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Abstract

In active sonar systems, the detection of echo from targets can deteriorate due to reverberation. Detection becomes
more difficult if targets have low-Doppler frequency and are located near the reverberation band, especially in an
environment with low signal-to-reverberation ratio. In this paper, we propose an algorithm for the reverberation
suppression of continuous wave signals using non-negative matrix factorization. To extract the target echo signal
mixed with reverberations, the bases for the target echo and the reverberation are independently defined, and
different constraints are applied for their corresponding estimation. We also derive constraints on temporal continuity
and temporal length to estimate bases for the target echo. Experiments using simulated reverberations are performed
to evaluate the proposed algorithm, and the results show an enhancement in the signal-to-noise ratio by 6-15 dB, as

well as in the detection probability at several signal-to-reverberation ratios. Moreover, an experiment is conducted
using reverberation measured from an ocean, and the results show that the proposed algorithm can effectively
suppress reverberation and enhance detection performance in practical settings.

Keywords: Active sonar, Reverberation, Continuous wave signal, Non-negative matrix factorization

1 Introduction
Active sonar is used to detect a target under water using a
reflected ping. However, in addition to reflection from the
target, the received signal contains reverberations caused
by reflection from scatterers. Conventional target detec-
tion algorithms, including the matched filter, are sensitive
to reverberations, and extensive research has been con-
ducted to improve detection in this condition [1-11].
Although the reverberation can be addressed by the
beamformer, adequate suppression of the reverberation is
not achieved. In case of the low-Doppler target, the tar-
get echo is located in the mainlobe and sidelobe of the
beamformer, so additional algorithm is required to sup-
press the reverberation [1, 2]. Methods of reverberation
mitigation are twofold: transmission pulse design at the
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transmitter and signal processing for reverberation sup-
pression at the receiver. Continuous wave (CW) pulses are
commonly used active sonar signals used to detect tar-
gets because this type of pulse allows the easy location of
targets in the range-Doppler resolution but is vulnerable
to reverberations [3]. On the contrary, linear frequency-
modulated pulses are robust against reverberation but
deliver a low-Doppler resolution [4]. Some research has
focused on the generation of specific types of pulses,
such as the geometric comb [5], triplet-pair comb [4],
and other Doppler-sensitive pulses [2, 3], to handle rever-
berations. Although such pulses can mitigate the effects
of reverberations, they cannot suppress them. Moreover,
CW pulses and some variants [2] are still widely used in
active sonar systems. Consequently, signal processing for
suppressing reverberation at the receiver is needed, and
some algorithms have been proposed in this vein [6—-11].
For instance, algorithms based on whitening with
autoregressive (AR) models have been developed [6, 7]
for reverberation suppression. However, the effectiveness
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of this approach deteriorates when the Doppler shifts
of the reverberation and the target echo are simi-
lar. To overcome this limitation, algorithms based on
principal component inversion (PCI) have been devel-
oped [8-10]. The signal subspace extraction (SSE) algo-
rithm has recently been proposed as an improvement
to the PCI-based algorithm by expressing the reverbera-
tion model as a sum of higher and lower reverberation
echoes [11].

In this paper, we focus on reverberation suppression for
the detection of low-Doppler targets. Such targets can be
easily confused with clutter in reverberation. The low-
Doppler target detection problem occurs more frequently
when the receiver moves because the energy of the rever-
beration spreads over a frequency range proportional to
the speed of the receiver [12]. Therefore, we also consider
a moving receiver to develop a reverberation-suppression
algorithm. Specifically, we use non-negative matrix fac-
torization (NMF), a segmented signal representation [13],
to suppress reverberations. While PCI-based algorithms
detect the desired signal using only low ranks, we pro-
pose using signal characteristics in the time—frequency
domain.

NMF decomposes a non-negative matrix into a mul-
tiplication of two non-negative matrices [13]. The spec-
trogram of frequency and the time basis matrices can
then be analyzed, as has been shown for sound signals
[14]. Iterative algorithms for the NMF based on the mul-
tiplicative update rule were first developed for the cost
functions of the Euclidean distance and the Kullback—
Leibler divergence [15] and were then expanded to other
distance measures, such as Itakura—Saito divergence [16]
and beta divergence [17]. Several update rules have also
been researched, such as the alternating least squares [18]
and expectation-maximization [19] algorithms. The appli-
cation of NMF to music and speech signal processing
have been researched actively to analyze music signals
[20, 21], separate the desired source signals from the
received signals [22, 23], and to denoise speech signals
[24, 25]. NMF-based algorithms are not limited to the pro-
cessing of mono-channel signals and can also deal with
multichannel acoustic signals [19, 26]. Although NMF-
based algorithms for music and speech signals have been
researched, it is challenging to find NMF-based sonar
signal processing algorithms, excluding those for sonar
image recognition [27]. Both the PCA and NMF algo-
rithms are matrix decomposition techniques, and the
NMF algorithm has advantage for analyzing the sparse
components of a matrix, which is called “the part-based
representation,” compared to the PCA algorithm [13]. It
is expected that the NMF algorithm is also suitable for
finding the target echo because the spectrogram of the tar-
get echo is a sparse component of the spectrogram of the
entire received signal.
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The main contribution of this research article is the
design of NMF-based reverberation suppression in con-
tinuous wave active sonar, as no research has applied the
NMF method to this problem, to the best of the authors’
knowledge. To develop the reverberation suppression
algorithm, we divide NMF bases into two parts—echo
bases and reverberation bases—and design a constraint to
discriminate between them. We apply two constraints, on
the temporal length and temporal continuity. The former
constraint and its estimation algorithm are novel whereas
the latter constraint is developed by Virtanen [22].

The remainder of this paper is organized as follows:
Section 2 presents the problem statement for this study
and describes the time—frequency characteristics of the
target echo and reverberation considering a moving
receiver. Section 3 details the proposed NMF-based algo-
rithm, and Section 4 describes the results of simulation
and measurements using the proposed algorithm. Finally,
we draw the conclusions of this article in Section 5.

Notation: We denote vectors and matrices by boldface
lowercase and boldface uppercase letters, respectively.
Table 1 specifies the symbols and their meanings.

2 Problem statement

We assume that a sonar (receiver) is moving with con-
stant velocity through a field with stationary scattering
elements, as shown in Fig. 1. Echo signal s.(¢) from the
target is a replica of transmitted ping signal s.(¢) with
Doppler shift f;:

se(t) = asy(t — tg) exp (j27fat), (1)

Table 1 Notation used in the paper

A Matrix A

a Vector a

Ac RK*'W K x N matrix whose elements are non-negative real
numbers

A € Ryxn K x N matrix whose elements are real numbers

Tixn A K x N matrix whose elements are all one.

Ak OF [A]kny An element of the matrix A in k-th row and n-th

column
a® The updated value of a after t iterations
A®B Hadamard (elementwise) multiplication of A and B
A/B Elementwise division of Aand B
AT Transpose of A
Atg Upward shift of matrix A by d rows
A g Left shift of matrix A by d columns
A_g Right shift of matrix A by d columns
VaC The gradient of C with respect to A
V,J{C Positive parts of the gradient of C with respect to A
VaC Negative parts of the gradient of C with respect to A
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Scatterer

Fig. 1 Problem scenario. A moving receiver should detect a

low-Doppler target among scatterers

where a is an attenuation factor, ¢; is time delay, and j
is the unit imaginary number. The frequency of s.(¢) is
given by

Se(f) = aSe(f — fa) exp [—j27 (f — fa) ta] - (2)

where S;(f) is the Fourier transform of s;(t).

If the transmitted ping signal is a CW signal with a cen-
ter frequency fy, the received ping signal is a narrowband
signal with frequency (fo + f;). The reverberation signal
s(¢) consists of a large number of replicas from scatterers:

5/(8) = ) aise(t — ta,) exp (j27fyt), (3)

with spectrum
Si(f) = Z a;S¢(f _fdi) exp [—j27t (f _fdi) tdi] )

where a; and ¢, are an attenuation factor and a time delay
of ith scatterer, respectively, and the Doppler shift f;; is
given by

2V cosy;

fdi fO’ (5)

where V is the speed of the receiver, ¢ is the speed of
sound, and ; is the angle between the direction of motion
of the sonar and each scatterer. Equation (5) shows that
the spectrum of reverberation has a range of frequency
— (%)fo <f< (%)fo and, hence, has a wider band than
the echo signal when the sonar receiver moves.

Figures 2 and 3 show the spectrograms of the simu-
lated target echo and the reverberation, respectively, for
a transmitted CW ping signal. Clearly, the target echo
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Fig. 2 Spectrogram of simulated target echo. The spectrum is well
localized in frequency and time, allowing for target detection

is a narrowband signal with frequency fy + f;, whereas
the reverberation is a broadband signal in the range
— (%)fo <f< (%)fo, as verified in (2) and (4), respec-
tively. Further, unlike reverberations, the spectrum of the
target echo signal does not randomly fluctuate over time
in response to a received signal. Moreover, the target echo
signal last for a short period, whereas reverberation is
more persistent.

In this study, we extract the target echo signal from a
received signal that contains reverberation. To this end,
we analyze the spectrogram of the mixed signal by using
NMEF with distinctive characteristics of the target echo
signal, as detailed below.

Spectrogram of reverberation [dB]
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Fig. 3 Spectrogram of simulated reverberation. The spectrum has a

wideband and is distributed over time, undermining target detection
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3 Proposed method

3.1 Non-negative matrix factorization

NMEF allows for the decomposition of a non-negative
matrix into a multiplication of two non-negative matrices
by using the following model:

V = WH +E, (6)

where Ve Rf ., W € R o, HeR{ \,andE € Rgyn.
When NMEF is applied to acoustic signal processing, V is
the spectrogram of the input signal with K frequency bins
and N time frames, W and H are the frequency and the
time basis matrices, respectively, and R is the number of
basis vectors. Then, NMF determines matrices W and H
from V by alternating estimations

W « arg n&n C(VIWH), (7)
H <« arg n}_iln C(VIWH), (8)

where C(A|B) is a divergence function between A and B.
Lee and Seung [15] introduced the multiplicative update
rule for two cost functions—namely, the Euclidean dis-
tance and the Kullback-Leibler divergence—and Virtanen
[22] subsequently generalized the update rule as

VwC (W, H

W< W % 9)
Vi C (W, H)
Vi C (W, H

H<H® M (10)
Vi C (W, H)

where ® and the fractions represent Hadamard
multiplication and elementwise divisions, respec-
tively, Vi, C(W,H), Vi C(W,H), V;;C(W,H), and
Vi C (W, H) are elementwise non-negative terms that are
part of gradients

VwC(W, H) = Vy,C(W, H) —VyC(W, H),
VHC(W, H) = V{{C(W,H) — VC(W,H),

(11)
(12)
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and C (W, H) is an arbitrary cost function containing a
divergence function and additional constraints.

NMF decomposes the spectrogram of the input signal
into several basis components in acoustic signal process-
ing, with the number of components usually larger than
that of the sources. Recently proposed algorithms apply
different constraints to each basis group to handle the
basis components, depending on the source signal, as
illustrated in Fig. 4.

3.2 Basis estimation

As shown in Figs. 2 and 3, the target echo signal has dis-
tinctive characteristics due to reverberation. The target
echo signal is as follows:

e [sa frequency-shifted replica of the transmitted ping

e Has continuous values along the time axis (unlike
those of reverberations, which randomly fluctuate)

e [sshort and limited in the time domain (unlike
reverberations, which are persistent)

To estimate each basis group separately, consider that
the frequency and time basis matrices consist of the echo
and the reverberation basis groups, respectively, as

W:[Wp : WR], (13)

T
H:[HPT : HRT:| , (14)

where Wp € IR;;X r, and Hp € RIJ{PX  are the frequency
and time bases of the echo basis group, Wr € RI‘EX R and
Hgr € R}Rx y are those of the reverberation basis group,
respectively, and Rp and Rp are numbers of echo and
reverberation bases, respectively. Then, each basis group
should be estimated separately as described below.

Applying Egs. (13) and (14) into Eq. (6), matrix V can be
expressed as

V = WpHp + WrHg + E. (15)

Source 1 constraints

~ N T~

=

DS

H (Time Basis)

V (Spectrogram)

‘W (Frequency Basis)

Source 2 constraints

O : Source 1 Bases
O : Source 2 Bases

Fig. 4 NMF-based source separation. Each source group is extracted by applying different constraints
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If we define the target echo portion as Vp = WpHp
and the reverberation portion as VR = WgHg in the
magnitude spectrogram, Eq. (15) becomes

V=Vp+Vr+E (16)

Therefore, the strategy of dividing into basis groups can
help identify the energy contribution of each group to
the spectrogram, if we apply appropriate constraints. This
strategy enables easy application of prior knowledge of
frequency and temporal structures, so it is widely used in
current research for source separation and speech signal
denoising problems [28].

3.2.1 Echo bases

As the target echo signal has a frequency similar in
structure to the Doppler-shifted transmitted ping, the fre-
quency basis matrix consists of Doppler-shifted replicas
of frequency basis wt of the transmitted ping.

Frequency basis wt € R;Xl and time basis ht € RTX N
are modeled by rank-one NMF as V1 ~ wrht, where
Vr € R};X n is the spectrogram of transmitted ping
s¢(t). The cost function is defined by the Kullback-Leibler
divergence between Vt and wrhr, and wr and hr can be
iteratively estimated as [15]

Vr/(wrhr)] hy!
WT(_WT®[ T/(WT T)]TT ’ (17)
1xxnhr
Y h
By (_hT®WT [ ;/(WT T)]' (18)
wr ' 1xxn

where 1gxn denotes a K x N matrix whose elements
are all one. Following convergence, the echo frequency-
basis matrix Wp consists of frequency-shifted replicas of
frequency basis w as follows:

Wp = [WT,T—D © WT,40 " * 'WT,TD] ) (19)

where wr 14 is a d-bin-shifted version of wr, and D is
the maximum number of bins of the Doppler shift to be
observed. As shown in Eq. (19), the number of echo bases
Rp is 2D + 1. Equations (17)—(19) depend only on the
transmitted ping and not on the received signal. Hence,
the iterative process can be carried out initially and Wp is
fixed during runtime.

The time basis matrix of the echo signal is estimated
using constraints on temporal continuity and temporal
length limitation (TLL) to utilize the second and third
characteristics of the echo signal, i.e., time continuity and
limited duration, respectively. The cost function consists
of error terms

C(Wp,Hp) = Ce(Wp,Hp) + aCr(Hp) + BC(Hp),
(20)

where Ce(Wp, Hp), Cr(Hp), and C; (Hp) are the costs of
the reconstruction error, temporal continuity, and TLL,
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respectively. & and B are the weights of the costs of tempo-
ral continuity and TLL, respectively. The gradient of total

cost is the weighted sum of the gradients of each cost:
VipC = Vip Ce + Vi, Cr + BV, Crs (21)

where we omit the parameters of the cost functions for
convenience. Assuming that the derivative of each cost
function can be expressed as a sum of positive and nega-
tive terms, the total cost gradient is given by

VH, C = (V;PCE — VEPCE) +o (V;PCT — VﬁPCT>
+6 (Vit, €t — Vi, Cr)
+ —
= Vi,C — Vi, G (22)
where
Vi C = (Vi Ce + oV, Cr + BV,C1), - (23)
Vi, C = (ng Ce+aVy, Cr + BVy, CL) o (29)
and Hp is iteratively estimated from (10) as
Vi, C

Hp <~ Hp ® T
VHPC

(25)

Reconstruction error Cr is defined by the Kullback-
Leibler divergence, which is often used in NMF for source
separation [15]:

1% k,
CE(VIWH) =) (v(k,,,) log ——)__

Vo [ WHI, )
— [WH](k,n) (k,n) (k,n)

(26)

where v, and [ WH] ) are elements of V and WH,
respectively, in the kth row (1 < k < K) and the nth col-
umn (1 < n < N). In the proposed algorithm, V is the
spectrogram of received signal s(¢) = s.(¢) + s,(£). There-
fore, the positive and negative terms of the cost function
derivative with respect to Hp are given by [22]

Vi, Ce = We L, (27)
\%

Vi, Ce=Wpl ——. 28

1, CE P Wi (28)

The temporal continuity constraints are defined as [22]

R N 2
=3 Yon=a (Bpm) = Pp, 1))
r=1 N n=1"p,(r,n)

where /1, ;) is the element of Hp in the rth row and nth
column. The gradient of Cr with respect to Hp is derived
as [22]

, (29)

p—Hp_; —Hp;

VH, C 2N 2H
pCr =
’ Hp?1nxn

_N 2Hp® [{(Hp—Hp_.1)% 1nxn]

, (30
{szleN}2 )
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where Hp . ; and Hp_, are left and right shifts of Hp by
one, respectively, 1yxn denotes a N x N matrix whose
elements are all one, and Hp2 means an elementwise
square of Hp. By grouping the positive and negative terms,
V:['P Cr and Vi Cr are expressed as [22]

4NHp
Vi Cr = 5 (31)
Hp“1nxn
H —H
VI;PCT —9IN P~>12 P1
Hp“1nxn
2NHp®[{(Hp—Hp_,1)*}1nxn] 32)
5 .
{Hp?1nxn )
The TLL constraint is defined as
R n+l,—1
=Y 1= > hyom | (33)
m=n

r=1
where [, is the expected length of a ping. The maximum

value indicator function /1, is given as

N evem

I S S — (34)
'p,(r,n) ’

where }_zp,(m) is the moving sum of each time basis signal
calculated as

n
hpem = D i
m=n—I,+1

(35)

The individual elements from the positive part VEP Cr
and negative part Vi Cj are given by (see Appendix 1)

ntl,—1 7 2
e''p:(r;m)
v CL] - ) 36)
[ He ™ 1) mX:‘; SN e
n+i,—1 e;‘p,(r,m)
VG| =Y (37)
[ Hp (r,n) o Zi\i . P

where [A](,.,, is the (7, n) element of matrix A.

3.2.2 Reverberation bases

We consider the basis matrices of reverberation as com-
ponents of the signal that are longer and more fluctuating
than the target echo signal. Therefore, the frequency and
time basis matrices can be estimated by the multiplicative
update rule without additional constraints as

Wr’ [V/ (WH)]
H Hp® —————~—~~ 38
R < Hr ® Wl leon (38)
and
T
W < Wg o O/ WHIHe (39)

1xxnHrT
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3.2.3 Reconstruction of the target echo signal

Following the iterative estimation of the basis matrices
for the echo and reverberation, (25), (38), and (39) con-
verge, and the estimated signal of the target echo can be
reconstructed from its basis matrices. The spectrogram
of the reconstructed echo signal is calculated from these
matrices as

Qout = WpHp. (40)

To construct a complex spectrogram, phase informa-
tion is needed. In several NMF-based algorithms, either
the phase from the original spectrogram is used [22] or an
approach based on the Wiener filter is applied to the orig-
inal spectrogram [19]. We observed a similar performance
by both methods, but prefer the phase of the original spec-
trogram because it allows the easy construction of the
complex spectrogram. The estimated target echo signal
S.(t) is then obtained by the inverse short-time Fourier
transform.

The proposed algorithm is summarized in Table 2,
where Hp, WR, and Hpg are initialized using non-negative
random values and iteratively estimated, whereas Wp is
initialized and fixed by the frequency-shifted replicas of
the transmitted ping spectrum wr.

3.2.4 Considerations on the convergence of the algorithm
Lee and Seung [15] proved that the cost function is
non-increasing when the multiplicative update processes
(Egs. (9) and (10)) minimize the Kullback-Leibler diver-
gence. Convergence is proved by designing an auxiliary
function for the objective functions. The detailed proof
can be found in [15, 17] and is briefly reviewed in
Appendix 2.

It is difficult to show that convergence is guaranteed
when the NMF contains additional constraints because
finding an appropriate auxiliary function is difficult. How-
ever, we expect that the iterative algorithm converges well
if o and B are small, owing to the non-increasing prop-
erty of the multiplicative update rules for the Kullback—
Leibler divergence. Instead of a theoretical analysis of the

Table 2 Proposed algorithm

Hp, Wg, and Hg are randomly initialized with non-negative values, and
Wp is initialized using (17), (18), and (19). Following initialization, the
following process is iteratively performed until convergence:

1. V;{P e Vg Ce, V;’P T, Vo 7 V;’P C1,and Vg, G are calculated using
(27),(28), (31), (32), (36), and (37), respectively;

2. V:[PC and VﬁPC are calculated using (23) and (24), respectively, and
Hp is updated using (25);

. Hg is updated using (38);

. His updated with Hp and Hg using (14);

. Wy is updated using (39);

. W is updated with Wg using (13).

(@) N0, I SN OV]

Following convergence, the resulting spectrogram Qg is calculated
using (40).
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convergence condition, we check the convergence of the
objective function with varying « and g in the simulation
experiments presented in Section 4. We observe that the
objective function converges well in most cases except for
those with very large values of o and g, such as 10%.

4 Results and discussion

4.1 Simulation with synthesized reverberation

To evaluate the proposed algorithm, we perform simula-
tions with synthesized reverberations. Specifically, a sonar
system transmits CW ping signals of 50 ms and moves
forward with speed V such that % = 0.07. The reverber-
ation is synthesized using the non-Rayleigh underwater
reverberation model [29]. Moreover, the target echo signal
is received at 600 ms and the normalized Doppler (f;/fo)
of the target echo is 0.036 for this simulation.

To apply the proposed algorithm, we use the short-time
Fourier transform for the received signal with a 16-ms
Hamming window, a 75% overlap, and 128 Fourier trans-
form points. The number of basis vectors for the echo
Rp and reverberation Ry of the proposed algorithm are
set to 19 and 60, respectively, and the weight factors for
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temporal continuity and TLL constraints, & and 3, are set
to 1.0 and 10.0, respectively. The expected ping length /,
is set to 50 ms. The proposed algorithm is compared with
the PCI [9], autoregressive (AR) pre-whitening [10], and
SSE [11] algorithms. The length of the time frame and the
order of the AR model are set to 64 ms and 20, respec-
tively, and these values are selected as the optimal ones
through trial and error. The thresholds for eigenvalues
of the PCI and SSE algorithms are set to optimal values,
assuming that the power of the reverberation is known.
Figures 5a—f and 6a—f show examples of the basis matri-
ces of the echo estimated by the proposed algorithm with
an input signal-to-reverberation ratio (SRR) of —12 dB,
from r = 7 to r = 12, respectively. As shown in Fig. 5, the
ninth frequency basis vector correspond to the frequency
structure of the transmitted CW ping signal, whereas the
other basis vectors are shifted from the CW ping in d
bins. Figure 6 shows that the 11th time basis vector has
large values between 600 and 650 ms, whereas the other
basis vectors have relatively small values. As the differ-
ence in frequency between adjacent bins is 0.018f in this
experiment, the 11th frequency and time basis vectors

a WP (r=7, d=-2)
10 ‘ ‘ ___/\ ]
0 0.2 0.4 . 0.6 0.8 1 1.2
normalized frequency
b WP (r=8, d=-1)
19l | | | | : ]
0 0.2 0.4 . 06 0.8 1 1.2
normalized frequency
c WP (r=9, d=0)
19k | | | | ‘ ]
0 0.2 0.4 06 0.8 1 1.2
normalized frequency
d WP (r=10, d=1)
19F | | | | : ]
0 0.2 0.4 . 06 0.8 1 1.2
normalized frequency
e WP (r=11, d=2)
19[ ‘ ‘ ‘ ‘ ANEEE
0 0.2 0.4 06 0.8 1 1.2
normalized frequency
f WP (r=12, d=3)
10} ‘ ‘ ‘ ‘ VANEE
0 0.2 0.4 . 06 0.8 1 1.2
normalized frequency
Fig. 5 Echo frequency basis vectorsatar=7,br=8¢cr=9,dr=10,er = 11,and fr = 12 (input SRR = —12 dB). The x-axis of each graph
denotes frequency normalized by the CW ping frequency
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a H,(=7)
0.4 T T T T
0.2
0 200 400 600 800 1000
time [ms]
b Hp (r=8)
0.4 T T T T
0.2
0 200 400 600 800 1000
time [ms]
C H, (r=9)
84 ‘ |
0.2 _—\ e A\ _— A~ N\
0 200 400 600 800 1000
time [ms]
d H, (=10)
0.4 T T T T
0.2 E " A AN }
0 200 400 600 800 1000
time [ms]
e H, (r=11)
0.4 T T
0.2 E_M A, A I~ ‘_/V\J\_H\‘ ! q
0 200 400 600 800 1000
time [ms]
f H,(r=12)
0.4 T T T T
0.2
0 200 400 600 800 1000
time [ms]
Fig. 6 Echo time basis vectorsatar=7,br=8c¢c¢r=9,dr=10,er=11,and fr = 12 (input SRR = —12 dB)

corresponded to the target echo. Thus, the graphs show
that the proposed constraints are suitable to find the
target echo signal.

Figure 7 shows the waveforms of the ideal target echo
(ground truth, Fig. 7a), the received signal comprising the

ideal target echo and reverberation (Fig. 7b), the output
signal obtained using the proposed algorithm (Fig. 7c),
the SSE algorithm (Fig. 7d), the AR pre-whitening algo-
rithm (Fig. 7e), and the PCI algorithm (Fig. 7f). For the
algorithms, we consider the input signal shown in Fig. 7b.
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Fig. 7 Waveforms of a ideal target echo signal, b received signal, € output signal using the proposed algorithm, d output by the SSE algorithm, e
output by the AR pre-whitening, and f output by the PCl algorithm (input SRR = —12 dB)
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Reverberations with amplitudes similar to that of the tar-
get echo signal can be seen before applying the algorithm,
but the reverberations are removed following the appli-
cation of the proposed algorithm. Although the SSE and
PCI algorithms can also suppress reverberation, parts of
the reverberation signals persist upon application of these
algorithms.

To evaluate the proposed algorithm for various input
SRRs, we measure the output signal-to-noise ratio (SNR)
using Monte Carlo simulations with 100 iterations per
SRR ranging from —20 to —6 dB, with increments of 2 dB.
The SNR is calculated as

D lsem)?

SNR = ,
Yo Ise(n) — Se(n)|?

(41)

where s.(n) is the echo signal of the ideal target and s.(n)
is the output signal obtained after applying the algorithm.
Figure 8 shows the SNR of the proposed, the SSE, and the
PClI algorithms. The proposed algorithm achieves an SNR
gain of 6 to 15 dB compared to the input SRR and approx-
imately 5 to 7 dB compared to the SSE and PCI algorithms.
The SNR results of the AR pre-whitening algorithm
could not be obtained because the output amplitude of
the algorithm is too small. Thus, it is not appropriate
to evaluate AR pre-whitening algorithm using the SNR
values.

Given that reverberation suppression aims to improve
target detection, we calculate the range-Doppler by applying
a matched filter to the outputs of the algorithms. To calcu-
late the map, we use the block-normalized matched filter
[9, 11], with the Doppler-shifted transmitted ping signal
being

SNR Results
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r
& -4000 L~ z-" b
5 ]% Phe I
2 6000 -E
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5] Fig I
-8.000 +2
¥ I T'—= Proposed
-10.000 T - - Signal Subspace Extraction
Principal Component Analysis
-12.000
20 -18 -6 -14 12 -0 -8 -6
Input SRR [dB]
Fig. 8 SNR retrieved from the proposed, SSE, and PCl algorithms for
various input SRRs. The vertical error bars indicate the standard
deviation
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PN CIENC)
(1/2N) YN g, )2 SN i) 2

L(i»fd) = (42)

where N is the length of a block, sz, (1) is a Doppler-shifted
transmitted ping signal with Doppler frequency f;, and
xi(n) is the ith block of the received signal. Figure 9a—e
show the results of applying the matched filter only and
applying the matched filter with the proposed algorithm,
the SSE algorithm, the AR pre-whitening algorithm, and
the PCI algorithm, respectively. Figure 9a shows that the
range-Doppler map has a large value at the location of the
target echo, but has many false peaks. Figure 9b shows
that the SSE algorithm enhances the target echo, but sev-
eral false peaks still remain, and Fig. 9c shows that the
PCI algorithm retrieves some false peaks over several
Doppler frequencies. Figure 9d shows that the AR pre-
whitening algorithm yields relatively good performance
for enhancing the target echo, but several large false peaks
persist near the zero-meter range, for certain Doppler fre-
quencies. Figure 9e shows that the proposed algorithm
determines the true peak corresponding to the ideal tar-
get echo with better intensity than for the other peaks.
Therefore, it can reduce false positives when applying a
threshold to the matched filter during target detection.

To evaluate detection performance, we calculate the
probabilities of detection and false alarm after 1000 Monte
Carlo simulations per SRR input. A positive is defined as
the range-Doppler bin containing the target, whereas a
negative is defined as a bin with no target. When the value
of any bin in the range-Doppler map is greater than a pre-
defined threshold, we define those bins as true positives
(TPs) if they are positives, and as false positives (FPs) oth-
erwise. The probabilities of detection and false alarm are
respectively defined as

. Number of TPs
Detection prob. = —, (43)
Number of positives
Number of FP
False alarm prob. = arhero” 78 (44)

~ Number of negatives’

These probabilities are dependent on the threshold, and
we thus calculate them for various thresholds to deter-
mine the receiver operating characteristic (ROC) curves
as shown in Fig. 10.

Figure 10 shows the ROC results at —12 dB, —-14 dB, -
16 dB, and —18 dB because the detection performance of
the algorithms rapidly changed in this region. The graphs
show that the proposed algorithm with matched filter
enhances detection performance compared with the AR
pre-whitening, PCI, and SSE algorithms. Under certain
false alarm conditions (greater than a probability of 30%),
the AR pre-whitening algorithm shows slightly higher
detection probability than the proposed algorithm, but
the difference in the high false alarm conditions are much
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smaller compared to the difference in the low false alarm
conditions. Therefore, the proposed algorithm is consid-
ered to be more advantageous than the AR pre-whitening
algorithm. Figure 11 shows the detection probability with
respect to input SRR conditions at a false alarm probabil-
ity of 1%, and the results show that the proposed algorithm
can significantly enhance detection performance at SRR
inputs between —18 dB and —8 dB with a low probability
of false alarms.

To verify the convergence of the proposed algorithm,
we calculate the value of the objective functions during
iterative estimation. Figure 12a and b show the Kullback—
Leibler divergence between V and WH used to estimate
Wr and Hr (Egs. (38) and (39)), respectively, and Fig. 12¢
and d show the objective function, including the costs of
temporal continuity and TLL (Eq. (20)), used to estimate
Hp. The curves are calculated by an ensemble averaged

over 1000 Monte Carlo simulations. We check the value of
the objective function by varying the SRR input from —20
dB to 0 dB, but the results are barely affected by the input
SRR. We thus show the graph corresponding to —10 dB as
input SRR only. As shown in Fig. 12a and c, the objective
functions do not diverge when the value of « is less than
10%. Figure 12b and d show that the objective functions
converge with 8 less than 10*. We test the convergence of
the objective functions under several combinations of «
and 8, and the results show similar behaviors regardless of
the value of each parameter.

Because the computational complexities of the SSE and
PCI algorithms depend on the singular-value decomposi-
tion used, it is challenging to compare the complexities of
the algorithms. We thus measure the computation times
on a laptop with a 3.5-GHz CPU and 16 GB of memory.
All the tested algorithms are implemented in MATLAB,
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and the SSE and PCI algorithms use the built-in functions
for singular-value decomposition. For a 1-s long signal,
the proposed algorithm with 200 iterations requires 0.7 s,
whereas the AR and SSE (PCI) algorithms require 0.025
and 0.6 s, respectively. The calculation times of the SSE
and PCI algorithms are nearly identical. The proposed
algorithm thus requires more calculation time than the
conventional algorithms.

4.2 Simulation with measured reverberation

Having verified the performance of the proposed algo-
rithm through a simulation, we test it on reverberation
measurements acquired at the Eastern Sea of Pohang in
the Republic of Korea from a 1-s transmitted CW ping.
The reverberation of the CW signal is measured by a
nested towed array consisting of 48 sensors moving at four
knots.

During this experiment, we assume an input SRR of —12
dB, and the target echo is received after 2 s with a nor-
malized Doppler of 1.0025. Its signal is thus interfering
with the reverberation. We apply the short-time Fourier
transform to the received signal with a 133-ms Hamming
window, 75% overlap, and 2048 transform points. As for
the simulations with synthesized reverberation, temporal
continuity, and TLL weights, @ and § are set to 1.0 and
10.0, respectively, and the expected ping length /, is set
to 1 s. The length of the time frame and the order of the
AR model are set to 530 ms and 50, respectively, and these
values are selected as the optimal ones through trial and
error. The thresholds for eigenvalues of the PCI and SSE
algorithms are set to optimal values, assuming that the
power of the reverberation is known.

(2019) 2019:11
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Figure 13 shows the waveforms of the ideal target echo
(ground truth, Fig. 13a), the received signal compris-
ing the ideal target echo and reverberation (Fig. 13b),
the output signal obtained using the proposed algorithm
(Fig. 13c), the SSE algorithm (Fig. 13d), the AR pre-
whitening algorithm (Fig. 13e), and the PCI algorithm
(Fig. 13f). It is challenging to identify the target echo
from the received signal, whereas it is clearly distinguish-
able when the proposed algorithm is applied. Although
the SSE and PCI algorithms can also suppress reverbera-
tion, parts of the reverberation signals persist following its
application.

To analyze the proposed algorithm in the frequency
domain, we calculate the spectrograms of the received sig-
nal and the output signals as shown in Fig. 14. Clearly,
the received signal has many undistinguishable compo-
nents as shown in Fig. 14a, and parts of the reverberation
signals persist following the application of SSE and PCI
algorithms, as shown in Fig. 14b and c, respectively. The
AR pre-whitening algorithm suppresses the target echo as
well as the reverberation as shown in Fig. 14d, whereas
the target echo signal is clearly visible in the spectrogram
of the algorithm’s output as shown in Fig. 14e. Therefore,
the proposed algorithm can estimate both the Doppler
frequency and the temporal location of the target echo.

Figure 15 shows the range-Doppler maps of the received
signal without reverberation suppression and the pro-
cessed signal using the SSE algorithm, PCI algorithm,
AR pre-whitening, and the proposed algorithm, respec-
tively. Each range-Doppler map is determined from the
block-normalized matched filter, as for the simulation of
synthesized reverberation. Figure 15a shows significant
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are shown
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values in the two Doppler frequency bins, where values
at the negative Doppler bin correspond to reverberations
and those at the positive Doppler bin to the target echo.
The values related to reverberations are large and can

lead to target misidentification. Figure 15b shows that
the SSE algorithm reduces the peak value correspond-
ing to the reverberation, but several false peaks persist.
Figure 15c shows that the PCI algorithm cannot effectively
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suppress the reverberation peak, and Fig. 15d shows that
the result of AR pre-whitening has a large value near zero
meters. Figure 15e shows that the proposed algorithm
suppresses the peak of the reverberation and enhances
that of the target echo, thus confirming that it performs
well in practice.

5 Conclusion

In this work, the detection performance of the target echo
from CW ping signals is enhanced in the presence of
reverberations. To this end, a reverberation suppression
algorithm is proposed based on NMF and distinguishing
characteristics between the target echo and reverbera-
tions. Specifically, three characteristics of the target are
considered: the frequency structure of the target echo
is similar to that of the Doppler-shifted transmitted sig-
nal, the target echo has time-continuous values, and the
target echo has relatively short and finite duration. To
use these characteristics, the frequency bases of the tar-
get echo are fixed by frequency-shifted transmitted pings,
and constraints on the temporal continuity and TLL are
developed.

Experiments are conducted with both simulated and
measured reverberations to evaluate the proposed algo-
rithm. The results of the simulations show the ability of
the proposed algorithm to find the target echo signal by
enhancing SNR from 6 to 15 dB compared to that of
the received signal. ROC curves calculated by a Monte
Carlo simulation confirm that the proposed algorithm
enhances detection probability with a low false alarm rate.
The performance of the proposed algorithm is also veri-
fied in an ocean by measuring the reverberations. Overall,
the results show that the proposed algorithm suppresses
reverberations and enhances detection performance in
simulations and practice. Expanding our algorithm to
multichannel sonar signals and analyzing the convergence
of the constrained NMF are expected to be considered in
our future work.

Appendix 1: Gradients of the TLL constraints
For the TLL constraint, the backward moving sum of each
time basis signal is calculated as

n
Z h ,(r,m)»

m=n—Il,+1

By, = (45)

where [, is the expected length of a ping, and /1, rep-
resents the sum of the nth moving block that has a frame
index ranging from (n — [, + 1) to n. The maximum value
indicator function }Azp,(,,n) is defined as

1, n = arg max,, ljlp,(,,m),

0, otherwise. (46)

hpy(r,n) = {

(2019) 2019:11
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To penalize all data from each time basis except for the
moving block that has maximum energy, the TLL con-
straint is defined as

R n+l,—1

CLZZ 1-— Z il,(r,m)
m=n

r=1
The TLL penalty takes values between zero and one
per basis r. As shown in (46), the maximum value of

(47)

anHZ L Ny, (rm is one, thus limiting the value of the
constraint.

Figure 16 shows an example of a simulated TLL con-
straint on the basis of limited length corrupted by esti-
mation errors. The time basis has a length-limited signal
from the 21st to the 30th index, as shown in Fig. 16a. The
TLL constraint should ideally have large values outside
this region because the TLL is designed to penalize the
longer signal. The graphs in Fig. 16b—d describe (45)—(47),
respectively. The TLL constraint (Fig. 16e) has large val-
ues for every time index except for the region of the signal
between the 21st and 30th indices and is thus consistent
with the purpose of the design.

Gradient Vy,C; can be determined by the chain rule,
but the derivative of (46) is challenging to find. Therefore,
we use function softmax instead of max:

A elom

hp,(}",}’l) = 7 * (4'8)

The TLL penalty with softmax is also between zero and
one for each basis r because

n+l,—1

Z h,(r,m)>1_Zh,(rm)—0

and V]:lp,(r,m) > 0.
Then, the derivative of C; with respect to /4, .,y can be
easily determined by the chain rule as

(49)

ehp,( rym)

Jip, (r,m)

n+l,—1
Vit CL = Z (

m=n

(50)

Consequently, each element from V;EP Cr and Vﬁp Cyis
given by

n+l,—1 ;,p(rm) 2
[V;PC]W) = Z (Zl leh!’<”)> ,  (51)
B ”*l”*l elp.rm)
[VHPCL](M) = > S (52)

Figure 16f shows the TLL constraint using softmax, which
has a similar structure to that obtained using max, as
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shown in Fig. 16e. Thus, softmax can be used instead of
max to design the constraint for the length-limited basis.

Appendix 2: Review of convergence analysis of the
NMF algorithm

We briefly review the auxiliary function approach to
optimizing H with the Kullback-Leibler divergence only
(¢ = B = 0). Let Ce(h,n)) denote the Kullback—Leibler
divergence that is a function of /(,,,;) with a fixed w ,y. An
auxiliary function C* (h(r,my» hg?n)) for Ce(hr,n)) is defined
by a function that satisfies

C* (i hhy ) = Ce (hem) (53)

Ct (homw hirm) = Ce (how) » (54)

where hg)n) is the updated value of %, ;) after ¢ iterations
(definition 1 in [15]). If we update hg‘;;) as
(t+1) : + @)
h(r,n) = arg 2(11r)1 C (h(r,,,),h(r,n)>

(55)

Ce(h(,n)) is non-increasing during the update because

D\t (1D 1O Nt (O 5O N o (O
C5<h<r,n> <C (h(m) 'h(r,n)>fc (hmn)’h(r,n))—CE(h(r,n))'
(56)

Lee and Seung [15] and Nakano et al. [17] showed
the non-increasing property of multiplicative update algo-
rithms by designing an auxiliary function that satisfies
Egs. (53) and (54) based on Jensen’s inequality [17] and
by deriving the multiplicative update algorithm from
Eq. (55).
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