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Abstract

Scatter matrix estimation and hypothesis testing are fundamental inference problems in a wide variety of signal
processing applications. In this paper, we investigate and compare the matched, mismatched, and robust
approaches to solve these problems in the context of the complex elliptically symmetric (CES) distributions. The
matched approach is when the estimation and detection algorithms are tailored on the correct data distribution,
whereas the mismatched approach refers to the case when the scatter matrix estimator and the decision rule are
derived under a model assumption that is not correct. The robust approach aims at providing good estimation and
detection performance, even if suboptimal, over a large set of possible data models, irrespective of the actual data
distribution. Specifically, due to its central importance in both the statistical and engineering applications, we
assume for the input data a complex t-distribution. We analyze scatter matrix estimators derived under the three
different approaches and compare their mean square error (MSE) with the constrained Cramér-Rao bound (CCRB)
and the constrained misspecified Cramér-Rao bound (CMCRB). In addition, the detection performance and false
alarm rate (FAR) of the various detection algorithms are compared with that of the clairvoyant optimum detector.

Keywords: Covariance matrix estimation, Complex elliptically symmetric distribution, Detection problem,
Constrained Cramér-Rao bound, Misspecified Cramér-Rao bound

1 Introduction
This paper deals with two common inference problems
in radar signal processing, namely the estimation of the
disturbance covariance matrix and the adaptive detec-
tion of a radar target. In addition to the radar detection,
the covariance matrix estimation is a fundamental pre-
requisite for a lot of applications in many different areas:
the direction of arrival (DOA) estimation in array pro-
cessing [1], the principal component analysis (PCA) [2],
and the portfolio optimization in finance [3], just to
name a few. We put the covariance estimation and the
adaptive detection problems in the more general context
of the scatter matrix estimation and hypothesis testing
in the complex elliptically symmetric (CES) distribution
family. CES distributions constitute a wide class of
distributions that includes the complex Gaussian,

generalized Gaussian, the K-distribution, complex t-dis-
tribution and all the compound Gaussian distributions
as special cases. Due to their flexibility and their capabil-
ity to model a plethora of different data behavior, they
are widely applied in many areas, such as radar, sonar,
and communications [4, 5]. A CES distribution is com-
pletely characterized by the mean value γ, the scatter (or
shape) matrix Σ, and the density generator g. Given a
particular CES distribution, its density generator could
depends on some extra parameters, (e.g., shape and scale
parameters for a complex t-distribution) that are in
general unknown and need to be estimated from the
data along with γ and Σ.
Specifically, because of its generality, several aspects

should be taken into account when making inference on
the CES class. The first aspect concerns the existence,
convergence, and computational complexity of optimal
algorithms tailored (matched) to a particular CES distri-
bution at hand. Think for example of the problem of the
joint estimation of the mean value, of the scatter matrix,
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and of the extra parameters that characterize the density
generator. As pointed out in, e.g., [6, 7], a joint maximum
likelihood (ML) estimation of all these unknown quan-
tities would encounter computational difficulties and con-
vergence (or even existence) issues. To overcome this
problem, one has to rely on suboptimal, computationally
inexpensive and easy to implement estimators [8]. A dif-
ferent alternative could be to assume a simpler model,
e.g., a Gaussian distribution, for the data behavior that al-
lows one for an easy derivation of optimal (but generally
mismatched) estimators or detection rules [9]. This
consideration leads directly to another issue, namely the
robustness to misspecification. In particular, it would be of
interest to know whether the inference methods based on
an assumed CES distribution can achieve “good” perform-
ance even if the data follow a different and, in general,
more involved CES model. Finally, as direct consequence
of the previous considerations, this analysis culminates
in the possibility to derive and implement robust infer-
ence algorithms with good performance over the whole
class of CES distributions, even if not optimal under
any nominal model.
Following the line of the previous discussion, in this

paper, we investigate and compare the matched, mis-
matched, and robust approaches for inference methods
in complex t-distributed data. We focus on the multi-
variate complex t-distribution, since it has long been
recognized by several authors from both the statistical
(see, e.g., [6] and the references therein) and the signal
processing communities (see, e.g., [10–13]) as a suitable
and flexible model able to describe the heavy-tailed
behavior of the measurements in many practical applica-
tions (e.g., radar detection).
The paper is organized in two parts. In the first part,

we investigate the scatter matrix estimation problem.
The second part deals with adaptive detection algo-
rithms. In particular, in the first part, we investigate the
performance loss in the scatter matrix estimation when
the unknown extra parameters of the t-distribution are
replaced with low computational complexity estimates
obtained via the method of moments (MoM). This rep-
resents the matched case. The mean square error (MSE)
of the “matched” estimators is compared with the con-
strained Cramér-Rao bound (CCRB). Then, we address
the mismatched case where, following the approach
discussed in our recent work [14], the performance of
the mismatched ML (MML) scatter matrix estimator
derived under Gaussian assumption is evaluated and
its MSE compared with the constrained misspecified
Cramér-Rao bound (CMRB) [15]. Finally, the min-
max robust (among the whole CES class) constrained
Tyler (C-Tyler) estimator [16] is introduced and its
performance compared with the CCRB and the other
previously derived estimators.

The second part of the paper focuses on the detection
performance of three detection algorithms: the linear
threshold detector (LTD) [12], i.e., the matched generalized
likelihood ratio test (GLRT) detector for complex t-distrib-
uted data; Kelly’s detector [17], i.e., the GLRT detector
derived under the misspecified Gaussian distribution; and
the adaptive normalized matched filter (ANMF), that
represents the robust detector among the CES class. The
ANMF has been derived and analyzed by many authors
under different names (see, e.g., [4, 18–23]). The three
detectors are compared in terms of (i) constant false alarm
rate (CFAR) property with respect to (w.r.t.) the scatter
matrix and the extra parameters estimation and (ii)
receiver operating characteristic (ROC) curves.
The remainder of the paper is organized as follows. In

Section 2, a brief review of the main properties of the
CES distribution class and of the complex t-distribution
is provided. In Section 3, the scatter matrix estimation
problem is introduced and the application of the matched,
mismatched, and robust approaches extensively analyzed.
In Section 4, the hypothesis testing problem in complex
t-distributed data is investigated. Section 5 collects the
simulation results, while Section 6 summarizes our
conclusions.

2 The CES distribution class, the compound-
Gaussian subclass, and the complex t-distribution
The aim of this section is to provide a brief overview of the
CES distribution class and makes no claim to complete-
ness. For more comprehensive and detailed discussions, we
refer the readers to the excellent works [4] and [5].
A complex N-dimensional random vector xm is CES

distributed, in shorthand notation xm ~ CEN(γ, Σ, g), if its
probability density function (pdf ) is of the form

pX xmð Þ ¼ cN ; g Σj j−1g xm−γð ÞHΣ−1 xm−γð Þ
� �

; ð1Þ

where g is the density generator, cN,g is a normalizing
constant, γ ≜ E{xm}, and Σ is the normalized (or shape)
covariance matrix, also called scatter matrix. Due to the
well-known ambiguity between the scatter matrix and
the density generator of any CES distribution, a con-
straint on the scatter matrix needs to be imposed. In the
rest of the paper, we choose to impose the following
constraint: tr(Σ) =N. As a consequence, if M ≜ E{(xm
− γ)(xm − γ)H} is the covariance matrix of the random
vector xm, then Σ =N/tr(Μ) ⋅M. For some CES distribu-
tions, the un-normalized covariance matrix M does not
exist, but the scatter matrix Σ is still well-defined. This
is the case, for example, for all the CES distributions that
do not have finite second-order moments (e.g., the
Cauchy distribution) [5]. Based upon the stochastic
representation theorem [5], any xm ~ CEN(γ, Σ, g) with
rank(Σ) = k ≤N admits the stochastic representation
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xm = d γ + RPu, where the non-negative random vari-
able (r.v.) R≜

ffiffiffiffi
Q

p
, the so-called modular variate, is a

real, non-negative random variable, u ~U(ℂSk) is a k-
dimensional random vector uniformly distributed on
the unit hyper-sphere ℂSk with k − 1 topological di-
mensions such that uHu = 1, R and u are independent,
and Σ = PPH is a factorization of Σ, where P is a Nxk
matrix and rank(P) = k. It is easy to show that the
random vector u is strictly related to a complex nor-
mal distribution CN(0,I), where I defines the identity
matrix. In fact, if w ~ CN(0, I), then u = dw/‖w‖ [5].
Using this property, the stochastic decomposition can
be recast as xm ¼ dγ þ RPu ¼ dγ þ R=

ffiffiffiffiffiffiffi
Qw

pð ÞPw
where Qw ≜ ‖w‖2 ~ Gam(N, 1). Moreover, Qw is inde-
pendent of w, and E{Qw} =N, and E Q2

w

� � ¼ N N þ 1ð Þ
[5]. In the following, we assume that Σ is real and
full-rank, i.e., rank(P) = rank(Σ) =N. An important re-
mark is in order: for CES distributions, the term σ2 ≜
E{Q}/N can be interpreted as the statistical power of
the random vector xm, i.e., the covariance matrix M,
and the scatter matrix Σ are related by M = σ2Σ.
An important subclass of the CES distributions is

the compound-Gaussian (CG) distributions [24]. In
particular, a CG-distributed random vector xm ~
CGN(γ, Σ, pτ) admits the following stochastic represen-
tation xm ¼ dγ þ ffiffiffi

τ
p

Pw ¼ d

ffiffiffiffiffiffiffiffiffiffi
τ⋅Qw

p
Pu , where, as be-

fore, w ~ CN(0, I), u ~U(ℂSN), and Qw ~ Gam(N, 1).
Usually, the positive real random variable τ is called
the texture and the complex Gaussian random vector
n = dPw is called the speckle. It can be noted that a
CES-distributed random vector belongs to the sub-
class of the CG-distributed random vector if and only
if the square of its modular variate R2 can be written
as a random scaled gamma distribution, i.e., R2 = τ ⋅Qw

and then R2|τ ~Gam(N, τ) [5].
At this point, we can introduce the complex t-distribu-

tion. A complex N-dimensional zero-mean (γ = 0) ran-
dom vector xm is complex t-distributed if its pdf can be
expressed as

pX xm;Σ; λ; ηð Þ≜ 1
πN Σj j

Γ N þ λð Þ
Γ λð Þ

λ

η

� �λ λ

η
þ xHmΣ

−1xm

� �− Nþλð Þ
;

ð2Þ

where λ and η are the shape and scale parameters, re-
spectively. It is easy to show that the pdf in Eq. (2) is of
the form given in Eq. (1) where the density generator
can be expressed as g(t) = (λ/η + t)− (N + λ) [5]. Moreover,
it can be also shown that it admits a CG representation
[24]. The complex t-distribution has tails heavier than
the normal one for every λ∈(0,∞), while the limiting case
λ→∞ yields the complex normal distribution. More-
over, the statistical power is a function of λ and η as
follows [12, 14]:

σ2 ¼ Ep QΣf g=N ¼ λ=η λ−1ð Þ: ð3Þ

Before passing to discuss the scatter matrix estima-
tion problem in complex t-distributed data, few re-
marks are needed. In the rest of the paper, we always
assume that:

i) The dataset x ¼ xmf gMm¼1 is composed of M
independent and identically distributed (IID)
N-dimensional, zero-mean, complex t-distributed
random vectors.

ii) The scatter matrix Σ is a real and full rank matrix.

It must be underlined that the second assumption is
quite strong and not always verified in radar/sonar ap-
plications. It is well-known in fact that, if the power
spectral density (PSD) of the disturbance is not sym-
metric around a central frequency, the autocorrelation
function of the complex envelope of the data is com-
plex valued and consequently also the scatter matrix
(see, e.g., [25]). However, working with complex matri-
ces would require the use of more sophisticated math-
ematical tools, i.e., the so-called Wirtinger calculus
[26], but this general approach falls outside the scope
of the paper. The case of complex scatter matrix will be
considered in future works.

3 Scatter matrix estimation
This section deals with the scatter matrix estimation from
a set of IID complex t-distributed data. As discussed in
the previous section, we investigate three different ap-
proaches: the matched, the mismatched, and the robust
cases. We also provide the relative performance bounds,
i.e., the CCRB and the CMCRB.

3.1 The matched case for complex t-distributed data
In this section, we discuss and derive two matched
estimators of the scatter matrix Σ and of the extra
parameters λ and η by assuming to know perfectly
the correct data model, i.e., the complex t-distribu-
tion. Building upon previous results, we investigate
the performance of the following two estimators: (1)
the constrained maximum likelihood (CML) estimator
of Σ which uses the method of moments (MoM) estimates
of λ and η and (2) a recursive (suboptimal) estimator
of Σ, λ, and η.

3.1.1 The constrained ML-MoM estimator (CML-MoM)
The CML estimator of the scatter matrix for t-distrib-
uted data is given by the solution of the following
fixed-point equation [5, 27]:
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Σ̂ML ¼ N þ λ

M

XM
m¼1

xmxHm
xHmΣ̂

−1
MLxm þ λ=η

; s:t: tr Σ̂ML
	 
 ¼ N :

ð4Þ

As we can see, Eq. (4) involves the unknown shape
and scale parameter of the t-distribution. To estimate
them, we use the low computational complexity (but
suboptimal) MoM estimators. The MoM method con-
sists of equating the experimental moments with the
corresponding theoretical ones in order to obtain an
estimate of the unknown parameters of interest. In par-
ticular, given a random variable r whose pdf depends on
some unknown parameters, one needs to firstly evaluate
analytically the moments mk ≜ E{rk}, i.e., the expected
values of powers of the random variable under consider-
ation, and, secondly, equate the obtained expressions
(that will depend on the unknown parameters) with the
corresponding sample estimates of the moments, i.e.,

m̂k≜
XM

m¼1
rkm , where rmf gMm¼1 are M realizations of

the random variable r.
In the problem at hand, we need to estimate the shape

and scale parameters, λ and η, of the complex t-distribu-
tion. In order to do this, we may apply the MoM method
by considering the moments of the amplitude of each
entry of the data vector xm, i.e., rn ≜ |[xm]n|, n = 1,…,N.
To evaluate the moments of the amplitude rn, we can
exploit the decomposition given in Theorem 5 of [5] and
the fact that the t-distribution is a CG distribution. In
particular, we have that the amplitude

rn≜ xm;n

�� �� ¼ R Pum½ �n
�� �� ¼ Rffiffiffiffiffiffiffi

Qw
p Pwm½ �n

�� ��
¼ ffiffiffi

τ
p

nm½ �n
�� ��≜ ffiffiffi

τ
p

nm;n

�� �� ð5Þ

is distributed according to [5] as

prn rð Þ ¼ 2ηr 1þ η

λ
r2

� �− λþ1ð Þ
u rð Þ; ð6Þ

where u(⋅) is the unit step function. It is easy to verify
through direct calculation on the pdf in (6) that the mo-
ments of order k of rn are given by

mk≜E rkn
� � ¼ λ

η

� �k=2 Γ k=2þ 1ð ÞΓ λ−k=2ð Þ
Γ λð Þ ; λ >

k
2
:

ð7Þ

Finally, by applying the classical MoM approach using
the fourth-order and the second-order moments of rn,
the parameters λ and η can be estimated as follows [28]:

λ̂MoM ¼ 2
m̂4=m̂

2
2−1

m̂4=m̂
2
2−2

; η̂MoM ¼ λ̂MoM

m̂2 λ̂MoM−1
� � ; ð8Þ

where

μ̂ ¼ 1
MN

XM
m¼1

XN
n¼1

xm;n;

m̂2 ¼ 1
MN

XM
m¼1

XN
n¼1

xm;n−μ̂
�� ��2; and

m̂4 ¼ 1
MN

XM
m¼1

XN
n¼1

xm;n−μ̂
�� ��4

ð9Þ

are the sample estimates of the moments. Due to exist-
ence issues of the fourth-order moment, we constrain
the estimator of λ to be larger than 2, i.e., λ̂MoM > 2 .
Finally, the following iterative approach [27] can be used
to solve Eq. (4):

Σ̂
0ð Þ
CML

¼ I

S kþ1ð Þ
CML ¼

XM
m¼1

xmxHm

xHm Σ̂
kð Þ
CML

� �−1
xm þ λ̂MoM=η̂MoM

Σ̂
kþ1ð Þ
CML ¼ NS kþ1ð Þ

CML =tr S kþ1ð Þ
CML

� �

8>>>>>>>><>>>>>>>>:
ð10Þ

It can be noted that the constraint on the trace of

Σ̂
kð Þ
CML has to be imposed at each iteration.

3.1.2 The constrained recursive ML-WMoM estimator
(CML-WMoM)
In this section, we propose an improvement of the
CML-MoM estimator of Eq. (10). It should be noted
first that the moment sample estimators m̂2 and m̂4

have been derived in (9) under the assumption that the
M ⋅N data samples are IID, although the entries

xm;n

� �N
n¼1 with m∈ 1;…;Mf g are correlated. Applying

directly this method to a set of t-distributed random
vectors leads to a suboptimal approach. However, from
Eq. (5), it is easy to show that each data vector can be
whitened (W) in order to have uncorrelated entries, be-
ing n from Eq. (5) a Gaussian random vector. Since both
the scatter matrix and the shape and scale parameters
are unknown, we rely on a recursive procedure to esti-
mate them jointly [8]:

1. Initialization (k = 0)

Σ̂
0ð Þ
W ¼ I; ð11Þ

2. (k + 1)th iteration (for k = 0,…,K)

~xm ¼ Σ̂
kð Þ
W

� �−1=2
xm; ð12Þ

Fortunati et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:123 Page 4 of 16



μ̂ kð Þ ¼ 1
MN

XM
m¼1

XN
n¼1

~xm;n

μ kð Þ
2 ¼ 1

MN

XM
m¼1

XN
n¼1

~xm;n−μ̂
kð Þ

��� ���2
μ kð Þ
4 ¼ 1

MN

XM
m¼1

XN
n¼1

~xm;n−μ̂
kð Þ

��� ���4
⇒

eq: 9ð Þ
λ kð Þ
WMoM > 2; η kð Þ

WMoM;

8>>>>>>>>>><>>>>>>>>>>:
ð13Þ

S kþ1ð Þ
W ¼

XM
m¼1

xmxHm

xHm Σ̂
kð Þ
W

� �−1
xm þ λ̂WMoM kð Þ=η̂

kð Þ
WMoM:

Σ̂
kþ1ð Þ
W ¼ NS kþ1ð Þ

W =tr S kþ1ð Þ
W

� �
8>>>><>>>>: ð14Þ

Even if based on more accurate considerations about
the marginal pdf of the entries of xm, the proposed re-
cursive constrained ML-whitened MoM (CML-WMoM)
estimator is itself a suboptimal algorithm. Moreover, the
convergence of the recursive procedure is not guaranteed.

3.1.3 The constrained Cramér-Rao bound (CCRB)
This section provides a concise review on the derivation
for the constrained Cramér-Rao bound (CCRB) for the

estimation of θ≜ vecs Σð ÞT λ η
� 
T

in complex t-dis-
tributed data where the vecs-operator is the “symmetric”
counterpart of the standard vec-operator that maps a
symmetric N ×N matrix Σ in an l-dimensional vector
(where l =N(N + 1)/2) whose entries are the elements of
the lower (or upper) triangular sub-matrix of Σ. Follow-
ing our previous results presented in [8] and [29], we
have that the unconstrained Fisher information matrix
(FIM) is given by

Fθ ¼ TT
2

FΣ Fc
FT
c Fλ;η

� �
T2; ð15Þ

where

FΣ ¼ −
1

N þ λþ 1
vec Σ−1	 


vec Σ−1	 
T þ N þ λ

N þ λþ 1
Σ−1⊗Σ−1;

ð16Þ

Fλ;η

� 

1;1 ¼

XN−1

k¼0

1

λþ kð Þ2 þ
λþ 1ð Þ N þ λð Þ
λ N þ λþ 1ð Þ −

2N
λ λþ Nð Þ−1;

ð17Þ

Fλ;η
� 


2;2 ¼
Nλ

η2 N þ λþ 1ð Þ ; ð18Þ

Fλ;η
� 


1;2 ¼ Fλ;η
� 


2;1 ¼
λN

ηλ N þ λð Þ N þ λþ 1ð Þ ; ð19Þ

Fc ¼ −
1

N þ λð Þ N þ λþ 1ð Þ vec Σ−1	 

−

λ

η N þ λþ 1ð Þ vec Σ−1	 
� �
;

ð20Þ

Ti ¼ DN 0
0 Ii

� �
; ð21Þ

where Ii is the identity matrix of dimension i × i and DN

is the so-called duplication matrix of order N [30]. The
duplication matrix is implicitly defined as the unique
N2 × l matrix that satisfies the following equality:
DNvecs(A) = vec(A) for any symmetric matrix A.
As discussed before, due to the ambiguity between

power and scatter matrix Σ, the parameters λ and η are
identifiable (i.e., they can be estimated from the data) only
by putting a constraint on Σ, e.g., tr(Σ) =N. For this rea-
son, a constrained version of the Cramér-Rao bound
needs to be derived [31, 32]. To this end, the continuously
differentiable constraint tr(Σ) =N can be rewritten as

f θð Þ ¼
X

i∈I
vecs Σð Þi−N ¼ 0; ð22Þ

where I is the set of the indices of the diagonal entries of
Σ that can be explicitly described as

I ¼ i i ¼ 1þ N j−1ð Þ− j−1ð Þ j−2ð Þ
2

; j ¼ 1;…;N

����� �
:

ð23Þ
Following [32], we define the (l + 2)-dimensional gradi-

ent vector as

∇f θð Þ ¼ ∂f θð Þ
∂θT

¼ ∂
X

i∈I
vecs Σð Þi

∂vecs Σð ÞT
0 0

� �
¼ 1TI 0 0
� 


;

ð24Þ
where 1I is a l-dimensional column vector defined as

1I½ �i ¼
1 i∈I
0 otherwise

�
: ð25Þ

The gradient ∇f(θ) has clearly full row rank, and
hence, there exists a matrix U ∈ ℝ(l + 2) × (l + 1) whose col-
umns form an orthonormal basis for the null space of
∇f(θ), that is ∇f(θ)U = 0 where UTU = I. The matrix U
can be obtained numerically by evaluating, e.g., using
the singular value decomposition (SVD), the l + 1 ortho-
normal eigenvectors associated to the zero eigenvalue of
∇f(θ). Finally, the CCRB on the estimation of θ can be
expressed as (Theorem 1 in [32])

CCRB θð Þ ¼ U UTFθU
	 
−1

UT : ð26Þ

3.2 The mismatched case
In the matched case, the true data model and the model
assumed to derive a joint estimator of the scatter matrix
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and of the shape and scale parameters are the same; that
is, the model is correctly specified. However, a certain
amount of mismatch is often inevitable in practice.
Among others, the model mismatch can be due to an
imperfect knowledge of the true data model or to the
need to fulfill some operative constraints on the estima-
tion algorithm (processing time, simple hardware imple-
mentation, and so on). In other words, even if the true
but involved model is known, in order to derive a simple
(mismatched) estimator for practical exploitation, one
could decide to assume a simpler model, e.g., a Gaussian
distribution. In our recent work [14], we investigated the
behavior of the ML estimator of the scatter matrix in
CES-distributed data under mismatched conditions, i.e.,
the mismatched ML (MML) estimator. Moreover, the
existence of a lower bound on the error covariance
matrix of a certain class of mismatched estimators has
been investigated as well (see also [33]). In particular, it
has been shown that the asymptotic distribution of the
MML estimator is a Gaussian one, whose mean value is
the minimizer (also called pseudo-true parameter vector)
of the Kullback-Leibler (KL) divergence between the true
and the assumed data distributions and the covariance
matrix is given by the so-called Huber “sandwich” matrix.
For brevity, we refer the reader to the recent papers [14]
and [33] and references therein for a more comprehensive
and insightful review of these topics.
In this paper, we consider the following mismatched

scenario: we assume a complex Gaussian model for the
data, i.e., we assume that the M vectors of the available

dataset x ¼ xmf gMm¼1 are IID and each one is distributed
according to a complex normal multivariate pdf, which
also belongs to the CES family:

f X xm; θð Þ≜f X xm;Σ; σ
2

	 
 ¼ 1

πσ2ð ÞN Σj j exp
−xHmΣ

−1xm
σ2

� �
:

ð27Þ

The covariance matrix is M ¼ E xmxHm
� � ¼ σ2Σ , where

tr(Σ) =N and σ2 are the power. Hence, the parameter

vector to be estimated can be expressed as θ ¼
vecs Σð ÞT σ2
� 
T∈Θ . However, the true data are distrib-

uted according to the complex t-distribution pX xm; θ
	 


≜pX

xm;Σ; λ; η
	 


of Eq. (2), where θ ¼ vecs Σ
	 
T

λ η
h iT

∈

Τ is the true parameter vector and Σ is the true scatter
matrix that could be different to the scatter matrix Σ of the
assumed Gaussian distribution. A point need to be clearly
highlighted: in the mismatched case, the parameter space Θ
that parameterizes the assumed distribution and the (pos-
sibly inaccessible and unknown) parameter space T that
parameterizes the true distribution may be different. In the
case at hand, for example, T ⊂ℝl × (0,∞) × (0,∞) while Θ ⊂

ℝl × (0,∞) where × indicates the Cartesian product and l
=N(N + 1)/2 as before. Moreover, the constraint on the
trace of the scatter matrix limits both the true and
assumed parameter vector to belong to two lower dimen-
sional smooth manifolds Te ¼ f�θ∈Tjtrð�ΣÞ ¼ Ng and ~Θ
¼ θ∈Θ trj Σð Þ ¼ Nf g, respectively.

3.2.1 The constrained MML (CMML) estimator
In order to obtain an estimation of θ, we apply the ML
method, so what we get under mismatched conditions is
the so-called MML estimator [34, 35]:

θ̂ MMLðxÞ≜ argmax
θ∈Θ

ln f Xðx; θÞ ¼ argmax
θ∈Θ

X
m¼1

M
ln f Xðxm; θÞ;

ð28Þ

where xmepX xm; θ
	 


and tr Σð Þ ¼ tr Σ
	 
 ¼ N . It can be

shown (see [14, 33–35] and the references therein) that
the MML estimator converges almost surely (a.s.) to θ0,
i.e., the vector that minimizes the KL divergence between
pX xm; θ
	 


and fX(xm; θ):

θ̂MML xð Þ →
a:s:

M→∞
θ0; ð29Þ

θ0 ¼ argmin
θ∈Θ

fDðp∥f θÞg ¼ argmin
θ∈Θ

f−Epfln f Xðxm; θÞgg;

ð30Þ

where

D p f θkð Þ≜Ep ln
pX xm;θ
	 


f X x; θð Þ

 !( )
¼
Z

ln
pX xm; θ
	 


f X x; θð Þ

 !
pX xm; θ
	 


dx:

ð31Þ

The assumption of a complex normal model is moti-
vated by the fact that the MML estimator for the joint
estimation of the scatter Σ matrix and σ2 can be easily
derived. The log-likelihood function in fact can be
expressed as

LðθÞ ¼
X

m¼1

M
ln f Xðxm; θÞ ¼ −NMlnσ2−MlnjΣj−

X
m¼1

M
xHmΣ

−1xm=σ
2:

ð32Þ

Then, the MML estimator can be obtained by maxi-
mizing L(θ) subject to the linear constraint tr(Σ) =N. To
do this, we do not rely on the Lagrange multiplier
method, but we follow a different, yet equivalent (at least
asymptotically), procedure [36]: we first derive the un-
constrained MML estimator and then we project it on
the lower dimensional manifold Θ by imposing the con-
straint. Specifically, the MML estimator is the solution
of the following problem:
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∂L θð Þ
∂σ2

¼ −
NM
σ2

þ 1
σ4

XM

m¼1
xHmΣ

−1xm ¼ 0

∂L θð Þ
∂Σ

¼ −MΣ−1 þ Σ−1

σ2

XM

m¼1
xmx

H
mΣ

−1 ¼ 0

s:t: tr Σð Þ ¼ N

8>>>>>><>>>>>>:
ð33Þ

Before solving (33), a remark is in order. In the second
equation, the derivative of log-likelihood function L(θ) is
taken with respect to all N2 elements of the scatter
matrix Σ. Since Σ is a symmetric matrix, some deriva-
tives are redundant. On the other hand, this approach
has the advantage to allow for a simple and compact
calculation of the matrix derivative. A more formal ap-
proach is discussed in [30], and it involves the use of the
duplication matrix introduced in Section 3.1.3. However,
since our approach and the one proposed in [30] lead to
the same result, we chose to exploit the simplest of the
methods. Solving (33), we have

σ̂ 2
MML ¼ 1

NM

XM

m¼1
xHmΣ̂

−1
MMLxm

Σ̂MML ¼ NXM

m¼1
xHmΣ̂

−1
MMLxm

XM

m¼1
xmx

H
m

s:t: tr Σ̂MML
	 
 ¼ N

8>>>>>>><>>>>>>>:
ð34Þ

Hence, imposing the constraint, we get the con-
strained MML (CMML) estimators of σ2 and Σ:

σ̂ 2
CMML ¼ 1

NM

XM

m¼1
xHmΣ̂

−1
CMMLxm

Σ̂CMML ¼ NXM

m¼1
xHmxm

XM

m¼1
xmx

H
m

8>>><>>>: ð35Þ

Now, we need to find the vector θ0 ¼
vecs Σ0ð ÞT σ2

0

� 
T
that minimizes the KL divergence

between pX xm; θ
	 


and fX(xm; θ). This vector is the
convergence point of the MML estimator in Eq. (35).
To this end, we have to solve the following system:

∂D p f θkð Þ
∂σ2

¼ −Ep
∂ lnf X xm;Σ; σ2ð Þ

∂σ2

� �
¼ 0

∂D p f θkð Þ
∂Σ

¼ −Ep
∂ lnf X xm;Σ; σ2ð Þ

∂Σ

� �
¼ 0

8>><>>: ð36Þ

The first equation immediately provides

∂D p f θkð Þ
∂σ2

¼ Ep
∂
∂σ2

N lnσ2 þ xHmΣ
−1xm
σ2

� �� �
¼ N

σ2
−
Ep QΣf g

σ4
¼ 0;

ð37Þ
where QΣ≜xHmΣ

−1xm. By solving (37), we get σ20 ¼ Ep QΣf g
N .

The derivative of the KL divergence with respect to Σ
is instead given by [14]

∂D p f θkð Þ
∂Σ

¼ Σ−1−
E QΣf g
Nσ2

Σ−1ΣΣ−1 ¼ 0; tr Σð Þ ¼ tr Σ
	 
 ¼ N

ð38Þ
whose solution is Σ0 ¼ E QΣ0f g

Nσ2 Σ . Putting together the
two solutions, we finally get

σ20 ¼
E QΣ0

� �
N

and Σ0 ¼
E QΣ0

� �
Nσ2

0
Σ ¼ Σ;where tr Σ0ð Þ ¼ tr Σ

	 
 ¼ N ;

ð39Þ
and

σ20 ¼
E QΣ0

� �
N

¼ E QΣ

� �
N

¼
Ep xHmΣ

−1
xm

n o
N

¼ σ 2 ¼ λ

η λ−1ð Þ ;

ð40Þ
where σ 2 is the true statistical power of the data. Equations
(39) and (40) show that the MML estimator converges a.s.
to the true parameter vector θ̂CMML xð Þ →

a:s:

M→∞
θ0

¼ vecs Σ
	 
T

σ 2
h iT

, i.e.,

σ̂ 2
CMML xð Þ →

a:s:

M→∞
σ 2 ¼ λ=η λ−1ð Þ; Σ̂CMML xð Þ →

a:s:

M→∞
Σ;

ð41Þ
so it provides consistent estimates for both the scatter
matrix and the power of the true data model. From a
practical point of view, this means that we can use the
simpler mismatched estimator based on the Gaussian
model assumption to estimate the scatter matrix and the
average power of a set of complex t-distributed data
since it converges to the true required quantities. The
analysis of the performance loss of the mismatched
estimator in Eq. (35) is reported in the next section.

3.2.2 The constrained misspecified Cramér-Rao bound
(CMCRB)
In the classical matched estimation framework, the per-
formance of any unbiased estimator can be assessed by
comparing its error covariance matrix with the Cramér-
Rao bound. It is natural to ask if it is possible to estab-
lish a lover bound on the estimation performance also in
the mismatched estimation framework. In his seminal
working paper [37], Vuong proposed the misspecified
Cramér-Rao bound (MCRB) and showed that it repre-
sents a lower bound on the error covariance matrix of
any unbiased (in a proper sense) estimator of a deter-
ministic parameter vector under misspecification of the
true data model. Recently, the MCRB has been rediscov-
ered and deeply investigated in [14] and [33]. In particu-
lar, in [14], the MCRB on the estimation of the scatter
matrix was evaluated for the complex t-distribution
when the assumed misspecified distribution is a complex
normal pdf, under the assumption of a priori known
power. Here, we generalize the result for the case of
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unknown power, i.e., when the power σ2 and the scatter
matrix Σ are unknown and jointly estimated. In order to
do this, we exploit our recent derivation of the con-
strained MCRB (CMCRB) [15]. In particular, in [15], it
was shown that the general expression for the CMCRB,
for MS-unbiased and consistent estimators (for the
definition of MS-unbiasedness, we refer the reader to
[14, 15] and [37]), is given by

MCRB θ0ð Þ ¼ M−1U UTAθ0U
	 
−1

UTBθ0U UTAθ0U
	 
−1

UT ; θ0∈Θ;

ð42Þ
where the entries of the matrices Aθ0 and Bθ0 are defined
in [14, 15, 33, 37] as

½Aθ0 �ij ≜
h
Ep

n
∇θ0∇θ0

T
ln f Xðxm; θ0Þ

oi
ij
¼ Ep

∂2

∂θi∂θj
lnf Xðxm; θÞ

���
θ¼θ0

( )
;

ð43Þ

½Bθ0 � ij ≜
h
Ep

n
∇θ0 lnf Xðxm; θ0Þ∇θ0

T lnf Xðxm; θ0Þ
oi

ij

¼ Ep

(
∂lnf Xðxm; θÞ

∂θi

�����
θ¼θ0

⋅
∂lnf Xðxm; θÞ

∂θj

�����
θ¼θ0

)
;

ð44Þ
and where the columns of matrix U is defined as in
Section 3.1.3 as an orthonormal basis for the null space
of full-rank Jacobian matrix of the constraints. In the
following, we specialize this general expression for the
case study at hand.
Evaluation of the matrix Aθ0 . Matrix Aθ0 can be

decomposed in the following blocks:

Aθ0 ¼ TT
1

AΣ Ac

AT
c Aσ 2

� �
T1: ð45Þ

where Ti has been defined in Eq. (21). Following the
procedure in [38], we have

AΣ ¼ −Σ
−1
⊗Σ

−1
: ð46Þ

Aσ 2 ¼ Ep
∂2

∂2σ 2 ln f X xm; θ0ð Þ
� �

¼ Ep
∂2

∂2σ 2 −N lnσ 2−
QΣ

σ 2

� �� �
¼ N

σ 4 −2
Ep QΣ

� �
σ 6 ¼ −

N

σ 4;

ð47Þ

Ac½ �i;1 ¼ Ep
∂2ln f X xm; θ0ð Þ
∂σ 2∂vec Σ

	 

i

( )
¼ −

1

σ 4 Ep xHmΣ
−1
AiΣ

−1
xm

n o
¼ −

1

σ 2 tr Σ
−1
Ai

� �
¼ −

1

σ 2 vec Σ
−1

� �T
vec Aið Þ

ð48Þ
where Ai = ∂Σ/∂θi is a symmetric 0–1 matrix. From (48),
we get Ac ¼ − 1

σ 2 vec Σ
−1

� �
.

Evaluation of the matrix Bθ0 . Matrix Bθ0 can be
decomposed in the following blocks:

Bθ0 ¼ TT
1

BΣ Bc

BT
c Bσ 2

� �
T1: ð49Þ

As before, following the procedure in [38], we get

BΣ ¼ 1
λ−2

vec Σ
−1

� �
vec Σ

−1
� �T

þ λ−1
λ−2

Σ
−1
⊗Σ

−1
: ð50Þ

Bσ 2 ¼ Ep
∂ ln f X xm; θ0ð Þ

∂σ 2

� �2( )
¼ Ep

∂
∂σ 2 −N ln σ 2−

QΣ

σ 2

� �� �2( )

¼ N2

σ 4 −2
Ep QΣ

� �
σ 6 þ

Ep Q2
Σ

n o
σ 8 ¼ N2

σ 4 −2
N2

σ 4 þ N N þ 1ð Þ λ−1ð Þ
σ 4 λ−2ð Þ

¼ N N þ λ−1ð Þ
σ 4 λ−2ð Þ :

ð51Þ

Bc½ �i;1 ¼ Ep
∂ ln f X xm; θ0ð Þ

∂σ 2 ⋅
∂ ln f X xm; θ0ð Þ

∂vec Σ
	 


i

( )

¼ Ep
Ep QΣ

� �
σ 4 −

N

σ 2

� �
1

σ 2 x
H
mΣ

−1
AiΣ

−1
xm−tr Σ

−1
Ai

� �� �� �

¼ −
N

σ 2 tr Σ
−1
Ai

� �
þ 1

σ 6 Ep xHmΣ
−1
xmx

H
mΣ

−1
AiΣ

−1
xm

n o
¼ −

N

σ 2 þ
N þ 1ð Þ λ−1ð Þ
σ 2 λ−2ð Þ

� �
tr Σ

−1
Ai

� �
¼ N þ λ−1

σ 2 λ−2ð Þ tr Σ
−1
Ai

� �
:

ð52Þ

Hence, we get Bc ¼ Nþλ−1
σ 2 λ−2ð Þ vec Σ

−1
� �

. Finally, some clar-

ifications on the matrix U in the mismatched case need to
be done. As for the matched case, the constraint on the
trace of the scatter matrix can be rewritten as f(θ) = ∑i ∈

Ivecs(Σ)i −N = 0, where I is the set of indices in (23).
Hence, exactly as in Section 3.1.3, the l + 1-dimensional
row gradient vector of the constraint is

∇f θð Þ ¼ ∂f θð Þ
∂θT

¼ ∂
X

i∈I
vecs Σð Þi

∂vecs Σð ÞT 0

� �
¼ 1TI 0
� 


;

ð53Þ
where 1TI is given in Eq. (25), but unlike Eq. (24) where
the two last zero entries were due to the scale and shape
parameters, here after 1TI , we have only a zero entry rela-
tive to the power σ2. To close this section, we note that
U ∈ ℝ(l + 1) × l in (42) is the matrix whose columns form
an orthonormal basis for the null space of ∇f(θ) in (53).

3.3 The robust approach
Unlike previous scenarios, where the estimators of the
scatter matrix have been derived by assuming the
correct t-distributed data model (matched case) or the
simpler, but different from the true one, Gaussian data
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model (mismatched case), we now focus on robust esti-
mation, i.e., we aim at finding an estimator that does not
assume any specific model for the data. A robust estima-
tor is supposed to provide good estimation performance
over a large set of different models (in the application
discussed here, the set of CES models), even if not opti-
mal under any nominal (matched or mismatched) one.
Because of its generality, a robust estimator of the scat-
ter matrix over the CES distributions will not rely on
any additional estimates of unknown extra parameters,
as it is for the matched ML estimator in Eq. (4) that
depends on the estimates of λ and η.
There is a vast literature on robust estimation of the scat-

ter matrix of CES-distributed data. In particular, it can be
shown that the so-called constrained Tyler’s (C-Tyler) fixed-
point estimator is the most robust scatter matrix estimator
in min-max sense over the CES class [5, 16, 39–41]. The
C-Tyler estimator can be obtained as the recursive
solution of the following fixed-point matrix equation:

Σ ¼ N
M

XM
m¼1

xmxHm
xHmΣ

−1xm
; tr Σð Þ ¼ N : ð54Þ

To solve Eq. (54), we use the following iterative ap-
proach [40]:

Σ̂
0ð Þ
T

¼ I

S kþ1ð Þ
T ¼

XM
m¼1

xmxHm

xHm Σ̂
kð Þ
T

� �−1
xm

Σ̂
kþ1ð Þ
T ¼ NS kþ1ð Þ

T =tr S kþ1ð Þ
T

� �

8>>>>>>>><>>>>>>>>:
ð55Þ

for k = 1,…,K, where K is the number of iterations. It can
be noted that in (55), there is a normalization on the
trace of Σ

^

T

(k) at every step of the iterative procedure to im-
pose the constraint on the trace. Asymptotic consistency
and unbiasedness properties are discussed in [5] and [16].
It is worth noting that the performance of the C-Tyler es-
timator can be assessed by comparing its error covariance
matrix on the estimation of Σ with the CCRB derived in
(26).

4 Hypothesis testing problem for target detection
After having discussed the three approaches for the scat-
ter matrix estimation in t-distributed data, we can intro-
duce the classical radar detection problem. In particular,
we address the problem of detecting a complex signal
vector s in the received data x = s + c where c represents
the unobserved complex noise/clutter random vector.
The target signal s is modelled as s = αp where p (gener-
ally called target vector response or Doppler steering
vector) is the transmitted known radar pulse vector and
α = γejϕ ∈ ℂ is an unknown signal parameter accounting

for both channel propagation effects and the target back-
scattering. α can be modelled as an unknown determin-
istic parameter or as a random variable depending on
the application at hand. When modelled as a random
quantity, α is assumed to be a circular Gaussian random
variable αeCN 0; σ2α

	 

where the amplitude γ is Rayleigh

distributed and the phase ϕ is uniformly distributed in
[0, 2π) and independent of γ. More general target models
are the so-called Swerling models [42]. Regarding the
complex noise vector c, it has been successfully mod-
elled as a zero-mean CES-distributed random vector
with covariance matrix M = σ2Σ, where Σ and σ2 repre-
sent the unknown scatter matrix and the unknown stat-
istical noise power. In particular, c is modelled as a
complex t-distributed random vector [12, 13, 24].
The target detection problem can be expressed as a

composite binary hypothesis testing problem

H0 : αj j ¼ 0 vs: H1 : αj j > 0; ð56Þ
or, more explicitly as

H0 : x ¼ c xm ¼ cm;m ¼ 1;…;M
H1 : x ¼ αpþ c xm ¼ cm;m ¼ 1;…;M

�
ð57Þ

where the secondary data xmf gMm¼1 can be used to esti-
mate the scatter matrix.

4.1 The matched case and the linear threshold detector
In [12], a GLRT (with respect to the unknown signal
parameter α) has been derived as

ΛLTD ≡ΛLTD x;Σ; λ; ηð Þ ¼ pHΣ−1x
�� ��2

pHΣ−1p
	 


xHΣ−1xþ λ=η
	 
 ;

ð58Þ
where LTD stands for linear threshold detector. For an ex-
tensive discussion on the statistical properties of the ΛLTD,
we refer the reader to [12]. Of course, the LTD in Eq. (58)
cannot be directly used in practical applications since it
relies on the exact knowledge of the scatter matrix Σ and
of the shape and scale parameters, λ and η, respectively. In
order to estimate these quantities, we can use the matched
algorithms discussed in Section 3. In particular, using
the CML-MoM algorithms of Section 3.1.1 and the
CML-WMoM algorithm of Section 3.1.2, we obtain two
adaptive LTD detectors:

ΛLTD‐CML‐MoM ≡ΛLTD x; Σ̂CML; λ̂MoM; η̂MoM

� �
¼

pH Σ̂
−1
CMLx

��� ���2
pH Σ̂

−1
CMLp

� �
xH Σ̂

−1
CMLxþ λ̂MoM=η̂MoM

� � ; ð59Þ

and
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ΛLTD‐CML‐WMoM ≡ΛLTD x; Σ̂W ; λ̂WMoM; η̂WMoM

� �
¼

pH Σ̂
−1
Wx

��� ���2
pH Σ̂

−1
Wp

� �
xH Σ̂

−1
Wxþ λ̂WMoM=η̂WMoM

� � :
ð60Þ

4.2 The mismatched case and the Kelly’s GLRT
Following the mismatched approach used in Section 3.2,
in this section, we analyze a sort of mismatched detec-
tion algorithm. In particular, as in Section 3.2, we as-

sume that the noise vectors in (57), i.e., xmf gMm¼1 , are
distributed according to the complex normal pdf of Eq.
(27), while the true pdf is given by Eq. (2), i.e., they are
complex t-distributed random vectors. It is well-known
that, under Gaussian assumption, the GLRT (with
respect to both the target parameter α and the noise
covariance matrix M = σ2Σ) is given by Kelly’s detector:

ΛKelly0s GLRT≡ΛKelly0s GLRT x; M̂
	 


¼
pHM̂

−1
x

��� ���2
pHM̂

−1
p

� �
1þM−1xHM̂

−1
x

� � ; ð61Þ

where M̂ is the sample covariance matrix (SCM), which
is the ML estimator of the covariance matrix for
Gaussian-distributed random vectors [17]. It is immedi-
ate to show that in our mismatched framework, the
SCM also represents the MML estimator derived in (34)

M̂ ¼ 1
M

XM

m¼1
xmxHm ¼ σ̂ 2

MMLΣ̂MML: ð62Þ

Using the equality in Eq. (62), Kelly’s GLRT can be
expressed as

ΛKelly0s GLRT≡ΛKelly0s GLRT x; σ̂ 2
MML; Σ̂MML

	 

¼

pH Σ̂
−1
MMLx

��� ���2
pH Σ̂

−1
MMLp

� �
σ̂ 2
MML þM−1xH Σ̂

−1
MMLx

� � : ð63Þ

We note, in passing, that the Kelly’s GLRT emerges
also in detection problems involving CES-distributed
data. In particular, in [43], it is shown that the Kelly’s
GLRT is a robust detector over a wide subclass of CES
data distributions. However, it must be noted that the
clutter model assumed in [43] is different from the IID
model in Eq. (57). The model adopted here corresponds
to what Raghavan and Pulsone in [44] called the “inde-
pendent model,” whereas the one considered in [43]
corresponds to the so-called dependent model.

4.3 The robust approach and the ANMF
Finally, in this section, we discuss a robust detection
algorithm under CES-distributed data vectors. For the

reason we explain below, it is reasonable to choose as
robust detector the normalized matched filter (NMF),
proposed, e.g., in [18–23], as

ΛNMF≡ΛNMF x;Σð Þ ¼ pHΣ−1x
�� ��2

pHΣ−1p
	 


xHΣ−1x
	 
 ; ð64Þ

where for the moment, the data scatter matrix Σ is
assumed to be perfectly known.
An important feature of the detector in (64) is the in-

variance under scalar multiplies of x. In particular, the
distribution of the test statistic ΛNMF under the hypoth-
esis H0 is independent of the unknown average noise
power σ2 or the functional form of the particular CES
distribution of the noise, i.e., the NMF is a distribution-
free detector under H0. The proof of this property can
be found in [5]. Moreover, it can be shown that ΛNMF|H0

follows a beta distribution:

ΛNMF jH0 ∼ betaðλ; 1;N−1Þ; ð65Þ
where beta(x; α, β) = (xα − 1(1 − x)β − 1)/B(α, β), N is the di-
mension of the data vector, and B(α, β) = Γ(α)Γ(β)/Γ(α + β).
It is clear that the NMF cannot be used in practical ap-

plications where the scatter matrix Σ of the data vectors
is generally unknown. In order to overcome this limita-
tion, an adaptive NMF (ANMF) detector can be derived
by substituting to Σ its min-max (over the CES distribu-

tions) robust estimate, i.e., the C-Tyler estimator Σ̂T :

ΛANMF‐C‐Tyler≡ΛANMF‐C‐Tyler x; Σ̂T
	 


¼
pH Σ̂

−1
T x

��� ���2
pH Σ̂

−1
T p

� �
xH Σ̂

−1
T x

� �
ð66Þ

As a consequence of the consistency of the Tyler’s esti-
mator, the resulting adaptive test statistic ΛANMF will
have approximately a beta(1,N-1) distribution for suffi-
ciently large M, i.e., ΛANMF is asymptotically CFAR w.r.t.
Σ, as desired [5]. Further discussions on the asymptotic
properties of the ΛANMF can be found in [45] and [46].

5 Simulation results
In this section, we integrate through extensive numerical
simulations, the theoretical findings on scatter matrix es-
timation and adaptive detection discussed in previous
sections. In all the simulation results reported here, the
true scatter matrix is assumed to be [Σ]i,j = ρ|i − j|, for i, j
= 1,2,…,N. Note that ρ is the clutter one-lag correlation
coefficient that is assumed to be real. Under this as-
sumption, Σ is real, as well. To exploit this assumption,
in all numerical simulations, we took the real part of the
scatter matrix estimators. The extension to the more
general case of complex scatter matrix will be investi-
gated in future works.
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5.1 Estimation performance
In this section, we compare the estimation performance
of the matched CML-MoM estimator, the recursive
CML-WMoM estimator, and the robust C-Tyler estima-
tor with the CCRB, while the performance of the mis-
matched CMML estimator are compared with the
CMCRB. In order to have a global performance index
(i.e., an index that is able to take into account the errors
made in the estimation of all the covariance entries), we
define ε as the Frobenius norm of the mean square error
(MSE) matrix of the estimator [47]:

ε≜ E vecs Σ̂
	 


−vecs Σð Þ	 

vecs Σ̂

	 

−vecs Σð Þ	 
Tn o��� ���

F
;

ð67Þ
where Σ̂ is an estimate of the true covariance matrix Σ
(e.g., εC ‐Tyler, εCML ‐MoM, εCML ‐WMoM, and εCMML) and
Ak kF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr ATA
	 
q

is the Frobenius norm of matrix A. As
performance bounds, the following quantity are plotted:

εCCRB≜ CCRB Σð Þk kF ; εCMCRB≜ CMCRB Σð Þk kF :
ð68Þ

The accuracy on the estimate of the shape λ and scale
η parameters in the matched case and of the average
power σ2 in the mismatched case is measured through
their MSE, which is compared with the CCRB and the
CMCRB, respectively. To calculate the estimation accur-
acy, we run 105 Monte Carlo trials. The simulation
results have been organized as follows:

1. Estimation accuracy as function of the number M of
available data vectors (Figs. 1, 2, 3, and 4). Simulation
parameters: ρ = 0.8, N = 16, λ = 3, η = 1, K = 4.

2. Estimation accuracy as function of the shape
parameter λ (Figs. 5, 6, 7, and 8). Simulation
parameters: ρ = 0.8, N = 16, M = 10N, η = 1, K = 4.

3. Estimation accuracy as function of the one-lag
correlation coefficient ρ (Figs. 9, 10, 11, and 12).
Simulation parameters: N = 16, M = 10N, λ = 3,
η = 1, K = 4.

Based on the numerical analysis, we observe that:

� Regarding the scatter matrix estimation, the robust
C-Tyler estimator is an “almost” efficient estimator,
even if it is not the most efficient estimator for
t-distributed data, in fact when λ increases, the
other two estimators achieve better performance.
The MSE εC ‐ Tyler is close to the CCRB especially
for small λ (see Figs. 1, 5, and 9). In particular,
its performance is robust, i.e., it is not affected
by the value of the shape parameter λ (see Fig. 5),
even if it is not efficient for large λ.

� Regarding the CMML estimator, it always achieves
the CMCRB, both for the scatter matrix estimation
and for the estimation of the average power (see
Figs. 1, 5, 8, 9, and 12). The CMML presents a small
bias on the estimation of the scatter matrix and
then, Σ̂CMML is not a MS-unbiased estimator [9]
(at least in the finite sample regime). For this reason,
εCMML is in general slightly below the CMCRB. The
loss in estimation accuracy due to the mismatch is
particularly high for extremely heavy-tailed data, i.e.,
when λ is close to 0 (see Fig. 5). When λ→ 0, the
CMCRB rapidly increases while the CCRB is quite
independent of λ. On the other hand, when λ→∞,
the CMCRB and the CCRB coincide, as expected, and
the performance of the CMML estimator converge to
that of the CML-MoM and CML-WMoM estimators.

� Quite surprisingly, even if the MoM-based estimators
fail to provide an accurate estimate of λ as it increases
(see Fig. 6), the MSE of the CML-MoM and
CML-WMoM estimators achieve the CCRB, as
shown in Fig. 5.

� Regarding the estimation of λ and η, the recursive
WMoM estimator always outperforms the classical
MoM estimator (see Figs. 2, 3, 7, 10, and 11), even
though it does not achieve the CCRB. In particular,
as shown in Fig. 10, the MSE of the WMoM is
independent from the value of ρ, while this is not
the case for the MSE of the classical MoM estimator.
This desirable behavior of the WMoM estimator is
due to the whitening operation that makes each
entry of the data vectors mutually uncorrelated,
as discussed in Section 3.1.

Fig. 1 MSE indices εC-Tyler, εCML-MoM, εCML-WMoM, and εCMML and
bounds εCCRB and εCMCRB as function of the number M of available
data vectors
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5.2 Detection performance
In this section, the detection performance of the
matched LTD detector, which exploits either the CML-
MoM or the CML-WMoM estimators, the mismatched
Kelly’s GLRT, and the robust ANMF, that relies on the
robust C-Tyler's estimator, are investigated. In particular,
we analyze:

1. The probability of false alarm (PFA) as function of
the one-lag coefficient ρ (Fig. 13). This allows us to
verify the CFAR property of the ΛLTD ‐CML ‐MoM

(Eq. (59)), ΛLTD ‐ CML ‐WMoM (Eq. (60)), ΛKelly (Eq.
(63)), and ΛANMF ‐ C ‐ Tyler (Eq. (66)) w.r.t. the
correlation shape. Simulation parameters: N = 16,

M = 3N, λ = 3, η = 1, K = 4. The detection thresholds
have been set to achieve a nominal PFA of 10−3.

2. The probability of false alarm (PFA) as function
of the shape parameter λ of the true complex
t-distribution, i.e., for different spikiness levels
(Fig. 14). This is important, since it highlights
the CFARness of the four detectors w.r.t. the
non-Gaussianity level of the data. Simulation
parameters: N = 16, M = 3N, ρ = 0.8, η = 1, K = 4.
The detection thresholds have been set to achieve
a nominal PFA of 10−3.

3. The receiver operating characteristic (ROC) curves
(Fig. 15). The simulation parameters are the
following: N = 16, M = 3N, ρ = 0.8, λ = 3, η = 1, and
K = 4. Moreover, α∼CN 0; σ2α

	 

where σ2α is set to have

signal to noise power ratio (SNR) equal to 3 dB.

Fig. 2 MSE and CCRB on the estimate of the shape parameter λ as
function of the number M of available data vectors

Fig. 3 MSE and CCRB on the estimate of the scale parameter η as
function of the number M of available data vectors

Fig. 4 MSE of the CMML estimator of σ2 and CMCRB as function of
the number M of available data vectors

Fig. 5 The MSE indices εC-Tyler, εCML-MoM, εCML-WMoM, and εCMML and
the bounds εCCRB and εCMCRB as function of the shape parameter λ
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As we can see from Fig. 13, all the analyzed detectors
are CFAR with respect to ρ. Their PFA curves are con-
stant and close to the nominal value 10−3. A different
behavior can be observed in Fig. 14, where the PFA
curves have been evaluated as function of λ. It can be
noted that only ΛANMF ‐C ‐ Tyler is a CFAR detector w.r.t.
the data spikiness, while the PFA of the other detectors
change with λ. Finally, in Fig. 15, the ROC curves of
ΛLTD ‐CML ‐MoM, ΛLTD ‐CML ‐WMoM, ΛKelly ' s GLRT, and
ΛANMF ‐C ‐Tyler are shown. For the sake of comparison,
we evaluated also the ROC of the clairvoyant optimum
detector for the t-distributed data, i.e., the ΛLTD in Eq.
(58) where Σ, λ, and η are perfectly known. As we can
see, the performance of ΛLTD ‐CML ‐MoM, ΛLTD ‐CML ‐

WMoM, and ΛANMF ‐C ‐ Tyler are close to that of the clair-
voyant detector ΛLTD, while ΛKelly ' s GLRT undergoes
some detection loss for relatively low value of the PFA.
In particular, the fact that the performance of the robust
ΛANMF ‐C ‐Tyler is close to the one of the matched detec-
tors, ΛLTD ‐CML ‐MoM and ΛLTD ‐CML ‐WMoM, suggests
that the detection loss due to the robustness is small.
However, it must be highlighted again that we are
considering a particular scenario in which the clutter
covariance matrix is assumed to be real and full rank.
Moreover, due to the high computational load of the
Monte Carlo simulations, the detection performance of
the proposed detectors has been evaluated only for a PFA
greater that 10−5. It would be very useful to investigate

Fig. 6 MSE and CCRB on the estimate of the shape parameter λ as
function of λ

Fig. 7 MSE and CCRB on the estimate of the scale parameter η as
function of the shape parameter λ

Fig. 8 MSE of the CMML estimator of σ2 and CMCRB as function of
the shape parameter λ

Fig. 9 The MSE indices εC-Tyler, εCML-MoM, εCML-WMoM, and εCMML and
the bounds εCCRB and εCMCRB as function of the one-lag correlation
coefficient ρ
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the detection performance at an operative value of PFA,
e.g., below 10−5.

6 Conclusions
This paper focused on two inference problems, the scat-
ter matrix estimation and the adaptive detection of radar
targets in complex t-distributed data. Three different ap-
proaches have been investigated and compared: the
matched, the mismatched, and the robust approaches.
Regarding the classical matched approach, we analyzed
the performance of the CML estimator for the scatter
matrix, when the shape and scale parameters are esti-
mated through the low-complexity and suboptimal
MoM method (CML-MoM) and a recursive improve-
ment of it (CML-WMoM). We found that both the

CML-MoM and the CML-WMoM estimators achieve
the CCRB, while the CML-WMoM estimator outper-
forms the CML-MoM for the estimation of the shape
and scale parameters. Then, the previous two estimators
have been adapted to implement the LTD, which is the
GLRT decision rule in t-distributed data. Numerical sim-
ulations show that the performance of the adaptive LTD
are very close to the clairvoyant LTD detector, but it is
not CFAR w.r.t. the variation of data spikyness. Regard-
ing the mismatched approach, we proved that the
CMML estimator derived under the assumption of
Gaussian-distributed data converges almost surely to the
true scatter matrix and to the true (t-distributed) data
power, so it can be applied for inference problems that
require the knowledge of these two quantities. Moreover,

Fig. 10 MSE and CCRB on the estimate of the shape parameter λ as
function of ρ

Fig. 11 MSE and CCRB on the estimate of the scale parameter η as
function of ρ

Fig. 12 MSE of the CMML estimator of σ2 and CMCRB as function of
the one-lag correlation coefficient ρ

Fig. 13 Probability of false alarm vs ρ
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its efficiency with respect to the CMCRB has been
shown and its performance loss with respect to the
matched case discussed. The CMML estimator of the
scatter matrix has been used in the “mismatched” Kelly’s
GLRT. Numerical simulations proved that Kelly’s GLRT
is not CFAR and presents large performance loss for
small values of PFA. Finally, the min-max robust C-Tyler
scatter matrix estimator and the adaptive version of the
robust NMF detector, that exploits the C-Tyler estima-
tor, have been introduced and analyzed. In particular,
our numerical results demonstrated that Tyler’s estima-
tor is an “almost” efficient estimator w.r.t. the CCRB and
its estimation accuracy is independent on the value of
the shape parameter. More importantly, the resulting
ANMF is CFAR w.r.t. the shape parameter, i.e., w.r.t. the
level of data spikiness, and has only a small detection loss

w.r.t. the clairvoyant LTD. To summarize, the results
discussed in this paper show that the robust approach,
thanks to its generality, robustness to misspecification,
and small estimation and detection losses, seems to be the
a good choice in practical applications.
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