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Abstract

This paper designs the locally optimal detector (LOD) in additive white impulsive noise with unknown distribution.
Unlike traditional LODs derived from a known or approximated noise probability density function (PDF), the LOD
proposed in this paper is achieved by designing the zero-memory non-linearity (ZMNL) function based on real data.
After the PDF estimation in a nonparametric way by a kernel method, the ZMNL function is designed as a piecewise
differentiable function consisting of a polynomial function and inverse proportional functions. Then, we analyze the
detection performance and develop the constant false alarm ratio technique. Simulation results show that the LOD
design is near-optimal in α-stable noise and the optimal in real atmospheric data, compared with the maximum
likelihood detector of α-stable distribution.
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1 Introduction
Generally, signal detection in additive noise can be viewed
as a problem of binary or multiple hypothesis testing [1].
Most existing digital systems use linear detectors which
are the optimal in additive white Gaussian noise. However,
nonlinear processing is required for optimal detection in
impulsive noise with heavy PDF tails. This is necessary
for many environments, such as vehicular communica-
tion, power line communication, low-frequency commu-
nication, and underwater communications [2–4]. In low
signal-to-noise ratio (SNR), the LOD can be realized via
a simple structure by a nonlinear preprocessor based on
ZMNL processing followed by a linear correlator [5, 6]. As
is well-known, the ZMNL function can be derived directly
if the noise PDF in closed form is known.
However, the ZMNL function needs designing when the

analytical PDF is unavailable. For instance, the α-stable
noise, which is widely used for modeling the impulse
noise, does not provide the PDF in closed form gen-
erally [4]. As a result, researchers have developed vari-
ous ZMNL functions for different α-stable distributions
[7–9]. However, real-data processing results demonstrate
that the impulsive noise does not always strictly obey the
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α-stable distribution, though it generally has a unimodal
PDF like the α-stable noise. Therefore, the ZMNLs which
are designed for α-stable noise are not surely optimal in
real-data processing, as illustrated by the simulations in
Section 6.4.
This paper focuses on the LOD design when the noise

distribution is unknown, which is not fully discussed
before. Actually, this is a reasonable consideration since
the noise in real world would probably be varying and
disobey the assumed distributions, e.g., the α-stable dis-
tribution. To solve this problem, this paper proposes to
develop a practical approach for designing the ZMNL
based on the real-noise data instead of knowing the PDF
or assuming the noise distribution.
In the LOD design, lessons are drawn from the exist-

ing ZMNL functions of the symmetric α-stable (SαS)
noise which is practically useful as a heavy-tailed distri-
bution. In this paper, the ZMNL is designed as a piece-
wise function which follows linearity, nonlinearity, and
differentiability in different regions. Then, the detection
performances are analyzed theoretically. In simulations,
the proposed approach is demonstrated in simulated SαS
noise and in real atmospheric noise. The detection perfor-
mances will be compared with several existing detectors.
The remainder of this paper is organized as follows.

Section 2 briefly reviews several detectors for known
noise PDFs. Section 3 introduces the preparation works
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for unknown noise PDF. Then, the ZMNL function is
designed in Section 4, and detection performances are
analyzed in Section 5. Section 6 presents the simula-
tions in α-stable noise and real atmospheric noise. Finally,
conclusions are drawn in Section 7.

2 Detectors in white noise with known PDF
Detecting a deterministic signal in additive white noise is a
classical problem in statistical signal processing. A general
solution is by hypothesis testing. Under hypothesisHi, the
received signal is modeled as

Hi : r = ξi · si + x (1)

where si, ξi, and x denote the desired signal, the signal
amplitude, and the additive white noise, respectively [1].
For the case of multiple sample detection, r, si, and x can
be considered asM-dimensional row vectors.
Maximum likelihood detector (MLD) is a well-known

detector and requires the noise PDF. Considering multiple
sample detection in white noise with a PDF f (x), the MLD
is formulated as

max
Hi

ln Pr(r, si|Hi)
.= max

Hi

M∑

m=1
ln f (r[m]−ξisi[m] )

(2)

where the symbol “ .= ” denotes “being equivalent to.”
The decision rule (2) can be simplified for Gaussian

noise. Under a realistic consideration of knowing the sign
of ξi, without loss of generality, assume ξi > 0. Then, sim-
plifying (2) leads to the matched filter detector (MFD),
formulated as

max
Hi

ln Pr(r, si;Hi)
.= max

Hi
−

M∑

m=1
(r[m]−ξisi[m] )2

.= max
Hi

rs†i , for Gaussian noise

(3)

where (·)† denotes transpose. Obviously, the MFD
depends on the linear correlation.
Decision rule (3) does not hold true for non-Gaussian

noise. However, the MLD can be simplified in low SNR
cases and results in the LOD, formulated as

max
Hi

ln Pr(r, si;Hi)
.= max

Hi
g(r)s†i , for low SNR (4)

where

g(x) = −f ′(x)/f (x) (5)

is called as the ZMNL function [1].
As can be seen from (5), g(x) is uniquely determined

by f (x). Given analytically known f (x), g(x) is obtained
directly in closed form. Otherwise, g(x) must be designed.
Researchers usually chose to study g(x) by approximating
the PDF. Figure 1 shows three reported ZMNL functions

proposed for symmetric α-stable (SαS) noise, including
the algebraic-tailed ZMNL (AZMNL, depending on α,
for SαS distribution) [7], the Cauchy ZMNL (CZMNL,
for Cauchy distribution α = 1) [8], and the Gaussian-
tailed ZMNL (GZMNL, independent on α, robust for SαS
distribution) [9]. The ZMNL curves in Fig. 1 show that
g(x) varies greatly for different distributions. This demon-
strates the necessity of designing the optimal LOD for a
unique distribution.

3 Preparation of LOD design for unknown PDF
This paper proposes to design the LOD and g(x) based
on real data when the PDF is unknown. Preparatory work
raised by unknown PDF is introduced in this section. The
detailed ZMNL design approach will be presented in the
next section.

3.1 Guidelines for the LOD design
This paper focuses on impulsive noise which comes from
unimodal heavy-tailed distributions and has a PDF simi-
lar to the PDFs of existing heavy-tailed distributions such
as the SαS noise and the Middleton class A noise [2].
However, on the one hand, due to the remarkable differ-
ences among the PDFs, the ZMNL functions of existing
noise models are possibly not the optimal for the impul-
sive noise in various scenarios, giving rise to the necessity
of LOD design. On the other hand, since the PDF shapes
are similar, the knowledge of SαS noise is referable for our
LOD design.
Analysis on the existing ZMNL functions of impulsive

noise shows that most of them can be regarded as piece-
wise functions which consist of the main body in the near-
linear region and the tails in the non-linear regions. At the
breakpoints, natural ZMNLs deduced from heavy-tailed

Fig. 1 The LODs for SαS noise and reported ZMNL design [7], for
σ = 1
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distributions are generally differentiable, while designed
ZMNLs may be continuous or discontinuous.
In this paper, g(x) is designed as a piecewise function,

following three guidelines. (i) The main body of g(x) is
estimated by polynomial fitting. (ii) The tails of g(x) are
modeled as reciprocal functions. (iii) The breakpoints are
localized for continuity and differentiability. The detailed
reasons of the guidelines will be presented in Section 4
where we develop the LOD design procedures. Before
that, the rest of this section will introduce the preparatory
work for the LOD design.

3.2 ZMNL sample calculation via the KDE
When the noise distribution is unknown, the PDF can be
estimated by nonparametric estimation methods. Herein,
this paper proposes to measure the PDF samples by the
kernel density estimation (KDE) method, i.e., the Parzen-
Rosenblatt window method [10, 11].
Let {x1, x2, . . . , xL} denote the amplitude vector with

uniform increment �x. Given the noise data x̃[ n] , n =
1, 2, . . . ,N , the PDF samples are modeled as

f̃ [xl]= 1
Nh

N∑

n=1
K
(
xl − x̃[n]

h

)
(6)

where K(·) is the kernel function and h > 0 is the
smoothing parameter called the bandwidth.
Then, by formula (5), the ZMNL samples are calculated

as

g̃[xl]= −̃f�[xl]/̃f [xl] (7)

where

f̃�[xl]=
(
f̃ [xl+1] −̃f [xl−1]

)
/(2�x) (8)

simulates f ′(x) at x = xl. Specially, let g̃[x1]= g̃[xL]= 0.
It is obvious that the value of bandwidth h is critical

for the PDF estimation. In fact, since the PDF and ZMNL
samples are simulated numerically in discrete points, the
increment �x is also very important. It must be evalu-
ated reasonably so that f̃ [xl] can describe the shape of f (x)
effectively.
As said before, this paper emphasizes on the impulsive

noise from heavy-tailed distributions. Although the noise
may disobey the α-stable distribution, the α-stable distri-
bution characteristics are also referable in some aspects.
In our practice, the α-stable methods are found to be
efficient in the evaluation of h and �x.
The evaluation approach is developed as follows. Firstly,

estimate the α-stable distribution parameters based on the
noise samples x̃[n]. An estimation method can refer to
paper [12] which is based on the quantile of samples.
Denote the estimated dispersion as γ̂ , which has similar

meaning to the variance in Gaussian distribution. Then,
the parameters related to the KDE are set as

h = �x = 0.1γ̂ , (9)

x1 = 1
N

N∑

n=1
x̃[n]−N

2
�x, (10)

xL = 1
N

N∑

n=1
x̃[n]+N

2
�x. (11)

By this approach, the PDF estimate f̃ [xl] can be smooth
and well represent the probability density of noise sam-
ples.

3.3 ZMNL sample extraction
The ZMNL samples must be classified before using them
for LOD design. The reason is as follows. As can be seen
from (5), when f̃ (xl) is very small, the error between f̃�[xl]
and f ′(xl) can be greatly increased when entering g̃[xl],
resulting in huge gap between g̃[xl] and g(x) (see simula-
tions in Section 6). Thus, g̃[xl] samples for small f̃ [xl] are
unreliable.
Considering the ZMNL curves are nearly straight in

center where f̃ [xl] is large, we can extract the reli-
able ZMNL samples based on linearity, i.e., the cross-
correlation coefficient between g̃[xi] and x. The linearity
of g̃[xi] samples in any region �̃ is measured by

ρ�̃ =

∑

xi∈�̃

(xi − xi)
(
g̃[xi] −̃g[xi]

)

√
∑

xi∈�̃

(xi − xi)2 · ∑

xi∈�̃

(
g̃[xi] −̃g[xi]

)2 (12)

where xi and g̃[xi] denote the mean of xi and g̃[xi], respec-
tively, for xi ∈ �̃.
The extraction algorithm is summarized in Table 1,

where ρth is a threshold for linearity controlling. Gener-
ally, it is set 0.5 ≤ ρth ≤ 0.8.
The extracted ZMNL samples are denoted by

ğ[xi]= g̃[xi] , xi ∈ � =[xLlow , xLup ] (13)

which has I = Lup − Llow + 1 samples.

Table 1 Algorithm of ZMNL sample extraction

Step 1: Find the maximum of f̃ [ xl] as f̃
[
xLmax

]
, where Lmax denotes its

position in {x1, x2, . . . , xL}.
Step 2: Find the two values of f̃ [xl] which are nearest to f̃ [ xLmax ] /2 for
l < Lmax and l′ > Lmax , respectively. Denote the corresponding number
as Llowh and Luph . Initialize Llow = Llowh and Lup = Luph .

Step 3: Use (12) to calculate two linearity values, i.e. ,ρlow for g̃[ xl] in
�low = [

x(Llow−1) , xLup
]
and ρup for g̃[ xl] in �up = [

xLlow , x(Lup+1)
]
.

Step 4: If max(ρlow , ρup) ≤ ρth, go to Step 5. Otherwise, continue. If
ρlow > ρup , let Llow = Llow − 1; if ρlow ≤ ρup , let Lup = Lup + 1. Then, go
to Step 3.

Step 5: The near-linear region is defined as � = [
xLlow , xLup

]
. The samples

g̃[ xl] in � are extracted and denoted as ğ[ xi].
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4 Design of the LOD and ZMNL function
In the LOD design, the ZMNL function is modeled as
a piecewise function. The main body is estimated by
polynomial fitting. The tails and the breakpoints are deter-
mined for continuity and differentiability.

4.1 Polynomial fitting for near-linear region
The proposal of polynomial fitting is based on the basic
property of ZMNL functions. As can be seen in (4), the
ZMNL function transforms the observations r into the
domain related to probability, acting like a weighting func-
tion. It may be linear (in Gaussian case) or nonlinear (in
non-Gaussian cases). In either case, g(x) is supposed to
keep close correlation to x for the majority of x, so that
the test statistic g(r)s†i could be optimized. Therefore, the
near-linear region always exists in g(x) for heavy-tailed
distributions.
This paper employs a polynomial function to describe

the nonlinearity property and also keep certain linearity
in the near-linear region. This is unlike traditional ZMNL
designs which define the nonlinear region very differently
from the linear region and produce unavoidable error to
the real LOD.
Considering the degree P polynomial, the ZMNL func-

tion is modeled as
P∑

p=0
Apxp, x ∈ � (14)

where Ap, for p = 0, 1, . . . ,P is the coefficient to be esti-
mated. By using the ZMNL samples in (13), the linear
equations can be written as

AXv = Gx (15)

where

A = [A0 A1 · · · AP] , (16)
Gx = [

ğ[x1] ğ[x2] · · · ğ[xI ]
]
, (17)

Xv =

⎡

⎢⎢⎢⎢⎢⎣

1 1 · · · 1
x11 x12 · · · x1I
x21 x22 · · · x2I
...

...
. . .

...
xP1 xP2 · · · xPI

⎤

⎥⎥⎥⎥⎥⎦
. (18)

Since Xv is a Vandermonde matrix, a solution in least
square (LS) sense is guaranteed to hold, provided that
I � P is satisfied generally. By the LS estimation, the
parameter vector estimate is achieved by

Â = GxX†
v

(
XvX†

v

)−1
. (19)

Plugging Â into (14) yields

ĝ(x) =
P∑

p=0
Âpxp, x ∈ �. (20)

Thus, the main body of ĝ(x) is achieved.

4.2 Tail design and breakpoint localization
Usually, the tail of g(x) functions as a controller which
limits the effects of large-magnitude samples from heavy-
tailed distributions. The tail function can be developed in
various methods. For instance, Nikais and Shao proposed
two kinds of nonlinearity for x /∈ �, including a “hole
puncher” to null g(x) and a “clipper” to set g(x) equal to
the nearest g(xi) as constants. The tail of g(x) is also mod-
eled as x1−α or x−1 in α-stable noise [4, 7]. Besides, the
breakpoints which connect the tails with the main body
are also important for the LOD design.
This paper models the tail as a reciprocal function and

localizes the breakpoint for differentiability everywhere.
Hereby, g(x) is formulated as a piecewise function

ĝ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

Bne/x, x < xne
P∑

p=0
Âpxp, xne ≤ x ≤ xpo

Bpo/x, x > xpo

(21)

where the breakpoint locations xne and xpo and two coef-
ficients Bne and Bpo are the parameters to determine.
Under the consideration of continuity and differentiabil-

ity, four equations of xne, xpo, Bne, and Bpo can be obtained,
listed in a set

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bne
xne =

P∑
p=0

Âpx
p
ne

−Bne
x2ne

=
P∑

p=1
pÂpx

p−1
ne

Bpo
xpo =

P∑
p=0

Âpx
p
po

−Bpo
x2po

=
P∑

p=1
pÂpx

p−1
po

. (22)

The solution of (22) is included in Table 2 which sum-
marizes the algorithm of designing ĝ(x). Consequently,
the LOD can be achieved by using ĝ(x) in the decision
rule (4).
As far as we know, this is the first approach to use

polynomial fitting for designing the ZMNL function ĝ(x).
Herein, we call the proposed ZMNL design as polynomial
ZMNL (PZMNL).
One merit of the PZMNL is that it can approximate

the main body of real LOD very well. As shown in Fig. 1,
the LOD g(x) changes smoothly without a breakpoint to
clearly classify the near-linear region and the nonlinear
region. However, traditional ZMNL functions change dra-
matically at the breakpoints, from proportional functions
in the near-linear region into nonlinear functions in the
nonlinear region. They are greatly different from g(x) and
thus have an upper bound of being sub-optimal. Unlike
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Table 2 Algorithm of ZMNL function design

Step 1: Given P and ğ[ xi], calculate Â by formulas (16)-(19).

Step 2: Solve the function

P∑

p=0

(p + 1)̂Apx
p = 0, (23)

and evaluate xne and xpo by the largest negative root and the smallest
positive root respectively.

Step 3: Compute the two parameters

Bne =
P∑

p=0

Âpx
p+1
ne , Bpo =

P∑

p=0

Âpx
p+1
po (24)

Step 4: Obtain ĝ(x) by (21).

them, the PZMNL can fit well around the near-linear
region and achieve nearly optimal performances.
Notation: About the polynomial order P, practical expe-

rience shows that 10 ≤ P ≤ 20 is suitable for polynomial
fitting. Otherwise, if P is too small, the designed polyno-
mial cannot represent the nonlinearity beyond the near-
linear region and also reduces the solution to Eq. (23).
On the contrary, if P is too large, the designed polyno-
mial is not smooth enough and also generates unfavorable
solutions to (23), resulting in a narrow near-linear region.
Examples can refer to the simulations in Section 6.

5 Detection performance analysis of the LOD
This section analyzes the detection performances of the
detectors based on various ZMNL functions. Supposing
h(x) as the ZMNL function before a linear detector, based
on the signal model (1), the test statistic is

T(r) = h(r)s†i =
M∑

m=1
h(r[m] )si[m] (25)

for hypothesis Hi. If the PDF of T(r) is known, the detec-
tion performance can be deduced accordingly. However,
the PDF of T(r) is uneasy to obtain generally.
Herein, we consider this topic in low SNR as a usual

scenario in real world. Obviously, low SNR means that ξi
is rather small. As a result, to detect a transmitted signal
bit, communication systems need to accumulate massive
samples as M is large. Besides, the noise samples are
assumed to be independently and identically distributed
(i.i.d.). Therefore, by using the central limit theorem, we
suppose that the test statistic T(r) obeys the Gaussian
distribution. Its PDF is available as long as we know its
expectation and covariance.
Before the deduction, the following assumption is made

to simplify analysis.

Assumption 1 The impulsive noise is zero-mean, sym-
metrically distributed; thus, f (x) is even and f ′(x) is odd.

The function h(x) used for ZMNL processing is considered
to be almost odd, leading to

∞∫

−∞
h(x)f (x)dx ≈ 0,

∞∫

−∞
h2(x)f ′(x)dx ≈ 0. (26)

Then, the asymptotic distribution of T(r) in low SNR is
derived, concluded as Theorem 1.

Theorem 1 For the signal model in (1) under
Assumption 1 and low SNR, the test statistic T(r) in (25)
asymptotically obeys Gaussian distribution

T(r)
a∼ N

(
Ehgξisis†i , Ehhsis

†
i

)
, Hi (27)

for M → ∞, where

Ehg =
∞∫

−∞
h(x)g(x)f (x)dx, (28)

Ehh =
∞∫

−∞
h2(x)f (x)dx. (29)

The proof is referred in Appendix. Note that Ehg and
Ehh are actually the expectations of h(x)g(x) and h2(x),
respectively.
By Theorem 1, we can analyze the detection perfor-

mances of a designed ZMNL function in a convenient way.
For instance, in binary hypotheses

r =
{

x, H0
ξ · s + x, H1

(30)

the asymptotic distribution of T(r) can be written as

T(r) a∼
{

N
(
0, Ehhss†

)
, H0

N
(
Ehgξss†, Ehhss†

)
, H1

(31)

Then, the constant false alarm ratio (CFAR) technique
can be achieved. A desired false alarm ratio (FAR) Pfa is
available by the threshold

η =
√
Ehhss†Q−1(Pfa) (32)

and the corresponding detection probability is given by

PD = Q
[(

η − Ehgξss†
)

/
√
Ehhss†

]

= Q
[
Q−1(Pfa) − Ehgξ

√
ss†/Ehh

]
(33)

where Q(·) is the tail probability of the standard normal
distribution, defined as

Q(x) = 1
2π

∞∫

x

exp
(

−u2

2

)
du. (34)
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As clearly shown in (29) and (32), the calculation of
threshold η depends on the information of PDF f (x).
Thus, for the LOD in the noise with unknown PDF, the
CFAR technique is actually unavailable.
The following develops the CFAR technique for the

noise with unknown PDF. Notice that false alarm is related
to hypothesis H0 and independent of hypothesis H1. In
(31), hypothesis H0 requires f (x) to calculate the covari-
ance coefficient Ehh. Though g(x) is also unknown, it is
unnecessary in hypothesisH0. In fact, g(x) is only required
in hypothesis H1 to calculate the expectation coefficient
Ehg in (28) and finally affects the detection probability PD
in (33).
Therefore, this paper proposes the CFAR technique by

using the PDF estimate f̃ [ xl] instead of the unknown real
PDF f (x). By employing f̃ [xl] in (6), we can compute Ehh
in (29) and then the threshold η by formula (32) for the
desired FAR. Simulation results show that this approach
can achieve a steady FAR which is very close to the desired
FAR.

6 Results and discussion
This section presents the results of LOD design in the SαS
noise and real atmospheric noise. Discussions about the
proposed design of LOD and PZMNL are provided.

6.1 Detector and simulation settings
The general approach to suppress heavy-tailed interfer-
ence is to pass the received observation through a ZMNL
limiter. Two simple examples include a hole puncher and a
clipper [4]. Some limiters are designed carefully according
to the noise model.
This paper simulates three ZMNL methods which are

proposed for SαS noise. The CZMNL is developed for the
Cauchy distribution, i.e., SαS noise for α = 1, formulated
as

gc(x) = 2x/
(
x2 + σ 2) . (35)

The AZMNL is proposed for standard SαS noise, formu-
lated as

ga(x) =
{
x · �(3/α)/�(1/α), |x| ≤ τ

K(α)/x, |x| > τ
(36)

where τ = √
K(α)�(1/α)/�(3/α) uses K(α) = α2. The

GZMNL formula can refer to [7, 9] and is not introduced
here for the sake of simplification.
As the analytical PDF of SαS noise is generally unavail-

able, the MLD is achieved by a numerical approach as fol-
lows. Firstly, the discrete PDF is computed by the inverse
Fourier transform of the characteristic function. Then,
assuming the signal amplitude is known, decision rule (2)
is realized by linear interpolation. The ideal LOD by (5)
is also obtained by linear interpolation of the discrete dif-
ferential. Simulation results show that the MLD and the

LOD perform very close to each other. Thus, the LOD and
the MLD are depicted by the MLD curve. Obviously, lin-
ear interpolation bears expansive computational cost, but
it is necessary for the MLD.
As SαS noise has an infinite covariance for α < 2,

herein, the SNR is measured by the generalized SNR
(GSNR) as

GSNR = 10 × log10
(
ξ2/γ

)
in decibels (37)

where γ denotes the dispersion of SαS noise. In simula-
tions, γ is fixed as 1, so that the AZMNL in (36) can be
used. The GSNR is changed by adjusting the signal ampli-
tude ξ . The sinusoidal signal is transmitted, with uniform
energy ss† = M = 1024. The probabilities of detec-
tion and false alarm are the results of 105 Monte Carlo
simulations.

6.2 ZMNL design in SαS noise
α-Stable distribution is widely used in impulse noise mod-
eling. As its PDF is generally unavailable in closed form,
the analytical LOD does not exist for most α-stable dis-
tributions. Herein, we simulate the LOD of SαS noise
numerically. SαS noise data is simulated for α = 1.5,
N = 104. The KDE method uses the Gaussian kernel for
K(·) .
The sample g̃[xl] is depicted in Fig. 2.We can see that the

curve g̃[xl] maintains linearity around zero and changes
dramatically when f̃ [xl] is rather small for |x| > 5. Obvi-
ously, g̃[xl] samples outside the near-linear region are
unacceptable for polynomial fitting. It demonstrates the
necessity of extraction process. By ρth = 0.8, g̃[xl] in
� =[−5.7, 6.5] are extracted for polynomial fitting.
Then, Âp is calculated for various order P. Figure 2

depicts the designed PZMNL functions, as well as the
ZMNL of SαS distribution ǵ(x) by numeric simulation. It
can be seen that the PZMNL ĝ(x) for P = 10, with the

Fig. 2 An example of the PZMNLs in SαS noise for α = 1.5, N = 104
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breakpoints at xne = − 3.3 and xpo = 3.6, is almost the
same as ǵ(x). The PZMNLs for P = 5 and 20 are less sim-
ilar to ǵ(x). Moreover, the PZMNL for P = 40 is with a
narrow near-linear region and quite different from ǵ(x).
Hence, setting P around 10 is suitable.
By comparison with Fig. 1, it is clear that the AZMNL,

the CZMNL, and the GZMNL functions fit ǵ(x) worse
than the PZMNLs for P = 5, 10, and 20. Note that the
PZMNL generally changes in another simulation which
contains different noise samples, and the PZMNLs for
P = 40 is not always as bad as that of Fig. 2.

6.3 Detection performances in SαS noise
Detection performances by the CFAR technique are sim-
ulated. The results of detection probability in various
GSNRs are depicted in Fig. 3, for α = 1.5 and Pfa =
10−3. Figure 3a shows the curves for PD increases from
Pfa to 1 while the GSNR grows from low (− 25 dB) to high

b

a

Fig. 3 Detection probability versus the GSNR, for α = 1.5, Pfa = 0.001:
a curves for GSNR between − 25 and − 10 dB, b details for GSNR
between − 21 and − 16 dB

(− 10 dB). The curve shapes coincide with those of con-
ventional CFAR cases since the theoretical PD in formula
(33) has a conventional form. Considering Fig. 3a curves
are too close for observation, Fig. 3b draws their details
in a limited GSNR range, to provide a clear presentation
for PD comparison. Considering the optimality of various
ZMNLs keeps the same in different GSNRs, the following
simulations will draw the figures of details and omit the
figures of whole curves.
As can be seen Fig. 3b, the CZMNL and the GZMNL

curves are similar, worse than the other ZMNL detectors.
The MLD is the best, and the AZMNL and the PZMNLs
for P = 5, 10, 20 are close to the MLD. Besides, the
PZMNL for P = 40 is worse, as a result of less fitting
to ǵ(x). It is worth noting that all the ZMNL functions
achieve significant improvement compared to the MFD.
The detection performances for various values of α are

also simulated.When α grows, the GZMNL performs bet-
ter while the CZMNL performs worse. The AZMNL and
the PZMNLs for P = 5, 10, 20 are near-optimal. However,
when α decreases, the AZMNL and the GZMNL become
worse while the CZMNL gets better. The PZMNL design
approach still works in a near-optimal way. The results for
α = 1.0 is shown in Fig. 4, where the CZMNL and the
MLD are optimal. Here, we conclude that 10 ≤ P ≤ 20 is
suitable in the SαS noise for α ∈ (1, 2).

6.4 Experimental results on real data
Atmospheric noise is known to possess a significant
impulsive nature. This paper uses it to demonstrate the
proposed PZMNL method. The raw data is recorded by
a magnetotelluric sounding system at sampling frequency
512 Hz and then whitened to eliminate the power line
interference. The output shows typical characteristics of
impulsive noise and called as “real data.” The real data
used for illustration is recorded in a sunny day at about

Fig. 4 Detection probability versus the GSNR, for α = 1.0, Pfa = 0.001
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10:20 a.m., June 7, 2017, in Qianjiang, Hubei province,
China. Its estimate of α is 1.42, near to α = 1.5 of the pre-
viously simulated SαS noise. In preprocessing, the power
of real data is adjusted so that the estimate of dispersion γ

is 1.
The PZMNLs are designed in Monte Carlo simulations

where a piece of 104-length samples is chosen randomly
from the set of real data. One simulation result is depicted
in Fig. 5. For comparison, we also simulate “g(x) of SαS”
which assumes SαS distribution, estimates the param-
eters, and generates the numeric ZMNL. As shown in
Fig. 5, the PZMNL design produces smooth curves which
fit the ZMNL samples well around the near-linear region,
while the P = 40 curve appears worse. Note that g(x) of
SαS noise also performs well, suggesting its effectiveness
in real-data processing.
The detection performances of PZMNLs are depicted

in Fig. 6, by the CFAR technique proposed in Section 5,
at Pfa = 0.001. For comparison, other detectors are also
simulated, under the assumption of SαS noise. As can be
seen, the PZMNLs for P = 10, 20 are better than the
MLD. The other ZMNLs are much worse. Besides, the
simulated FARs do not equal to the set FAR Pfa = 0.001
since the FAR and the threshold are calculated under the
assumption of SαS noise and so are incorrect theoreti-
cally. However, the FARs of the PZMNLs are much close
to 0.001 because of using the estimate f̃ [ xl] by the KDE
method instead of the assumption of SαS distribution.
To achieve a constant FAR, the CFAR technique can

be simulated by a numeric method as the following. The
threshold η is determined based on the simulated test
statistics in H0 and adjusted to fit the desired Pfa. Then,
η is used in H1 to evaluate the detection probability PD.
Finally, the detection results are shown in Fig. 7, for
GSNR = − 18 dB.We can see that the PZMNL of P = 10

Fig. 5 The PZMNLs in real atmospheric noise for N = 104. g(x) of SαS
is under the assumption of SαS distribution, and the estimate of α is
1.42

Fig. 6 Detection probability versus the GSNR in real atmospheric
noise. Except the PZMNLs, other detectors make the assumption of
SαS distribution. Though Pfa is set as 10−3, the simulated FARs are
10−3×[ 0.8, 1.2, 1.3, 0.8, 0.9, 1.0, 1.0, 1.0] for the detectors from top to
bottom, respectively

is the optimal, better than the MLD and the PZMNLs of
P = 5, 20. The AZMNL and the PZMNL of P = 40 are
similar, while the GZMNL and CZMNL are much worse.
It shows that the PZMNL of a proper order can outper-
form other ZMNL functions when the impulsive noise
disobeys the assumed distribution.

6.5 Extended discussion
The above results demonstrate our proposed methods of
LOD and PZMNL design are effective based on noise
samples, no matter whether their distribution model is
known. This is a significant advantage over other meth-
ods which are developed based on priori known models.

Fig. 7 Detection probability versus Pfa in real atmospheric noise, for
GSNR= − 18 dB. Except the PZMNLs, other detectors make the
assumption of SαS distribution
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In fact, impulsive noise has several different models, but
there is no clear agreement or conclusion about their
optimality. Once any detectors make false assumptions
about the model of real noise, their performances degrade
greatly. However, our methods do not have such a risk.
As our methods are proposed for impulsive noise,

they may be used in other applications. Some limita-
tions are worthy noting. Firstly, the PZMNL algorithm
is developed for unimodal noise with heavy tails. Oth-
erwise, multimodal noise has more than one near-linear
regions and complicates the polynomial fitting. Secondly,
Assumption 1 is necessary for the CFAR technique. It is
easily satisfied in impulsive noise whose PDF is gener-
ally symmetric to zero, but may not for others. Finally,
the PZMNL’s order P may vary for different distribu-
tions. It can be optimized in preprocessing and updated
continuously in real time.

7 Conclusions
This paper proposes a novel approach for the LOD
design in impulsive noise from unknown distributions.
The ZMNL function is designed based on noise sam-
ples without assuming distribution models. As it is mainly
developed by polynomial fitting, we call it as PZMNL.
Simulations on α-stable noise show that the PZMNL
achieves the detection performances similarly to the max-
imum likelihood detector which knows the noise PDF.
Experimental results on real atmospheric noise demon-
strate that the PZMNL outperforms other detectors which
make false assumptions on the distribution models of real
noise.

Appendix
Proof of Theorem 1
By the central limit theorem, as the elements of r are i.i.d.,
T(r) asymptotically converges to obey the Gaussian distri-
bution forM → ∞. Under hypothesisHi, the expectation
of h(r) is calculated

E [h(r)] =
∞∫

−∞
h(r)f (r − ξisi)dr

=
∞∫

−∞
h(r)f (r)dr −

∞∫

−∞
h(r)f ′(r)ξisidr (38)

where the first-order Taylor series is used for low SNR

f (r − ξisi) = f (r) − ξisif ′(r). (39)

By the formulas (5), (26), and (28), we achieve

E [h(r);Hi] ≈ ξisiEhg . (40)

Since r[m] is i.i.d., the expectation of T(r) is given as

E [T(r);Hi] = Ehgξisis†i . (41)

The covariance can be derived as

D [T(r);Hi] =
M∑

m=1
D [h(r[m]);Hi] = D [h(r);Hi] sis†i .

(42)

Then, in low SNR, the expectation of h2(r) is computed as

E
[
h2(r);Hi

] =
∞∫

−∞
h2(r)f (r − ξisi)dr

=
∞∫

−∞
h2(r)f (r)dr −

∞∫

−∞
h2(r)f ′(r)ξisidr

≈ Ehh. (43)

Therefore, the covariance of h(r) is given as

D [h(r);Hi] = E
[
h2(r);Hi

] − (E [h(r);Hi])2

= Ehh − (ξisiEhg)2

≈ Ehh (44)

since ξi is rather small. Then, the covariance of T(r) is

D [T(r);Hi] = Ehhsis†i . (45)

Finally, the test statistic asymptotically obeys Gaussian
distribution

T(r) a∼N
(
Ehgξisis†i , Ehhsis

†
i

)
, Hi. (46)
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