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Abstract

Recently, sound recognition has been used to identify sounds, such as the sound of a car, or a river. However, sounds
have nuances that may be better described by adjective-noun pairs such as “slow car” and verb-noun pairs such as
“flying insects,” which are underexplored. Therefore, this work investigates the relationship between audio content
and both adjective-noun pairs and verb-noun pairs. Due to the lack of datasets with these kinds of annotations, we
collected and processed the AudioPairBank corpus consisting of a combined total of 1123 pairs and over 33,000 audio
files. In this paper, we include previously unavailable documentation of the challenges and implications of collecting
audio recordings with these types of labels. We have also shown the degree of correlation between the audio content
and the labels through classification experiments, which yielded 70% accuracy. The results and study in this paper
encourage further exploration of the nuances in sounds and are meant to complement similar research performed on
images and text in multimedia analysis.

Keywords: Sound event database, Audio content analysis, Machine learning, Signal processing

1 Introduction
The ability to interpret sounds is essential to how humans
perceive and interact with the world. Sounds are cap-
tured in recordings—mainly in videos—and the acoustic
information captured is exploited in a number of applica-
tions. The dominant application is multimedia video con-
tent analysis, where audio is combined with images and
text [1–4] to index, search, and retrieve videos. Another
application is human-computer interaction and robotics
[5, 6] where sounds (e.g., laughing, clapping) complement
speech as non-verbal communication. This is particularly
useful for visually impaired and blind computer users [7].
Newer applications include smart homes, where sounds
such as water tap running are detected [8] to prevent
waste, and smart cities [9–11], where acoustic pollution is
defined by a set of sounds. All of these applications rely
on automatic recognition of “audio concepts’—relevant
acoustic phenomena that present as identifiable sound
signatures within recordings.
Sound recognition research in the past few years has

been advanced by competitions and standard datasets.
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From 2010 to 2015, the TRECVID-Multimedia Event
Detection (TRECVID-MED) competition evaluated mul-
timedia event detection in videos by analyzing sounds,
images, and text [1–4]. The Detection of Acoustic Scenes
and Events (DCASE) competitions in 2013 [12] and 2016
[8] evaluated scene and sound recognition in audio-only
recordings. The most popular standard datasets used in
these investigations have allowed sound recognition to
be tested in different contexts. Examples include, envi-
ronmental sounds in 2015’s Environmental Sound Clas-
sification - 50 (ESC-50) [13], urban sounds in 2014’s
Urban Sounds 8k (US8K) [14] and more recently YouTube
videos in 2017’s AudioSet [15] and DCASE 2017 [16].
The approaches derived from research in these datasets
have shown how well we can identify acoustic content
corresponding to a label.
Labels in these datasets define sounds, but rarely

describe nuances of sounds. The authors of [17–19]
showed that audio is associated to a subjective mean-
ing. For instance, in the DCASE dataset [12], there were
two particular labels: quiet street and busy street. Sound
recognition results and confusion matrices across papers
[8, 12] evidenced how although both labels defined audio
from streets, the qualifier implied differences in the acous-
tic content. These kinds of nuances can be described
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with different lexical combinations. Two types that have
been suggested in the literature are adjective-noun pairs
(ANPs) and verb-noun pairs (VNPs).
Adjective-noun pairs can elicit a subjective meaning

of the audio to the listener, defined by an adjective that
shapes the natural and social environment [20]. Moreover,
the subjectivity can cover other areas such as affective
dimensions as explored by the authors of [18] where they
collected the International Affective Digitized Sounds
(IADS) dataset consisting of 111 sounds without enforcing
a subjective word in the label. The sounds were pre-
sented to participants who had to categorize them into
one of five classes: happiness, anger, sadness, fear, and
disgust. Results showed how participants have consistent
trends categorizing these sounds, suggesting a relation-
ship between adjectives and audio content.
Verb-noun pairs can describe interactions between one

or several objects and the material the objects are made
of as described in [21–25]. For example, the interac-
tion of objects and surfaces was explored in [26], where
authors collected sounds corresponding to the action of
drumsticks hitting and also scratching on different sur-
faces such as glass, wood, and metal. Results suggested
acoustic differences depending on the combination of
the action, defined by a verb, and the surface, defined
by a noun (e.g., scratching wood and scratching metal).
Moreover, authors in [19], mentioned that labeling a class
using a source-action nomenclature could help reduce the
expected intra-class diversity. However, this does not nec-
essarily address the issue of inter-class diversity, which we
explore in Section 4.
Investigation of adjectives and verbs as qualifiers of per-

ceptual categories has been successfully approached in
other fields. In computer vision, Borth et al. [27] intro-
duced the VisualSentiBank to perform sentiment analysis
of images [28] based on adjective-noun pairs. In video
analysis, actions described by verbs have been widely
explored as described in these surveys [29, 30]. In text
and language processing, authors in [31] introduced Sen-
tiWordnet to perform opinion mining using adjectives. In
the music domain, acoustic characteristics and lyrics have
been combined to detect sentiment in [32]. It is therefore
to be expected that similar exploration of audio concepts

will reveal to what extent we can automatically identify
such qualifying information and how it could be combined
for analysis of subjectivity in multimedia content [33, 34].
In this work, we investigated for the first time the rela-

tion between audio content and both adjective-noun pair
and verb-noun pair labels. The consistency between these
types of pair-based labels and audio can help to ana-
lyze sentiment, affect, and opinion mining in audio as
well as to complement similar pairs in other modalities
such as images. Due to the lack of datasets with these
types of annotations for audio, we collected, processed,
and released AudioPairBank1 under a Creative Commons
(CC) license. This is a large-scale corpus consisting of
1123 pairs: 761 ANPs and 362 VNPs and over 33,000 audio
files. It is based on the collaborative repository called
freesounds.org. For this contribution, we documented the
challenges and implications of collecting audio recordings
with these labels. These guidelines were not previously
available in the literature and now serve as a direction
for researchers to further annotate or refine our anno-
tations. We also show the degree of correlation between
the audio content and the labels through sound recog-
nition experiments and hence also providing a perfor-
mance benchmark. We provide two benchmarks, binary
and multi-class classification. Both yielded performance
better than random, which is remarkable considering the
subjective nature of our labels.

2 Collecting and processing the AudioPairBank
We start by describing the steps for collecting and pro-
cessing the corpus, which is illustrated in Fig. 1. In
Section 2.1, we define the list of adjective-noun and
verb-noun pairs based on existing ontologies. Then, in
Section 2.2, we use these labels as queries to down-
load audio recordings from an on line repository. Finally,
we refine the dataset to reduce biases, outliers, and
implausible pairs in Section 2.3 to output the finalized
AudioPairBank. The detailed process of each step can be
seen in [35].

2.1 Selecting ANPs and VNPs based on ontologies
We looked into existing ontologies containing adjectives,
nouns, and verbs to collect a list of 10,829 pairs for

Fig. 1 Dataset construction. An overview of the collection process of AudioPairBank. The ANP and VNP labels are based on existing ontologies. The
labels are used as queries to download audio from freesound.org. The labels and audio recordings were refined to create the final version of
AudioPairbank
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adjective-nouns and 9996 pairs for verb-nouns. An ontol-
ogy by Davies [36] defined three audio semantic levels:
sound sources, sound modifiers, and soundscape mod-
ifiers based on research where participants were asked
to describe sounds using nouns, verbs, and adjectives.
Additionally, Axelsson [37] suggested a list of adjectives
to describe the feeling that sounds produce in individu-
als. Another pair of ontologies introduced by Schafer in
[22] and Gygi [23] is based on soundscapes and envi-
ronmental sounds, where sounds were labeled by their
generating source using verbs, such as baby crying, and
cat meowing. Lastly, we considered the visual sentiment
ontology (VSO) presented in [27], which is a collection of
ANPs based on 24 emotions defined in Plutchik’sWheel of
Emotions.
After an inspection of the final list of pairs, we noticed

lexical variations that were grouped. For example, com-
paratives and superlatives, such as faster and fastest, were
grouped together as fast. Synonyms, such as car, auto, and
automobile, were grouped together as car. Plural forms,
such as dogs or cars, were grouped into their singular
forms. This process implied assumptions in the audio con-
tent which may not hold true. For instance, the sound of
one car is acoustically different from the sound of multiple
cars. Nevertheless, grouping helped to reduce the impact
of having multiple “repeated” pairs which could result
in major acoustic ambiguities and low sound recognition
performance.

2.2 Downloading ANPs and VNPs from the web
The list of adjective-noun and verb-noun pairs from
the previous section was used to query and download
audio recordings from freesound.org. The website has
the largest audio-only archive of sounds with around
230,000 recordings, which allowed us to collect audio in
a large-scale. Moreover, the website has been success-
fully employed before to create popular datasets (ESC-50,
Freefield, US8K) [13, 14, 38]. Other websites such as
soundcloud.com and findsounds.com were considered, but

not employed because they either contained mainly music
or had less sound recordings in their archives.
The freesound.org website is a collaborative repository

of audio where users upload recordings and write tags to
describe their content. A tag is a keyword that describes
and highlights the content of the audio recording [39].
This folksonomy-like structure of repository has the ben-
efit of reflecting the popular and long-tailed combinations
of tags. In this manner, we can observe what are the
socially-relevant adjectives, verbs, and nouns.
The tags of a given recording are combined to cre-

ate weak labels of adjective-noun pairs and verb-noun
pairs. The weak labels happen because users upload audio
recordings and provide tags based on what they consider
relevant. However, tags do not follow a particular order,
may describe only a portion of the content and are not
accompanied with the time-stamp of the sound-tag occur-
rence. Moreover, the order of the tags could influence the
meaning, such as tag with a verb intended to be used as an
adjective. The intent of the user is unknown, but its explo-
ration is necessary for large-scale collection and analysis.
We also expect machine learning algorithms to help us
determine the degree of the relation between such pairs
and their corresponding sounds.

2.3 Refining the downloaded ANPs and VNPs
The downloaded audio recordings along with their labels
revealed several characteristics discussed in this section.
Therefore, we refined the corpus with the goal of increas-
ing the quality and diversity of audio concept pairs. The
process is illustrated in Fig. 2. A manual revision has
been employed by other authors [15, 27] to improve their
automatically collected datasets.
Minimum sampling rate: The chosen rate was 16 kHz

because 95% of the files were 16 kHz and 44.1 kHz.
Files with a lower rate were discarded because such rates
reduce the frequency information in the recording.
Contain special words: We removed pairs tagged with

words that implied unwanted content. For example, loop,

Fig. 2 Data filtering. The refining process consisted of six steps where pairs that did not meet a certain criterion were discarded. Steps 2,5 and 6
were responsible of the highest number of discarded pairs
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loops, or looping contained sounds which repeated over
and over again. The repetition or periodicity was artificial
and could mislead the sound recognition systems.We also
removed pairs with words such as sound, audio, or effect
because they did not add meaning. Pairs with the word
processed were removed because the audio files com-
monly contained music or overlapped music throughout
the recording. We also removed pairs with redundancy
of terms such as noisy noise or natural nature. Another
discarded pattern happened with terms related to music
genre such as heavy metal and classic rap or types such
as waving techno and ringing music. Nevertheless, we kept
some pairs related to music such as happy music, sad
music, or dramatic guitar. Another pattern happened with
sound packs, which consisted of groups of audio files,
with exactly the same tags and uploaded by the same user.
However, not all audio content from every file was related
to the tags. Because these bundles did not occur often and
are hard to track automatically, we removed the obvious
ones, but perhaps kept others.
Maximum audio file length: We removed recordings

with long duration because longer audio files had audio
content that was not described by the tags. We com-
puted the distribution of the duration for each pair
and removed the outliers in the distribution based
on Tukey’s range test2. The outliers are values larger
than the third quartile (Q3) of the distribution plus
1.5 times the interquartile range (IQR), and formally:
outlier > Q3 + 1.5 × IQR. For ANPs, outliers have
durations greater than 129.5 s (54.5 + (1.5 × 50)),
and for VNPs greater than 67.5 s (28.5 + (1.5 × 26)).

About 80% of the files are up to 20 s in length for ANPs
and VNPs.
Minimum number of files per pair: We discarded pairs

with less than 20 files. Such low count was an indica-
tor of rare pairs, which might not be worth exploring in
this work. The minimum number is consistent with other
available datasets [8, 40].
Maximum number of audio files per user: For some

pairs, there were users who dominated the contribution
of audio recordings. Users tend to use similar record-
ing devices and conditions which can cause a data bias.
As a consequence, machine learning-based algorithms for
sound recognition can learn these biases instead of the
audio content as demonstrated in [41]. To reduce such
user-specific influence, we allowed a maximum of 25% of
recordings per pair to be from any single user.
Implausible pairs: manual inspection and plausibility

score:
We employed manual inspection to catch salient

implausible pairs. We complemented this approach with
a data-driven metric to determine the degree of plausibil-
ity. Both approaches were responsible of discarding 12%
of the ANPs 51% of VNPs as shown in Fig. 3 and some
examples are in Table 1.
We manually inspected the audio concept pairs and dis-

carded those which were implausible and could not be
associated to an acoustic semantic meaning, for example,
some ANPs derived from Plutchik’s Wheel of Emotion,
such as slow fear, a sound that is arguably impossible to
reproduce. This problem was also faced in the visual sen-
timent ontology [27], and pairs were discarded, such as

Fig. 3 Plausible and implausible pairs. The charts show the number of plausible and implausible pairs after using both methods, manual inspection
and plausibility score. In contrast to adjectives, verbs have more restrictions in how they can be combined with nouns to convey plausible meaning
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Table 1 Examples of plausible and implausible pairs

Plausible Implausible

ANPs

Happy music Windy bird

Slow car Industrial hands

Echoing footsteps Slow fear

Echoing alert Extreme noise

VNPs

Singing bird Laughing animation

Crying baby Falling autum

Flying bee Clapping hat

Honking car Talking text

Note how for example “fast food” is an implausible pair because despite that it
could be associated to a semantic meaning, it does not convey an acoustic
semantic meaning

fresh food or favorite book. Other examples of implausi-
ble pairs are walking winter and singing park, where nouns
define a time and place, but were implausible because of
the verb. Some implausible nouns like future or design rep-
resented abstract meanings and were hardly connected to
consistent sounds. An interesting pair also discarded was
talking bird, which appeared to be semantically wrong,
but possible. A closer look into the corresponding audio
files revealed recordings of a bird talking, a parrot per-
haps, but these recordings were rare and the majority of
the recordings contained talking people with bird sounds
in the background.
The plausibility score (PS) was designed to favor diver-

sity of users, number of files, and uniqueness of files for
the given pair. For example, the manually discarded pair
singing park was selected because a park cannot sing. This
pair might have emerged because files were tagged with
different words such as singing, walking, relaxing, park,
bird, and people. Although the pair singing park occurred
in several audio files, it never occurred together in any
other recording and was rather always together with other
pairs such as singing bird and walking people and relaxing
park. Hence, these kind of pairs yielded a low plausibility
score. The score is defined as follows:

PS(cp) =
ucp
ncp + fcp

ncp
2

= ucp + fcp
2ncp

(1)

Here, ncp is the total number of files belonging to a con-
cept pair cp. Then, ucp is the number of unique users that
uploaded files for a concept pair cp and fcp is the number
of files that are unique to a concept pair cp. A file is unique
to a cp if it is not tagged with any other concept pair in
the existing set. The division by 2 is necessary because for
a perfectly plausible concept pair the numerator becomes
1+1, and so the division by two will keep the metric in the

range between 0 (least plausible) and 1 (most plausible).
We observed that rare pairs such as the ones described in
the previous paragraphs obtained a score lower than 0.2.

2.4 Finalized AudioPairBank
The refined corpus is one of the largest available datasets
for sounds and the only dataset with adjective-noun and
verb-noun labels. The ANPs and VNPs are weak labels
based on the collaborative repository in freesound.org.
The main statistics of the corpus are included in Table 2.
AudioPairBank consists of 761 ANPs and 362 VNPs for a
total of 1123 pairs. One or more pairs can correspond to
the same audio file. The number of shared-unique audio
files are 58,626–16,335 for ANPs and 38,174–20,279 for
VNPs for a total of 96,800–33,241 files. The average num-
ber of unique files are 21 for ANPs and 56 for VNPs.
The number of unique nouns is 1187, unique verbs is 39,
and unique adjectives is 75. The influence of a user per
pair was set to a maximum of 25% contribution of files.
Note that the total number of unique files and users does
not correspond to the sum of the previous rows because
some files are repeated in both categories. Regarding the
length, ANPs had a larger file duration than VNPs with
almost twice the length. The last column shows the total
disk space of the audio files in waveform audio file (WAV)
format.

3 Analysis of AudioPairBank
We performed an analysis on different aspects of ANPs
and VNPs, such as co-occurrences of adjective, verb,
nouns, duration of audio recordings, number of audio
files, number of tags, and number of users.

3.1 Number of audio files per ANP and VNP
The distribution of the number of files per pair for ANPs
and VNPs gives us an intuition of which pairs are more
common for users on the web. Figure 4 shows a decreasing
distribution with a long tail trimmed due to space limi-
tations. ANPs show a smoother distribution decrement,
which translates to a more uniform number of files per
concept pair.

3.2 Number of users per ANP and VNP
We looked at how many different users contributed to
the pairs to have an intuition about the diversity of users

Table 2 ANPs double the number of VNPs

Pairs Total - Unique files Users Hours Size

ANPs 761 58,626 - 16,335 2,540 892 528

VNPs 362 38,174 - 20,279 3,279 375 212

Total 1123 96,800 - 33,241 4,478 1,267 740

Audio content is generally described with multiple adjectives. Whereas verbs are
used to describing actions, which happen with less frequency and typically refer to
the source of the dominant sound. Size is counted in gigabyte (GB)
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Fig. 4 Number of files per pair. ANPs (left) and VNPs (right) with the largest number of files. Both plots show a decreasing distribution with a long tail
trimmed due to space limitations. ANPs show a smoother decrement, which translates to a more uniform number of files per concept pair

per concept pair in Fig. 5. The figure gives a first intu-
ition of which concept pairs are more diverse, but it does
not show if pairs are equally distributed among contribu-
tors. Hence, Fig. 6 helps to visualize how the files per pair
are distributed among users. Most concept pairs are very
diverse with respect to the uploading users, but a few are
more dominated by individual users.
We also observed that most users commonly employed

a small set of tags with high frequency. The most frequent
tags across users are shown in Table 3. Rarely occurring
tags often come from single users.

3.3 Duration of ANP and VNP audio files
Adjectives, in some cases, suggest the duration of the
recording. For example on average, audio containing calm,
rural, peaceful, and quiet had longer durations (more than
5 min) than those tagged with accelerating or rushing (less
than 2 min).
Verbs describe actions, and hence, we expected the

duration of the audio recordings of VNPs to correspond to
the approximate length of the described action. However,
even if most actions lasted between 1 and 5 s, the median
duration of VNP audio files was around 10 s. This may

Fig. 5 Number of users per pair. Number of users that uploaded files for ANPs (left) and VNPs (right). We show examples of pairs with at least 400 files
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Fig. 6 Number of files per concept pair color-coded by the uploading users. ANPs (left) and VNPs (right) with the highest number of contributors
(up to 400). Each user that contributed to a concept pair is color-coded. Most concept pairs are diverse, but a few may have dominant users

happen because the action described by the verb tend to
occur more than once, or because other actions take place
within the recording.
Nouns have more length variability that depends on

what it is describing. Locations, environments, and field
recordings are associated to longer durations, such as city,
market, beach, or rain, while objects are associated to
shorter durations, such as cup or door.

3.4 Correlation between the number of tags and the
length of the ANP and VNP audio files

We expected that more tags will describe more audio con-
tent and therefore, correlate with longer durations. How-
ever, we found a weak to almost no correlation between
both, as illustrated in Fig. 7.We validated our observations
by computing Spearman’s rank correlation coefficient
(SRCC), which is a non-parametric measure of statisti-
cal dependence between two variables. An SRCC value
close to zero in combination with a very small p value
indicates no correlation in the data. In our case, the SRCC
value for ANPs is 0.073 with a p value of 5.358e−97,
and for VNPs is 0.0149 with a p value of 6.31e−05. For
each file, the average number of tags is 15. Neverthe-
less, the number of tags together with the duration of
the audio file suggested a distinction between acoustic
scenes/soundscapes and sounds.

Table 3 High-frequency tags common across users

Tags

Adjectives Scary, creepy, industrial, funny

Verbs Talking, walking, laughing, singing,

Nouns Atmosphere, horror, noise, voice

3.5 Co-occurrences of tags in ANP and VNP audio files
In order to understand the context in which concept pairs
occur, we analyzed the co-occurrences of the accompa-
nying adjectives, nouns, and verbs tags within the audio
file.
Some adjectives occur more frequently than others,

such as loud, heavy, scary, and noisy in contrast to exotic.
Adjectives that occur frequently tend to describe nouns
that are commonly locations: landscape, coast, or nature.
As expected, we found almost no tags using colors as
adjectives. An interesting co-occurrence of adjectives was
when they had opposite meaning such as slow and fast or
peaceful and loud. After manual inspection of audio files,
we concluded that this was an indicator of changes in the
audio content throughout the recording, specially when
the noun was shared. For example, a recording had two
pairs, slow train and fast train, which had a train pass-
ing slowly and then followed by another one passing at
high-speed.
Verbs tend to occur less frequently than adjectives and

with a more restricted set of nouns. For instance, fly-
ing occurs mainly with airplane, engine, bird, and heli-
copter. In a similar manner, almost the same verbs occur
with human-related nouns such as baby, child, man, and
woman. One pattern observed for verbs is that they may
describe and complement another verb. For example, open
and close co-occur with squeaking and banging, all with
the noun door. These combinations specify how the door
was opened or closed. Similar to adjectives-adjectives,
verbs could be an indicator of changes in the audio content
throughout the recording, such as singing and clapping
described a music concert.
Nouns were more helpful to provide context and clar-

ify the sound source. An example of context are thunder,
rain, and wind, which described the acoustics of a storm,
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Fig. 7 Number of tags vs duration of files corresponding to ANPs with up to 43 tags. We expected that more tags will describe more audio content
and therefore, correlate with longer durations. However, the correlation between number of tags and duration was weak or none. For instance, files
with 16 and 27 tags will have the same average duration. A similar trend was observed for VNPs

also frogs and insects and water described the acoustics of
a Savannah.Moreover, users sometimes included the loca-
tion such as Florida or the time such as day and night or
the season such as spring. An example of sound source is
when the sound of an engine happened with car or train
or airplane or ship, and thus, we knew the specific source
of the engine sound. Importantly, the noun noise, which
co-occurs very frequently with other tags, sometimes indi-
cates an unintelligible sound, but was more commonly
employed to define sounds happening in the background
which were unrelated to the target sound.

4 Experimental setup for benchmark
computation of AudioPairBank

The previous sections described the challenges of col-
lecting acoustic pairs, such as weak labeling from folk-
sonomies. In addition, we also refined our pairs expecting
to find consistency between the acoustics and the labels
describing the actions (verbs) and properties (adjectives)
of the sounds. Therefore, in this section, we describe
the setup of the two main experiments on the audio of
the adjective-noun pairs and verb-noun pairs contained
in AudioPairbank. First, the input audio was standard-
ized into the same format and passed through a feature
extraction step. Next, the extracted features were passed
through a system for binary classification and multi-class
classification.
The audio files from the dataset needed to be stan-

dardized into the same format. We chose WAV format,
sampling rate of 44.1 kHz, encoding pulse code modula-
tion (PCM) 16 bits and one channel. These parameters
were already dominant in the corpus and are also com-
mon in the available datasets. Moreover, audio files have
variable length, and thus, each file was trimmed into 4 s
segments with a 50% overlap. Files with shorter dura-
tion were adjusted during the feature computation. These
two parameters yielded the best sound event classification
results among different values [14, 42]. The AudioPair-
bank corpus has three partitions, training, cross validation
(CV), and testing with a ratio of 40%-30%-30%.

For each audio of 4 s, we extracted mel frequency cep-
stral coefficients (MFCCs) features because they provide
a competitive baseline performance. We used the toolbox
Yaafe [43] to compute MFCCs with 13 and 20 coeffi-
cients and appended their first and second derivatives,
also called delta and double delta. The window size was
30 ms at every 10 ms. Each MFCC frame including the
deltas and double deltas were stacked into a single vec-
tor. Stacking is used to consider the temporal context [44].
Files with duration shorter than 4 s were padded with
frames containing zeros.
Binary classification allows the classifier to decide

whether a test pair-class belongs to the trained class or
not. This is useful when dealing with negative samples and
unlabeled data as in the TRECVID-MED Evaluations [45].
It is also useful in terms of computational efficiency—it
is faster to retrain binary models (hours) in contrast to
multi-class models (weeks), and easier to parallelize. We
used a one-vs-all setup using a support vector machines
(SVM) [46] classifier. We trained one SVM for each ANP
and VNP using 100 segments corresponding to the posi-
tive (target) pair-class and 200 corresponding to a negative
(not-the-target) pair-class. The 100 segments were ran-
domly selected from the pool of the positive pair-class.
This number corresponds to theminimumnumber of seg-
ments per pair-class. The 200 segments were randomly
selected from the pool of other classes avoiding repeated
files. The SVM had a linear kernel, and using CV set, we
tuned the soft margin parameter C with the following val-
ues: 5.0, 2.0, 1.0, 0.5, and 0.01, with five yielding the best
results.
Multi-class classification has to discern between multi-

ple pair-classes and forces every input audio to belong to
one of the trained pair-classes. This classification type is
more complicated than the previous given the large num-
ber and ambiguity of the classes. We employed two differ-
ent algorithms. First, we used a multi-class random forest
(RF) [46] classifier used to compute baseline performance
in [9, 40]. RF are an ensemble learning method that oper-
ates by creating multiple decision trees at training time.
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Then, at testing time, each tree votes to predict a class,
minimizing over fitting. We trained two RF: one for all the
VNPs and one for all the ANPs using 100 segments corre-
sponding to each class. The 100 segments were randomly
selected from the pool of positive segments. The two RF
were tuned using CV set to find the number of trees, we
tried 5, 10, 20, 50, and 100, where 100 yielded the best
results. Using more than 100 trees surpassed the capa-
bilities of our computing resources. Second, we trained a
convolutional neural networks (CNN), which forms the
basis of the state of the art in sound classification. In
[40], the log-mel spectrogram of each sound event record-
ing is treated as an image and passed to the CNNs. We
employed the same architecture. The first convolutional
rectifier linear unit (ReLU) layer consisted of 80 filters of
rectangular shape (57 × 6 size, 1 × 1 stride) allowing for
slight frequency invariance. Max pooling was applied with
a pool shape of 4 × 3 an stride of 1 × 3. A second con-
volutional ReLU layer consisted of 80 filters (1 × 3 size,
1 × 1 stride) with max pooling (1 × 3 pool size, 1 × 3
pool slide). Further processing was applied through two
fully connected hidden layers of 5000 neurons with ReLU
non-linearity. The final output is a softmax layer. Train-
ing was performed using Keras implementation of mini-
batch stochastic gradient descent with shuffled sequential
batches (batch size 1000) and a Nesterov’s momentum of
0.9. We used L2 weight decay of 0.001 for each layer and
dropout probability of 0.5 for all layers.
To evaluate binary classification performance we com-

puted accuracy (Acc), f-score, and area under the curve
(AUC). For multi-class classification, we computed accu-
racy. For all the metrics, we computed micro-averaging
with the toolbox sci-kit learn [46].

5 Results and discussion
The overall binary classification performance of ANPs and
VNPs was better than expected. As a reference, similar
experiments with AudioSet [47] had comparable perfor-
mance (AUC 85%). AudioSet has 485 sound classes and
did not deal with the subjectivity treated in this paper.
The performance for both types of pairs is shown in
Table 4 with the following results: accuracy of 69 and 71%,
f-score of 51 and 53%, and AUC of 70 and 72%. The results
correspond to the extracted audio features of 13 MFCCs;,
expanding this to 20 MFCCs did not provide a perfor-
mance gain. One explanation why VNPs performed better
is because verbs tend to be less subjective or more neutral
than adjectives [48]. This means that the acoustic charac-
teristics may be more distinguishable for classifiers as it is
for humans. For example, people might argue about what
would be the sound of a beautiful car, but not so much
about the sound of a passing car.
We show the best and worst performing ANPs and

VNPs in Table 5. The best detected ANPs had over 93%

Table 4 Overall binary classification performance

Features Acc% f-score% AUC%

ANP 13 MFCCs+�+�� 69 51 70

VNP 13 MFCCs+�+�� 71 53 72

accuracy and corresponded to distinguishable sounds of
phone numbers being pressed or phones’ tones, such
as industrial phone, echoing phone, and weird cell. On
the contrary, noisy glitch and extreme noise had accuracy
around 1% and corresponded to pairs with adjectives that
described a generic meaning rather than specific. The
best detected VNPs were howling dog, howling wolf, cry-
ing insects, and howling animal with accuracy greater than
94%. These sounds tend to have almost no overlapping
audio. On the contrary, splashing water, crackling foot-
steps, splashing river, gurgling water, and breaking snow
had accuracy around 2%. These wide-band, background-
noise-like continuous sounds are hard to classify. A sim-
ilar problematic arose in [14] with sounds such as air
conditioning and engine idling. Additionally, pairs corre-
sponding to long duration recordings, commonly related
to environmental sounds and field recordings, tend to
have lower performances.
We looked at the overall performance of pairs sharing a

common adjective, verb or noun to estimate how well we
could detect them. The adjective with the highest accu-
racy, 71%, corresponded to industrial, which commonly
paired with nouns such as hands, phone, and metal. On
the other hand, the verb with the highest accuracy, 73%,
corresponded to singing, which commonly paired with
choir, crowd,man, child, and woman. Nouns such as alert,
phone, and guitar performed well for different adjectives
and verbs because they have a specific timbre.

Table 5 Top five best and worst binary classified ANPs and VNPs

Best Worst

ANPs

Weird cup Funny english

Industrial phone Heavy rain

Echoing phone Noisy glitch

Echoing alert Extreme noise

Weird cell Loud fireworks

VNPs

Howling dog Splashing water

Howling wolf Crackling footsteps

Crying insects Splashing river

Howling animal Gurgling water

Ringing cup Breaking snow
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The overall multi-class classification of ANPs and VNPs
yielded good performance. The accuracies shown in
Table 6 are respectively for RF and CNN, 1.6 and 2.1% for
ANPs and 4.5 and 7.4% for VNPs. While the multi-class
performance is lower than the detection experiments,
it is still higher than random performance, which cor-
responds to 0.13% for ANPs and 0.27% for VNPs. As
supported in the literature [40], the CNN outperformed
the RF algorithm. Similar to the detection case, the RF
numbers correspond to audio features of 13 MFCCs. The
performance difference between ANPs and VNPs may be
explained because there are more than twice number of
ANPs than there are VNPs, which makes the classification
task harder for ANPs because the classifier has to discern
between more pair-classes.
An issue with the multi-class setup is that some audio

files corresponded to more than one pair label. When a
classifier is trained sharing one or more audio files for one
or more classes, it struggles to define a decision boundary
to separate the classes. A solution could be to add more
acoustically diverse training audio files, which could ame-
liorate the problem by aiding the classifier to generalize
the class boundaries. Nevertheless, this is an issue that has
to be further explored because it is expected that sounds
can be labeled with more than one adjective, verb or noun.
The multi-class setup also allowed us to observe pairs

that were commonly confused by their acoustic charac-
teristics as shown in Table 7. The confusion matrix is not
included here for lack of space, but in general, the confu-
sions look conceptually reasonable for both types of pairs.
For the ANPs, confusions happened when ANPs shared
the same adjective and when pairs shared similar con-
texts expressed by the noun, such as in extreme rain and
heavy thunder. A similar case was observed with VNPs,
where the confusions happened when the verb and the
noun expressed similar meanings, such assplashing lake
and walking river.
These experiments and results evidence a degree of con-

sistency between tag-pairs and the sounds associated to
them, despite of the setup limitations and assumptions.
In this work, we take a first step towards exploiting tag-
pair-based actions and properties of sounds automatically
from a large-scale repository. We point out some of the
challenges, which have not been published to the best of

Table 6 Overall multi-class classification performance for
random forest and CNN

Classifier Pair Features Accuracy%

RF ANP 13 MFCCs+�+�� 1.6

RF VNP 13 MFCCs+�+�� 4.5

CNN ANP 13 MFCCs+�+�� 2.1

CNN VNP 13 MFCCs+�+�� 7.4

Table 7 Each row correspond to an example of pairs that were
highly confused

ANPs

Extreme rain Heavy thunder

Heavy thunder Heavy wind

Distant rain Distant thunder

Relaxing water Relaxing creek

Echoing church bell Echoing hall

VNPs

Passing railway Passing train

Singing bird Tweeting bird

Talking crowd Walking noise

Splashing lake Waving river

Burning fire Crackling fire

our knowledge, and could be of great use for research
if we want to take advantage of the massive amounts of
web audio and video recordings. Other lexical combina-
tions could be explored, such as other verb conjugations
and adverbs to add meaning to a given action. Also,
sequences of lexical combinations may help describe the
order actions take place in a specific scene or describe
the properties of the acoustic scene. Reliable recognition
of the acoustic nuances can benefit several applications.
For example, VNPs can support violent detection in image
processing [49]. In another example, ANPs could be used
for opinion mining to determine the quality of urban
soundscapes [50]. Similarly, ANPs could also be combined
with the image-based ANPs [28] for sentiment analysis of
videos. Hence, we encourage further exploration of the
nuances, both of audio-only recordings and as a comple-
ment of similar research on images and text in multimedia
analysis.

6 Conclusions
In previous years, sound recognition has been used to
identify sounds also called audio concepts. However,
sounds have nuances that may be better described by
adjective-noun pairs such as breaking glass, and verb-
noun pairs such as calm waves. Datasets with these types
of labels are unavailable. In this work, we provide an inves-
tigation about the relation between audio content and
weak labels corresponding to adjective-noun pairs and
verb-noun pairs. For this study, we collected, processed,
and made available, AudioPairBank, a large-scale corpus
consisting of 761 ANPs and 362 VNPs corresponding to
over 33,000 audio files. Using this dataset, we evaluated
classification performance of audio recordings and the
results supported a degree of consistency between tag-
pairs and sounds. We provided a benchmark better than
random performance, regardless of complications such as
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using weak labels and the tagging assumptions from a
collaborative repository. We expect to guide researchers
exploring labels and sounds. We showed an initial per-
formance for classifying these types of lexical pairs and
encourage the exploration of other lexical combinations.
Moreover, we expect to further research that analyzes
sentiment, affect, and opinion mining in audio and multi-
media recordings.

Endnotes
1 http://audiopairbank.dfki.de/
2 http://en.wikipedia.org/wiki/Tukey%27s_range_test
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