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Abstract

With the evolving Internet of Things, location-based services have recently become very popular. For modern wireless
sensor networks (WSNs), ubiquitous positioning is elementary. Hence, the demand of everlasting and low-cost sensor
nodes is rapidly increasing. In terms of energy-efficiency, received signal strength (RSS)-based direction finding is a
prospective approach providing location information in low-power sensor networks. Unfortunately, RSS-based
direction finding is, as radio-based localization is in general, prone to multipath propagation of the wireless channel.
Therefore, the impact of multipath fading as well as all other error source have to be modeled correctly and have to
be considered in the design of a locating WSN.
In this paper, we derive the classical Cramér-Rao Lower Bound (CRLB) for RSS-based direction-of-arrival (DOA). The
drawbacks of the classical CRLB and its influence on the optimal network topology are discussed. The CRLB indicates
that the minimum variance unbiased estimator (MVUE) does not exist for the problem of RSS-based DOA due to the
nature of its measurement function. Hence, beyond the CRLB, we derive performance metrics for the maximum
likelihood estimator (MLE) and compare position estimation errors for the MVUE and the MLE for different network
topologies. Since both approaches, the CRLB and the maximum likelihood (ML) limits, are not capable of handling
ambiguities, we introduce another measure for the variance of ameasurement and its corresponding position estimate
based on information theory. This way, the amount of information for a set of RSS measurements can be quantified
exactly, even in the case of ambiguous probability densities. Thus, the proposed technique gives a holistic view on the
information obtained from sensor measurements which can be utilized for network topology optimization.

Keywords: Information theory, Estimation theory, Cramér-Rao lower bound (CRLB), Localization, Wireless sensor
network (WSN), Network localization, Location sensors

1 Introduction
The use of wireless sensor networks (WSNs) is rapidly
increasing these days. Also, new aspects of WSNs, like
energy-efficiency and location-awareness, are gaining
more and more attention. There is a vast number of appli-
cations for location-aware WSNs, e.g., smart metering
[1], collision avoidance [2], or animal tracking [3], just to
name a few of them. In all of these examples, the sensor
information is almost meaningless without any position
information. Hence, localization is a core feature of today’s
sensor networks [4].
Radio-based localization is one of the most popular

techniques to provide location information in [5]. There
is one thing all radio-based localization systems have in
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common: the wireless radio channel. Precise localization
would be an easy challenge without its impairments of the
wireless propagation channel. To design locatingWSNs in
an optimal way, these impairments have to be modeled in
order to analyze the performance of the network localiza-
tion. A straightforward approach is to model the errors
of each sensor and combine the error distributions of all
sensors with regard to the geometry of the WSN [6]. Esti-
mation theory allows to compute the expected variance
for the sensors evaluating the Cramér-Rao Lower Bound
(CRLB). In a similar manner, the position CRLB can be
computed for noisy sensor estimates, e.g., ranging and
direction finding, for a location estimate within a sensor
network [7].
The effect of multipath and non-line-of-sight propaga-

tion on the precision of the position estimates has been
extensively analyzed in [8]. Shen et al. consider the use of
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prior knowledge of the user’s position [8]. Prior knowl-
edge may be integrated with the information-theoretic
performance metric presented in this paper. As shown by
[8], the use of prior information is reasonable, as it may
be provided by e.g. maps. Hence, performance metrics for
WSNs should be capable of incorporating prior informa-
tion. In [9], the impairments due tomultipath propagation
are characterized. Multipath fading results from destruc-
tive and constructive interference of different propagation
paths at the receiver. When ranging is considered with
narrowband systems, multipath components can not be
resolved. This inherently leads to biased estimates. The
same is true for the spatial domain in received signal
strength (RSS)-based direction finding, where multipath
propagation affects the accuracy of direction-of-arrival
(DOA) estimates. In [10], anchored and anchor-free local-
ization is compared. According to [10], accurate position
estimates require for a good local geometry. Further-
more, in their conclusion, the authors state that a tool for
the identification of the bottleneck in localization would
be useful. The information-theoretic approach, presented
in this paper, provides exactly that type of information,
i.e., quantifying the information gain of additional sen-
sor nodes. In many fields, there has been a revival of
information theory. Information-theoretic measures are
used to optimize MIMO radar waveforms [11]. The loss
of sub-Nyquist sampling has been characterized applying
information theory [12, 13]. Within the context com-
pressive sensing, fundamental limits [14] and bounds for
kernel-based time delay estimation [15] have been derived
based on information theory.
Although there are many manifestations of radio local-

ization systems, the technique addressed in this paper is
based on RSSmeasurements, more specifically RSS-based
direction finding [16]. Although we focus on RSS-based

DOA estimation, the presented framework is applicable in
general. Hence, it may be applied to cooperative ranging
or time-difference-of-arrival (TDOA)-based localization
systems. RSS-based DOA is a promising approach for sev-
eral reasons. Field strength measurements do not demand
for complex signal processing. In contrast to time-of-flight
measurements, RSSmeasurements do not require exhaus-
tive synchronization of the sensors. RSS-based DOA is a
range-free approach. Hence, it does not depend on prior
knowledge of the emitted power of the transmitter or
the path loss exponent of the wireless channel [17]. A
representative of such a RSS-based localization system is
the BATS1 system [18]. The BATS system is an energy-
efficient sensor network designed for wildlife monitoring,
more precisely the tracking of bats.Within theWSN, posi-
tion information is obtained from RSS measurements [19]
that are gathered in the sensor network and stored on a
central computing unit, cf. Fig. 1.
For optimal deployment of the wildlife monitoring net-

work in the woods, a performance analysis of the network
localization for a given topology is essential. Therefore,
we provide a position CRLB for RSS-based DOA for the
antenna array utilized in the BATS project [20]. Due to
the nonlinearity, more specifically the missing curvature
[21] of the measurement function for the problem of RSS-
based direction finding, applying the classic CRLB results
in an unbounded variance for some signal directions.
This unbounded variance indicates the minimum vari-
ance unbiased estimator (MVUE) does not exist. Besides
that, RSS-based DOA, as many other fundamental esti-
mation problems, such as DOA estimation, frequency
and phase estimation, involve parameters that are of a
cyclic nature. There exist modifications of the CRLB that
address estimation of periodic parameters [22, 23]. How-
ever, periodicity is still on the downside of the CRLB.

Fig. 1 Tracking bats in the wild: The bat’s position, more precisely its location PDF, is inferred from RSS-based DOA measurements
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As a consequence, a performance metric based on the
error distribution of the maximum likelihood estima-
tor (MLE) is derived in [24]. The Bayesian estimation
approach allows to integrate non-informative priors [21]
in order to cope with cyclic parameters. This approach
reveals more consistent results in terms of the posi-
tion’s mean squared error (MSE). In [20, 24], bounds for
RSS-based DOA have been derived for an MVUE and
a biased estimator, the MLE, showing completely differ-
ent results. Results from estimation bounds significantly
affect the optimization of network topology in local posi-
tioning [7]. As shown in [24], choosing another estima-
tion bound entirely changes the constraints of the sensor
arrangement.
However, the maximum likelihood (ML) approach still

lacks the capability to handle ambiguities that inherently
arise in RSS-based DOA. Thus, we introduce a novel
approach to characterize the information content for mul-
timodal measurement error distributions. Based on infor-
mation theory, the entropy of sensor measurements is
quantified. Finally, the entropy of a set of measurements
retrieved by a WSN is related to a corresponding variance
of unimodal measurement distribution. Information theo-
retic measures, i.e., entropy andmutual information, allow
for performance assessment of locating WSNs in a holis-
tic manner incorporating local precision and the impact
of ambiguities. Utilizing the proposed information-
theoretic performance metric allows for network topol-
ogy optimization in heterogeneous sensor networks
with arbitrary measurement error probability density
functions (PDFs).
The main contributions of this paper are summarized as

follows.

• A review of RSS-based direction finding utilizing
coupled dipole antennas is given.

• We present the classical CRLB for RSS-based DOA.
Furthermore, the impact of network topology, i.e.,
the arrangement of the sensor nodes, on the position
resolution is assessed for the MVUE by applying the
2-D position CRLB.

• Estimation errors for the MLE are derived for
RSS-based direction finding. Again, the influence of
the topology of the WSN is analyzed. The error
bound for the MLE is more consistent compared to
the MVUE and features a significantly smaller mean
squared position error.

• Both findings above give indications of position
resolution for the given networks. However,
inherently arising ambiguities in RSS-based DOA are
not considered. Therefore, we introduce information-
theoretic measures for the analysis of direction
finding in WSNs. These information-theoretic
measures allow for joint analysis of resolution and

ambiguities. Hence, they provide a holistic view on
the performance of the locating WSNs.

• We provide a design tool, based on mutual
information, for the comparison and optimization of
different network topologies considering different
sensors types (e.g., unambiguous and ambiguous
DOA sensors). The use of mutual information allows
to exactly quantify the loss of information due to the
presence of ambiguities, whereas the CRLB gives no
useful information in that comparison.

The remainder of this paper is organized as follows. In
Section 2, a brief review of RSS-based direction finding
is given. Section 3 elaborates on the classic CRLB deriv-
ing the CRLB for RSS-based direction finding and cor-
responding position estimates with concluding remarks
on network topology as well as its drawbacks. Perfor-
mance limits of MLEs for RSS-based DOA are proposed
in Section 3.2. These are compared to the result from clas-
sical CRLB analysis. In Section 4, a unified approach to
quantify measurement uncertainty based on information
theory is introduced and illustrated for multimodal mea-
surement PDFs. A network design tool for optimal node
arrangement is presented in Section 5. Furthermore, the
impact of ambiguous sensors in different network local-
ization scenarios is discussed. Section 6 concludes this
paper.

2 A primer on RSS-based direction finding
For this paper, we consider RSS-based DOA estimation
applying coupled dipole antennas [24]. Furthermore, it is
assumed that localization takes place in the horizontal
plane orthogonal to the two dipoles. Presuming a perfect
linear dipole array, the radiation pattern of the dipoles in
the horizontal plane (i.e., θ = 90°) is constant over all
impinging signal angles in azimuth φ ∈ [0, 2π ]. Hence, the
radiation pattern for N dipoles at a distance of d = 1/2λ is
given by the array factor [25]

AF =
N−1∑

i=0
ci · exp(− j · 2π sin(θ) · di cos(φ)), (1)

where di are the corresponding distances of the dipole ele-
ments, λ is the wavelength, and ci is the coupling factor.
Considering only two dipoles at distances d0 = 0 and
d1 = d and θ = 90°the array factor reduces to

AF = c0 + c1 · exp(−j · 2π · d cos(φ)). (2)

For the considered antenna array, the dipoles are coupled
in phase. Hence, the radiation pattern is given by

g(φ) = 1 + exp(−j · 2π · d cos(φ)). (3)

We define the radiation power patterns G(φ) (in dB) by

G(φ) = 10 lg
∣∣ga(φ)

∣∣2 . (4)
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With two identical antennas rotated by 90° towards each
other, the gain difference function is expressed by

�G(φ) = G(φ) − G(φ + π/2). (5)

The patterns described above are sketched in Fig. 2. Gain
patterns for the rotation angles of 0° and 90°, respectively,
are depicted. DOA estimation yields minimum variance at
a high gradient of the gain difference function, as shown
in the next section.
The RSS at a receiver a for a transmitted signal with

power PTX can be computed as follows

PRX,a = PTX − L + GTX + G(φ) + wa, (6)

with L denoting the bulk path loss. GTX and Ga(φ) are
transmit and receive antenna gain, respectively. When
considering a single signal source, i.e., no multipath
propagation, the received signal strength difference is
given by

�PRX = �G(φ) + w, (7)

due to the fact that both channels are stimulated by the
same transmit power and exhibit equal path loss. Thus,
the gain difference function does not depend on transmit
power and path loss. Hence, it maybe estimated without
prior knowledge of the the path loss exponent and the
power emitted by the transmitter. This fact is, in contrast
to range-based localization based on RSS, a major benefit
of RSS-based DOA estimation.

3 Conventional methods for performance
assessment

Estimation theory is a core essential of many modern sig-
nal processing system. Those include, but are not limited
to, radar, image analysis, communications, and localiza-
tion. In estimation theory, a parameter θ is inferred from a

set of measurement z. In parameter estimation, two basic
concepts have to be distinguished [21]:

Deterministic parameter estimation Parameters are
assumed to be deterministic but unknown in
classical estimation theory, whereas in Bayesian
estimation theory, the parameter, that is to be esti-
mated, is assumed an to be a random variable (RV).
Thus, the data, in classical estimation, is described
by a PDF of the form p(z|θ).

Bayesian estimation In contrast to that, in Bayesian esti-
mation theory, is described by joint PDF p(x; θ) =
p(z|θ)p(θ) that is composed of the measurement
likelihood p(z|θ) and the prior PDF p(θ). Hence,
Bayesian estimation theory allows to incorporate
prior knowledge on the parameter θ .

In the sequel, the CRLB for classic parameter estimation
is discussed. For the Bayesian approach, we derive an ML
error bound for power-based direction finding.

3.1 Cramér-Rao Lower Bound
In parameter estimation, not only the estimate itself is of
valuable interest, but also the distribution of its errors.
Hence, it is desirable to quantify the deviation of the esti-
mate from the true parameter value. Basically, estimators
should be unbiased on the one hand. On the other hand,
they should provide a minimum variance. For the MVUE,
the Cramér-Rao Lower Bound gives a lower bound on the
variance of an estimator with a zero-mean error [26].
When recalling the alternative form of the CRLB, [21]

its respective limit on the variance is defined by

var
(
θ̂
)

≥ E
[(

∂ ln p(z|θ))

∂θ

)2
]−1

(8)

Fig. 2 The gain functions for both antenna configurations, rotated by 0° and 90°, are depicted in blue and orange, respectively. Also, the gain
difference function (dashed gray) and its derivative (dotted green) are depicted
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for a parameter estimate θ̂ observed by noisy measure-
ments r. In case of an unknown parameter, θ of a deter-
ministic signal observed in additive white Gaussian noise
(AWGN) by a series of observations

r[n]= f [n; θ ]+w[n] n = 0, 1, . . . ,N − 1 (9)

the general CRLB above can be strapped down to

var
(
θ̂
)

≥ σ 2
z

∑N−1
n=0

(
∂ f [n;θ ]

∂θ

)2 , (10)

where w ∼ N(0, σ 2). Equation 10 simplifies to

var
(
θ̂
)

≥ σ 2
z(

∂ f (θ)

∂θ

)2 (11)

for a single observation in presence of a AWGN.

3.1.1 DOA Cramér-Rao Lower Bound
The RSS measurements retrieved by the WSN are
impaired by noise resulting from fading effects of the
wireless propagation channel. Results from a channel
measurement campaign [27] show that noise on RSS dif-
ference measurements is log-normal distributed with a
constant variance over different ranges between transmit-
ter and sensor node.When observing RSS difference mea-
sured in dB, the CRLB estimating DOA by RSS difference
measurements is expressed by [20]

var(φ) ≥ σ 2
r(

∂�G(φ)
∂φ

)2 . (12)

The resulting CRLB for RSS-based direction finding for
the BATS sensor node is depicted in Fig. 3. It can be
easily seen that the variance of the DOA estimate strongly
depends on the direction of the impinging signal. More-
over, the variance is unbounded for signal directions near
φ ≈ k π

2 . This disadvantageous behavior can be explained
by the gradient of the gain difference function �G(φ)

which approaches zero for the corresponding locations.
Equivalently, it can be stated that the measurement func-
tion has no curvature [21] at the considered positions.
Summarizing the results so far, the variance of unbiased
DOA estimates inherently depends on the direction of the
signal source. Hence, position estimation errors will also
be dependent on the location of the tracked object.

3.1.2 Position Cramér-Rao Lower Bound
The CRLB for DOA estimates has been derived in the
section above. With the results for the variance of the
DOA sensors, the variance of the corresponding position
estimate can be computed applying the position CRLB
[20, 28, 29] for a set of sensor nodes. In the scope of the
paper, DOA estimates are considered in the horizontal
plane. Hence, position state space is 2-D. However, the
concepts presented here may be easily extended to 3-D
position space. The covariance of a position estimate

var(x̂) = E
[(
x̂ − x

) (
x̂ − x

)T]
(13)

is considered. As position estimation in general is vec-
tor parameter estimation, the Fisher information matrix
(FIM) [21] can be stated as

F(x) = E
[

∂ ln(p(φ|x))
∂x

∂ ln(p(φ|x))
∂x

T
]
. (14)

Fig. 3 CRLB for RSS-based DOA estimation. Apparently, DOA estimation variance depends on the direction of the received signal. For a received
signal direction of φ ≈ k π

2 , the variance approaches infinity. This is quite obvious, as the gain difference function �G(φ) is close to zero in that
range. Therefore, network topologies, especially node orientation, matters
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φ denotes a vector of DOA measurements and p(φ|x)
is the measurement likelihood for a given location x =[
x, y

]T of the tracked object.
The joint likelihood for all sensors is given by the prod-

uct of the likelihoods for the DOA observations φk at all
nodes of the network. The log-likelihood is expressed by

ln(p(φ|x)) =
∑

k
p(φk|x), (15)

where the subscript distinguishes the sensor nodes con-
tributing to the estimate. For DOAmeasurements in pres-
ence of noise, the measured angles φ for a given position
x are given by

φ = g(x) + w (16)

with the measurement function

gk(x) = tan−1 �yk
�xk

, (17)

where�xk = x−xk and�yk = y−yk . The noise processes
w are assumed to be mutually independent Gaussian ran-
dom variables. The likelihood function for a single DOA
measurement p(φk|x) neglecting some scaling factors can
be written as

p(φk|x) ∝ exp
(

− 1
2σ 2

DOA(x)
[
φk − gk(x)

]2
)
. (18)

It has to be noted that the variance σ 2
DOA(x) of the DOA

estimates is dependent on the angle of the impinging
signal. Thus, it is a function of the location of the trans-
mitter. We are now able to compute the FIM merging
Eqs. (14), (15), and (18) and resulting in

F(x) =
⎡

⎢⎣

∑
k

�y2k
σ 2
DOA(x)d4k

− ∑
k

�xk ·�yk
σ 2
DOA(x)d4k

− ∑
k

�xk ·�yk
σ 2
DOA(x)d4k

∑
k

�x2k
σ 2
DOA(x)d4k

⎤

⎥⎦ ,

(19)

with dk = ‖x − xk‖2 for position estimation from DOA
obtained from RSS measurements. The position estima-
tion error bound for DOA-based localization in a WSNs
is retrieved by evaluating the trace of the inverted FIM:

σPOS
2 ≥ tr

(
F(x)−1) . (20)

With help of the derived CRLB for network localization
utilizing RSS-based direction finding, different network
topologies can be assessed with respect to their localiza-
tion performance Fig. 4.

3.1.3 Optimal sensor node arrangement
The variance of direction estimates significantly changes
with the angle of the impinging signal with respect to the
orientation of the antenna array. Hence, not only the node
positions influence the localization performance, but also

the orientation of the sensor nodes is of importance. To
elaborate the impact of node orientation on the location
errors, two network configurations with identical node
positions but different orientation of receive antennas
have been defined. For the analysis, the node orientation
is defined as the rotation of the receive antenna array
in the horizontal plane with respect to the x-axis of the
Cartesian coordinate system. The optimal rotation angles
can be found by a parameter search. Optimal node orien-
tation is found by minimization of the mean CRLB over
the considered area of interest. The mean CRLB for the
two examined areas is depicted for different orientation
angles in Fig. 5. Orientation of the sensors is 0° and 35° for
the tested networks configurations 1 and 2, respectively.
In both cases, the nodes have a spacing of 50 m. In total,
four nodes are used being arranged in a quadratic shape.
A noise variance of σ�RSS = 5 dB is assumed for the cross
fading of the two antennas of the sensor nodes.
The position CRLB for both networks is visualized in

Fig. 4a, b. For the first network, the position error bound
is very inhomogeneous. This network yields promising
performance for the center of the area of interest. But
on the other hand, the position resolution is poor in the
outer areas. Having a look at network 2, the errors are
distributed in a much more uniform way compared to
network 1. Therefore, network 2 features good average
results for the whole area of interest. Simulation results
are shown in Table 1 for the two network configura-
tions. Average position errors are computed for networks
1 and 2 considering two different regions x, y ∈ [10, 40]
and x, y ∈ [−10, 60]. These numbers are in line with
visual representation of 2D error distribution presented in
Fig. 4a, b.
In sum, DOA dependent noise variance causes the

position errors to be position dependent. This, in conse-
quence, makes the network localization sensible to node
orientation. In addition to the fact that node orientation
significantly affects position errors, also the area of inter-
est has to be considered thoroughly for the assessment of
localization performance and the design of locating sensor
networks.

3.1.4 Results and discussion
Estimation variance significantly depends on the direc-
tion of the signal source when considering the MVUE
for DOA estimation. Reflecting the results from above,

Table 1 Simulation parameters and results

Network 1 Network 2

Area of interest Avg. position error

x, y ∈ [+ 10, 40] 6.33 8.89

x, y ∈ [− 10, 60] 11.18 8.85
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Fig. 4 CRLB for position estimation based on RSS-based DOA
measurements depending on the node orientation. For both figures
standard deviation is given in meters. a Position CRLB for a node
orientation of 0° b Position CRLB for a node orientation of 35°

topology optimization of the WSN is not only subject to
the antenna gain patterns and its orientation. It also sig-
nificantly depends on the area of interest for the object
that is to be tracked. Prior knowledge of the spatial prob-
ability density of the tracked object allows for an optimal
design of the locating network which results in a decrease
in position estimation errors.
However, due to missing curvature of the RSS-based

DOA measurement function, the MVUE yields an
unbounded variance for angle estimates at multiples of
90°. This indicates that the MVUE may not even exist. In
the next section, we will have a look on the maximum like-
lihood estimator. Furthermore, the classic CRLB can not

Fig. 5 Optimization of node orientation for the considered network.
The lines denote the two considered areas of interest (cf. Fig. 4b)

handle ambiguities, which inherently exist in RSS-based
DOA.

3.2 Bayesian estimation error bound
In general, the MLE θ̂ML maximizes the likelihood func-
tion for a parameter of interest θ observed by noise
measurements r [30]

θ̂ML = argmax
θ

p(r|θ). (21)

We further assume that the parameter of interest is esti-
mated for a particular realization of a random variable θ .
Taking the logarithm yields to

0 = ∂

∂θ
ln (p(r|θ))

∣∣∣∣
θ=θ̂ML

. (22)

For AWGN, we can write the following condition

0 = (
r − g(θ)

) ∂

∂θ
g(θ)

∣∣∣∣
θ=θ̂ML

, (23)

where, in order to equate to zero, at least one of terms of
the product has to be zero. As in general ∂

∂θ
g(θ) �= 0, the

inverse function g−1 maximizes the likelihood function.
Therefore, in the considered case, theMLE is simply given
by the inverse of the measurement function.

θ̂ML(r) = g−1(r) (24)

3.2.1 Computation of posterior density
In this section, the posterior density for a RSS-based angle
estimate is computed. Again, we assume field strength
difference measurements to be impaired by AWGN

r = �G(φ) + w, (25)

where φ is the azimuth angle of the impinging signal
and w is a AWGN process with N (0, σ 2

r ). The likelihood
function for the DOA estimation problem is given by [24]
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P(r|φ) = 1
√
2πσ 2

r
exp

[
−1
2

(
r − �G(φ)

σr

)2
]
. (26)

Recalling (12) (cf. [20]), the CRLB for a DOA estimate
from a single observation of two field strength measure-
ments states as

var
(
φ̂
)

≥ σ 2
r(

∂(�G(φ))
∂(φ)

)2 . (27)

Noting again, the MVUE has an unbounded variance for
φ approaching multiples of 90°as shown as dashed line in
Fig. 3. The variance to be unbounded makes sense due to
the property of the gain difference function�G. The func-
tion �G has no curvature [21] at multiples of 90°. From
an applications point of view, it is not reasonable to make
use of an estimator with unbounded variance. Moreover,
the unboundedness of the variance for the MVUE indi-
cates that the estimator does exist. Allowing the estimator
to be biased allows for less variant estimates.
In order to assess the performance of the MLE, we com-

pute the full posterior PDF that can be derived by applying
Bayes’ theorem:

P(φ|r) = P(r|φ)P(φ)

P(r)
. (28)

Due to point and axial symmetry of the gain difference
function, �G P(φ) may be limited to φ ∈[ 0, 90°] without
loss of generality. As there is no prior knowledge on the
distribution of the directions of a signal source, the prior
density is given by a uniform distribution

P(φ) ∼ U(0, π/2). (29)

This PDF is a non-informative prior [21]. The marginal
likelihood P(r) for the RSS measurement results from

P(r) =
∫

φ

P(r|φ)P(φ) ∂φ. (30)

For the antenna considered in the scope of this paper
(cf. Fig. 2), the marginal density is shown in Fig. 6a.
Referring to (28), the posterior is computed by normaliz-
ing the likelihood with the marginal density for the field
strength measurements. Figure 6b depicts the posterior
PDF for RSS-based DOA. Exemplary posterior PDFs are
sketched for some specific field strength measurements
r ∈ [0 dB, 12 dB, 18 dB, 24 dB].

3.2.2 DOA estimation errors
With the posterior density of an angle estimate, the MSE
for RSS-based direction finding is derived in this section.
Considering theMLE introduced in (24), the inverse func-
tion of the stated problem is

φ̂ = �G(r)−1, (31)

where �G(r)−1 is the inverted gain difference func-
tion for the considered antenna array. However, there

Fig. 6 Densities: marginal likelihood (a) and posterior density (b, c)

are some remarks on the measurement function
f = �G(φ). Measurement values r are limited to
r ∈ [min(�G(φ)), max(�G(φ))]. To transform arbitrary
measurement values r ∈ [−∞,∞] into parameter space,
the definition of the inverted function �G−1(r) function
needs to be redefined:

�G−1(r) :=
⎧
⎨

⎩

0° for r < min(�G(φ))

90° for r > max(�G(φ))

�G−1(r) else
(32)

With the posterior PDF, the MSE is computed by is
defined by

mse(φ̂) =
∫ π/2

−π/2
P(φ|r) (

φ − �G−1(r)
)2

∂φ. (33)
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The results for the DOA root mean squared error (RMSE)
are shown in Fig. 7. Remarkably, the variance of theMLE is
bounded for all azimuth angles φ. Furthermore, the MLE
features a quite homogeneous distribution of DOA errors
for all signal directions. In conclusion, there is no signif-
icant impact of the direction of the signal source on the
variance of DOA estimates, though the MLE is biased.

3.2.3 Position estimation errors
Having derived the MSE for direction estimate, we can
now evaluate the 2D position errors for a WSN featuring
RSS-based DOA. As positioning errors are considered,
the MLE position error bound describes an expectation
on the MSE of the position estimator [21]. The expected
MSE for a position estimate is denoted by

mse(x̂) = E
[(
x̂ − x

) (
x̂ − x

)T]
. (34)

Recalling Eqs. (16) and (17), similar to the position CRLB,
given by the error propagation law, the covariance matrix
is expressed by [31]

[
H(x)−1]

i,j =
[

∂g(x)
∂xi

]T 1
mseθ (x)

I
[

∂g(x)
∂xj

]
, (35)

where I denotes the identity matrix. Finally leading to

H(x)−1 =
∑

k

⎡

⎢⎣
�y2k

mseθ (x)‖x−xk‖42
− �xk ·�yk

mseθ (x)‖x−xk‖42
− �xk ·�yk

mseθ (x)‖x−xk‖42
�x2k

mseθ (x)‖x−xk‖42

⎤

⎥⎦

(36)
for location information obtained from RSS-based DOA
measurements, with ||x||2 denoting the euclidean norm.
In its compressed form, the position estimation error is

expressed by

msex(x) = tr (H(x)) (37)

for DOA-based network localization when applying ML
estimation.

3.2.4 Comparison of network topologies
The derivation of the position error bound for RSS-
based network localization is now utilized to compare
the performance of different network topologies for the
ML approach. The DOA estimation error mseθ is com-
puted according to Eq. (33). Mean square position errors
are evaluated for three different WSN topologies. The
locating networks consist of four nodes and have a node
spacing of 50 m. Receive antenna are being rotated by 0°,
30°, and 45° for the examined network topologies 1, 2,
and 3, respectively. Sensor nodes have been arranged in
quadratic shape. All networks have been examined for an
area of interest of 50 × 50m.
As elaborated in Section 3, the network topology, more

specifically the rotation of the receive antenna arrays, is a
crucial parameter in terms of position estimation errors.
This holds true for the MVUE. However, results for the
ML approach are different. In Fig. 8, the resulting position
estimation errors for all the three networks are given. For
the given rotation angles of the antenna arrays, there is no
substantial difference in average RMSE. Results are shown
in Table 2. The average RMSE for the MLE is constant
for different node orientation angles, whereas the average
RMSE significantly depends on the position of the tracked
object for the MVUE. In conclusion, the rotation of the
nodes is negligible for the design of the WSN when con-
sidering the MLE. These results are in contrast to those
for theMVUE, where the RMSE is highly dependent of the
node orientation.

3.2.5 Results and discussion
With the MLE, we have shown that the topology of the
locating WSN does not have a significant impact on the
positioning. These findings are in contrast to the results
of the CRLB for the MVUE. For snapshot localization, the
MLE should be preferred since it features smaller RMSEs
in any case. Yet, unbiasedness comes at the cost of an

Fig. 7 CRLB compared to ML RMSE. With the ML estimator, the RMSE is significantly reduced compared to the MVUE at the cost of being biased
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Fig. 8 Position RMSE for different rotation of sensor nodes. a Rotation:
0°. b Rotation: 30°. c Rotation: 45

Table 2 Comparison of networks and estimators

Networks

Rotation angle 0° 30° 45°

Avg. RMSE for MLE 7.19 7.26 7.23

Avg. RMSE for MVUE 10.13 8.61 12.89

increasing variance resulting in a larger MSE for position-
ing (cf. Fig. 9). Considering recursive filtering, one might
prefer the MVUE over the MLE as the higher variance
can be averaged out applying motion models. But still,
the analysis of the MLE lacks the capability of consid-
ering ambiguous measurements. In the next section, we
introduce information-theoretic measures to provide an
insight into the gain of information retrieved from a single
measurement obtained from aWSN.

4 Information-theoretic localization performance
metrics

Despite the success of information theory in communi-
cations, information theory has not caught much atten-
tion in localization and navigation in the past, except for
[32, 33]. Recently, there has been a revival of informa-
tion theory in many fields. Information-theoretic mea-
sures, like the mutual information, have been utilized
to optimize MIMO radar waveforms [11]. The loss of
information due to sub-Nyquist sampling has been deter-
mined applying information theory [12, 13]. Currently,
there are big advances in the field of compressive sens-
ing. Lately, fundamental limits in compressed sensing [14]
and bounds for kernel-based time delay estimation [15]
are derived.
However, classical estimation theory is still in the focus

of performance analysis today. Nevertheless, the CRLB is
a local measure for the variance of an estimator. Con-
sidering a uniform linear antenna array, the CRLB [34]
states that

var
(
φ̂
)

∝ 1
d2

(38)

where d is the distance between the antenna elements. In
consequence, distance between elements should be max-
imized. However, ambiguities arise for a spacing of more
than λ/2. These need to be considered in the design
of sensor nodes. As the CRLB is a local measure, it is
blind for ambiguities. Hence, the CRLB is only applica-
ble when further constraints are introduced. Information
theory, in contrast to the CRLB, has a unified view on the
information gained from a set of sensor measurements
considering precision and ambiguities.
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Fig. 9 Position errors (percentiles). On the left for the WSN with node rotation 0°, on the right for a rotation of 45°

The entropy H(X) of a discrete random variable X is
defined by the expectation value of its information given
by [35, 36]

H(X) = −
∑

x∈E
P(X = x) log(P(X = x)) . (39)

Maximum entropy is achieved by a uniform probability
distribution for a given number of discrete values. Phys-
ical quantities, as in network localization, generally have
no discrete values. Measurement and state variables are
continuous. Therefore, the limit of the entropy from dis-
crete values to a continuous range would diverge. To
circumvent this, the differential entropy is defined [36]

h(X) = −
∫

E
pX(x) log(pX(x))dx . (40)

In contrast to entropy, the differential entropy can be neg-
ative and the differential entropy of a constant diverges.
For an infinite interval (i.e., x ∈]−∞,+∞[) and fixed vari-
ance, the normal distribution maximizes the differential
entropy, whereas for a fixed interval (i.e., x ∈ [a, b]), the
uniform distribution is maximum.
For illustration, we consider some well-known distri-

butions: uniform, normal, and von Mises distribution
(Table 3). The von Mises distribution [37] is defined over
φ ∈ [−π ;+π ]

p(θ) = eκ cos(m·(θ−μ))

2πI0(κ)
, (41)

where μ is the mean value and κ defines the concentra-
tion of the distribution. I0 is the modified Bessel function

Table 3 Entropy of some important distributions

Distribution PDF Entropy

Uniform [38] p(θ) = 1
b−a h = ld (b − a)

Normal [38] p(θ) = e(−θ/2σ2)√
2πσ 2

h = 1
2 ld

(
2πeσ 2

)

von Mises [39] p(θ) = eκ cos(θ)

2π I0(κ)
h = −κ

I1(κ)
I0(κ)

+ ld (2π I0(κ))

of order 0. m denotes the number of modes of the distri-
bution and is understood as some scaling factor for the
von Mises distribution. The concentration is reciprocal to
dispersion. Hence, 1

κ
is comparable to the variance. Large

concentration implies low variance and vice-versa. For
κ � 0, the von Mises distribution approaches the normal
distribution with σ 2 = 1/κ. Therefore, it is a good approxi-
mation of the wrapped normal distribution. Its differential
entropy is given by [37]

h(θ) = log(2π I0(κ)) − κI1(κ)

log(e)I0(κ)
, (42)

where I1 is the first-order modified Bessel function.
In Fig. 10, von Mises distributions (blue and orange)

with different κ are depicted. It can be seen that with ris-
ing κ , i.e., higher concentration around the mean value,
entropy, denoted by h, declines. Actually, the standard
deviation of the blue density is three times larger than the
deviation of orange density. κ = 0 (uniform) yields maxi-
mum entropy. Furthermore, a repeated and scaled version
(green line) of the von Mises distribution is sketched in
Fig. 10. The green distribution has locally the same stan-
dard deviation as the orange one. Thus, in terms of the
CRLB, both, the orange and the green, yield the same pre-
cision. However, when considering the total information
gained from the measurement, the blue and the green dis-
tribution are comparable as they feature the same entropy.
Actually, the multimodal PDF can be seen as ambiguous
measurements. Even though a single lobe of a multimodal
distribution features a small variance on a local scale,
the entropy is the same compared to a broader lobe of a
unimodal distribution.
To conclude, entropy does not give a hint if ambigui-

ties are apparent. Neither does the CRLB. The variance
inferred from the CRLB is a local measure. Hence, it does
not give any information on the modality of the distri-
bution. The mutual information only states how much
information was gained by a measurement regardless if
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Fig. 10 PDFs for different von Mises distributions. The three times repeated version with κ = 1 (green) has the same lobe width as the von Mises
distribution with κ = 9 (orange) but matches the entropy of the von Mises distribution with κ = 1 (blue)

the resulting PDF is a broad unimodal Gaussian or a set
of multiple sharp Gaussian distributions. Therefore, the
CRLB is a local measure and the entropy quantifies the
overall information gain. In fact, both approaches lead to
the same result if the underlying distribution is a unimodal
Gaussian.

5 Network topology optimization
In this section, we utilize the mutual information as
a criterion for network topology optimization. For the
illustration, we use a simple measurement model for
the DOA estimation. The bearing measurements are
assumed to be impaired by AWGN and ambiguous. Fur-
thermore, we define the variance of the DOA measure-
ments to be independent of the direction of the impinging
signal. As the estimated angle φ̂ is limited to the inter-
val φ ∈ [−π ;+π ], its PDF is to be described by a
wrapped normal distribution. Commonly, the wrapped
normal distribution is approximated by the von Mises
distribution.
For the rest of the section, we consider two different

measurement likelihoods:

1 The ambiguous DOA sensor:
Provides multimodal DOA measurements with
constant variance. Ambiguities arise due to point and
axial symmetry exactly the same way as they arise for
the antenna considered in the BATS project.

2 The unambiguous DOA sensor:
Provides unimodal DOA measurements with
constant variance over angles. This unambiguous
sensor, that features locally the same variance as the
ambiguous one, is used as a reference. The
ambiguous sensor is benchmarked against the
unambiguous sensor.

Considering the BATS DOA sensor, the likelihood is
state as

p(φ) = 1
2
eκ cos(2φ)

2π I0(κ)
+ 1

2
eκ cos(−2φ)

2π I0(κ)
. (43)

The likelihood of the unambiguous DOA sensor is
given by

p(φ) = eκ cos(φ)

2π I0(κ)
. (44)

The PDFs for both of the estimators are depicted in Fig. 11.
For reference, the entropy of a uniform U(−π ,π) is h =
2.65. It can be easily seen that, considering the entropy
of both sensor types, the unambiguous sensor has a sig-
nificantly lower entropy. Thus, the unambiguous sensor
provides more information. This is quite obvious, as the
unambiguous sensor perfectly resolves the ambiguities
arising in the BATS DOA sensor. On the other hand, with
respect to the CRLB, both yield the same performance.

5.1 A comparison of network topologies
The two considered DOA sensors are examined in two
network localization scenarios. The impact of ambigui-
ties in BATS DOA sensor on the localization performance
is examined in the following. Therefore, the BATS DOA
sensor is compared to an unambiguous sensor with same
local precision as described above. It can be shown that
even for a small number of sensor nodes, the ambiguities
arising on sensor level can be almost completely resolved
on position level.
Network localization scenario 1 consists of two sen-

sor nodes placed at [0, 25] and [30, 25]. The object to be
tracked resides at [25, 35]. For network scenario 1, the like-
lihoods for the unambiguous DOA sensor and the BATS
DOA sensor are depicted in Fig. 12. The depicted likeli-
hoods involve all sensor nodes, i.e., the shown likelihood
is the product of the likelihoods of the individual sensors.
The likelihood is centered around the true position for
the unambiguous bearing measurement, whereas in case
of the ambiguous sensor, the likelihood PDF features four
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Fig. 11 PDFs for the unambiguous and the ambiguous DOA sensor for φ = 30° with a standard deviation of σ = 15° sketched in blue and orange,
respectively

modes. In consequence, a tracking filter would have to
be capable of propagating multiple hypotheses. Hence, in
such a case, particle filters would have to be used instead
of basic Kalman filters.
For the evaluation, a single snapshot measurement is

considered. The prior information available is compared
to entropy after the measurement. If there is no prior
information available, we assume a non-informative prior,
which relates to a 2D uniform distribution. Over an area of
interest of 70×70m, the entropy of a uniform is h = 12.26.
Entropy is computed for the networks for the ambiguous
DOA sensor and the unambiguous one. The informa-
tion gain of such a set of DOA measurements is given by
the mutual information. Mutual information is computed
from entropy and conditional entropy

I(x;φ) = h(x) − h(x|φ), (45)

For the network localization scenario 1, the correspond-
ing entropy and mutual information is given in Table 4.
As expected, ambiguous DOA has a larger entropy than
unambiguous DOA.
Now, two additional nodes are placed at [0, 50] and

[ 50, 0] for the second network localization scenario. The
true position of the object is, as before, at [25, 35]. Likeli-
hoods for the ambiguous and unambiguous DOA sensor
are illustrated in Fig. 13. As stated before, all sensors
depicted in the figure are involved in the computation
of the likelihood shown Fig. 13. It can be clearly seen
that the true position becomes the dominant hypothe-
sis for the ambiguous bearing sensor (cf. Fig. 12). On the
other hand, for the unambiguous sensor, the position PDF
becomes more diffuse. When more sensors are used, the
impact of the ambiguities gets less important. Further-
more, the gain in information for additional sensors is
not very significant when unambiguous DOA sensors are
utilized. Effectively, additional sensors do not provide as

much information as the first two sensors (cf. Table 4). In
conclusion, for overdetermined sensor networks, ambigu-
ous sensors are an option as the impact of ambiguities
becomes negligible when a larger number of sensors is
deployed. Additionally, accepting ambiguities commonly
results in higher precision for the individual modes (cf.
DOA estimation applying linear antenna arrays).

5.2 From entropy to localization precision
One disadvantage of the mutual information is that it
is not as intuitive as a standard deviation. Thus, we are
interested in computing variance from the entropy. The
relation for variance and entropy assuming a normal dis-
tribution is expressed by

h = 1
2
ld(2πe|
|). (46)

The variance of a symmetric 2D normal distribution (i.e.,
|
| = σ 2k , with 
 being of size k × k) is computed as
follows

σ 2 =
k√22h
2πe

(47)

for a given entropy h. Nevertheless, it has to be noted that
this expression is only a good approximation when stan-
dard deviation is small compared to the size of the area
of interest. Aside from that, the complete mutual infor-
mation is assumed to arise from a single 2D Gaussian.
For a multimodal distribution, the entropy inferred vari-
ance is larger than the variance of the individual modes as
the above stated transformation is only valid for unimodal
Gaussian distributions.
In Table 4, standard deviation for the two example

networks is given for the unambiguous and ambiguous
DOA sensor, respectively. The standard deviation com-
puted under the assumption of a unimodal 2D Gaussian
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Fig. 12 Likelihoods for example network localization scenario 1 for
the unambiguous DOA sensor and the BATS DOA sensor. True
position of the tracked object is at [25, 35]. a Unambiguous bearing. b
Ambiguous bearing

Table 4 Entropy and mutual information of different DOA
networks

Sensor Entropy Mutual inf. Equiv. dev.

Network 1

Unambiguous 8.24 bit 4.02 bit 4.21m

BATS DOA 9.91 bit 2.35 bit 7.50m

Network 2

Unambiguous 7.16 bit 5.10 bit 2.89m

BATS DOA 8.27 bit 3.99 bit 4.25m

Fig. 13 Likelihoods for example network localization scenario 2 for
the unambiguous DOA sensor and the BATS DOA sensor. True
position of the tracked object is at [25, 35]. a Unambiguous bearing. b
Ambiguous bearing

proofs the conclusions drawn from Figs. 12 and 13. The
impact of ambiguities is less important when using more
sensor nodes. The total information gain is negligible for
additional sensors in the case of unambiguous DOA.

5.3 Mutual information as a network design tool
In the section above, we have shown that the use of
additional sensor nodes may mitigate the impact of ambi-
guities. Hence, it is desirable to compare different net-
work topologies considering different sensor types. For
the analysis, we consider the unambiguous and ambigu-
ous DOA sensors introduced above. The design question
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to be answered is: How many nodes are required to real-
ize a certain gain of information about the position of
an object? For the sake of simplicity, we assume that all
nodes are place equidistantly on a circle with fixed radius.
Hence, the only parameters are the number of nodes and
the sensor type.
Examples of network configurations for 2 and 4 nodes

are given in Fig. 14a and b, respectively. For an area of
interest of 70×70m, the conditional entropy is computed
for the PDF after the network localization measurement.
We assume no prior information is available before the
measurement. Mutual information is computed by (45)
for all network topologies and sensor types under test.
A comparison of the unambiguous and ambiguous DOA
sensor is depicted in Fig. 15. It can be easily seen that uti-
lizing an additional number of two sensor nodes allows
to mitigate the negative impact of the ambiguities for the
ambiguous DOA sensor.
Mutual information provides a tool to compare different

network topologies including multimodal measurement
PDFs, whereas the classic CRLB fails in this case. CRLB
analysis would provide exactly the same results for the
unambiguous and ambiguous DOA sensor, which is quite
misleading. In contrast, information theory allows for
exact quantification of the impact of ambiguities on the
information that is gain on an object’s position. With the
use of this design tool, based onmutual information, engi-
neers are able to design the most effective networks for
localization problems.

6 Conclusion
In this paper, different performance metrics have been
analyzed and applied in the context of RSS-based direc-
tion finding. The first of those metrics is the CRLB. It
has been shown that the CRLB strongly depends on the
direction of the impinging signal for power-based DOA
estimation. Due to the nature of the DOA measurement
function, the CRLB diverges for some angles. Hence, the
MVUE is not a reasonable estimator in the case of RSS-
based DOA.
Secondly, a performance metric has been derived for

the MLE evaluating the posterior density for RSS-based
DOA estimates. In this case, DOA estimation vari-
ance is nearly constant for all signal directions. Hence,
the variance in position estimation is less dependent
on the actual position of the tracked object. Further-
more, the MSE for the MLE is significantly smaller
than for the MVUE. However, both the CRLB and the
error bound for the MLE lack the capability of handling
ambiguities.
In order to account for ambiguities, we have proposed

a novel approach to assess the performance of localiza-
tion systems that feature sensors with multimodal mea-
surement likelihoods. Information-theoretic measures are

Fig. 14 Likelihoods for different number of nodes. All nodes are
equidistantly placed on a circle as indicated in the figure. True
position of the tracked object is at [ 25, 35]. a Ambiguous bearing: 2
nodes. b Ambiguous bearing: 4 nodes

utilized to quantify the information gain of a set of mea-
surements from multiple sensor nodes. With this unified
approach, all aspects, i.e., local precision and multi-
modality, can be captured with a single measure: the
mutual information. The presented information-theoretic
approach allows for unified optimization of location
sensors and localization networks in effective way maxi-
mizing the mutual information. Moreover, mutual infor-
mation could be used to quantify the loss when utilizing
sub-optimal estimators and for performance assessment
of recursive filters. In total, information-theoretic metrics
provide a holistic view on the performance of tracking
systems.



Nowak et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:48 Page 16 of 17

Fig. 15 Required number of sensor nodes to realize a requested amount of information gain by a network localization measurement

Endnote
1Dynamic Adaptable Applications for Bats Tracking

by Embedded Communicating Systems, http://www.for-
bats.org/
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