 0$	
5.	For $m \in I_{i,nel} \setminus j$ and $l \in V_m$ do	
6.	If $Abs(c_{mr}c_{\mu}) < 5$ then	
7.	$F_{i,wiji} = F_{i,wiji} + g_{mi} \cdot p_{mi'} \cdot (1 - 0.2 \cdot \operatorname{Abs}(c_{mi'}c_{ji}))$	
8.	End if	
9.	End for	
10.	For $m \in I_{j,nel} \setminus k$ and $l \in V_m$ do	
11.	If $Abs(c_{m}c_{kj})<5$ then	
12.	$F_{j,wiji} = F_{j,wiji} + g_{mj} \cdot p_{ml} \cdot (1 - 0.2 \cdot \operatorname{Abs}(c_{mj} - c_{kj}))$	
13.	End if	
14.	End for	
15.	$T_{d2d}^{kji}=\min(T_{cell}^{ki},T_{wljl}^{kj},T_{wljl}^{ji})$	
16.	If $\mathcal{T}_{d2d}^{i} > T_{d2d}^{kji}$ then { $\alpha_{kj}=0$, $c_{kj}=0$ and $c_{jj}=0$ } End if	
17.	Else if $\alpha_{\mu} == 1$ then	
18.	<i>F_{i,wifi}</i> =0	
19.	For $m \in I_{i,nel}$ (j and $l \in V_m$ do	
20.	If $Abs(c_{m^{r}}c_{ji})$ <5 then	
21.	$F_{i,wiji} = F_{i,wiji} + g_{mi} \cdot p_{mi} \cdot (1 - 0.2 \cdot \operatorname{Abs}(c_{mi} - c_{ji}))$	
22.	End if	
23.	End for	
24.	$T_{d2d}^{ji} = \min(T_{cell}^{ji}, T_{wjf}^{ji})$	
25.	If $T_{dell}^{i} > T_{d2d}^{ji}$ then { α_{jj} =0 and c_{jj} =0} End if	
26.	End if	
27.	End for	

-		
Run at <i>eNB</i>		
Input: T_{cell}^{i} , T_{cell}^{i} , d^{i} , d^{i} , $\forall i, j \in \Re = \{0, 1,, N\}$		
Outp		
1.	Initialize: $\alpha_{00} = 1$, $\alpha_{ji} = 0$, $c_{ji} = 0$, $\Delta T_{ji} = 0$, $\forall i, j \in \Re$; $D = \emptyset$	
2.	For $i \in \mathfrak{R}$ do	
3.	For $j \in \mathfrak{R} \setminus i$ do	
4.	$\Delta T_{ji} = T^{i}_{cell} - T^{i}_{cell}$	
5.	End for	
6.	End for	
7.	For <i>i</i> from 1 to <i>N</i> do	
8.	Find $argmax_{(ji)} \Delta T_{ji}, j \in \Re$	
9.	If $\Delta T_{ji} > 0$ then	
10.	If $d^{ji} \le d^{i}_{th}$ then $\{\alpha_{ji} = 1, c_{ji} = 1 + \text{Rand}(9), \alpha_{0j} = 1, \text{ and } D = D \cup \{i\}\}$	
11.	Else $\Delta T_{ji} = 0$	
12.	End if	
13.	End if	
14.	End for	
15.	For $i \in \mathfrak{R}$ do	
16.	If $\alpha_{ji} == 1$ then	
17.	$F_{i,wifi}=0$	
18.	For $m \in \Re$ i and $l \in \Re$ do	
19.	If $Abs(c_{m}-c_{ji}) \leq 5$ then	
20	$F_{i,wifi} = F_{i,wifi} + g_{mi} \cdot p_{ml} \cdot (1 - 0.2 \cdot \operatorname{Abs}(c_{ml} \cdot c_{ji}))$	
21.	End if	
22.	End for	
23.	$T_{d2d}^{ji} = \min(T_{cell}^{ji}, T_{wifi}^{ji})$	
24.	If $T_{cell}^{i} > T_{d2d}^{ji}$ then $\alpha_{ji}=0$ and $c_{ji}=0$ End if	
25.	End if	
26.	End for	

Algorithm 4: The method for like-minded D2D Opportunistic Relay with QoS Enforcement (LIKE-DORE)