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Abstract

In this study, to detect person-borne concealed threats in range profiles under the circumstance of unknown clutter,
we propose a binary integration nonparametric detection method based on the generalized sign (GS) detector for
range-spread targets in a distributed terahertz radar network (DTRN). In the detection, the length of range-spread
targets and the number of dominant scatterers on range-spread targets are considered and adaptively estimated.
Furthermore, the GS detection method is applied to maintain a constant false alarm rate (CFAR) under the
circumstance of unknown clutter. The detection performance of the proposed method for single terahertz radar and
DTRN are both examined with the data synthesized by real range-spread targets data and real clutter data.
Experimental results show that the proposed method is effective, and for a given false alarm probability, the DTRN
exhibits better detection performance than the single terahertz radar.

Keywords: Binary integration detection, Nonparametric, Range-spread targets, Distributed terahertz radar network,
Unknown clutter

1 Introduction
Given its short detection range and penetrativity, tera-
hertz radar is mainly applied in the fields of security
checks and anti-terrorism with high-resolution screening
imaging at a stand-off distance [1–3]. Meanwhile, tera-
hertz radar can also detect concealed threats in range
profiles (the real range profile of a metallic pistol model
beneath clothing is obtained by 0.34THz radar, as shown
in Fig. 1). Compared with high-resolution screening imag-
ing, the concealed threat detection in range profiles can
observe a large area and requires a short time. However, as
the viewing angle of a single radar is limited, a radar net-
work is needed in a large-scale sence. As shown in Fig. 2,
a circular terahertz radar network is adopted to observe a
360◦ view of the scene further. A certain number of sen-
sors that observe the same scope in the sence constitute a
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DTRN for distributed detection. The radar network con-
sists of several DTRNs, which monitor concealed threats
in all aspects.
Concealed threats are range-spread targets for high-

resolution radar. In order to solve the so-called col-
lapsing loss which will lead to a performance loss for
range-spread targets detection [4], many detectors are
presented. Assuming the a priori scatterer density of
range-spread targets, a detector dependent of spatial
density is investigated [5]. Given that the scattering char-
acteristics of range-spread targets are significantly differ-
ent, completing the aforementioned method is difficult.
When the scattering geometry of range-spread targets
is unknown, the adaptive detectors that are based on
the improved one-step or two-step generalized likelihood
ratio test are proposed under the circumstance of homo-
geneous or inhomogeneous clutter [6–12]. However, it is
difficult to derive a definite distribution model to repre-
sent the practical clutter in concealed threat detection,
which may consist of radar echoes of the human body,
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Fig. 1 Real high-resolution range profile of a metallic pistol model
beneath clothing

clothing, the ground, and thermal noise. Since those afore-
mentioned detectors are incapable of maintaining the
constant false alarm rate (CFAR) to detect concealed
threats, nonparametric detectors for range-spread targets
are needed. While the traditional nonparametric detec-
tors and their improved counterparts are presented for
point target or multiple targets [13, 14]. Research on
nonparametric detection for range-spread targets under
the circumstance of unknown clutter has rarely been
reported. Therefore, a nonparametric detector that con-
siders the knowledge about dominant scatterers on range-
spread targets is investigated in this study.
The binary integration nonparametric detector based

on the GS detector (BINGS) for range-spread targets in

Fig. 2 Diagram of monitoring of concealed threats

DTRN is presented to satisfy the aforementioned practical
application requirements. Given that the length of range
cell samples is larger than that of range-spread targets,
the sliding window detection method is applied to the
local detectors. First of all, the length of the sliding win-
dow which is the possible length of range-spread targets
is estimated via the maximal signal to clutter ratio (SCR)
rule [15]. What is more, the number of dominant scatter-
ers within the sliding window is selected as the threshold
for binary integration detection, which is estimated via
Otsu’s method [16]. Then, after the GS detection of each
scatterer within the sliding window, binary integration
detection is performed. Finally, the overall decision of
DTRN is gained following the m-out-of-n fusion rule.
The detection performance of single terahertz radar and
DTRN is analyzed under the circumstance of unknown
clutter by using the data synthesized by real range-spread
targets data and real clutter data. Experimental results
show that the proposed method is effective, and for a
given false alarm probability, the DTRN exhibits better
detection performance than the single terahertz radar.
This paper is organized as follows. In Section 2, the

structure of the BINGS detector in DTRN is described. In
Section 3, the mathematical processes related to detection
are derived. In Section 4, the experiments are described
and the results are analyzed. In Section 5, the comments
and conclusions are presented.

2 Detector structure
The BINGS structure is shown in Fig. 3. Terahertz radar
transmits the linear frequency modulation signal with
large bandwidth. After dechirping of radar echoes, range
cell samples are obtained. Because the length of range cell
samples is larger than that of range-spread targets, the
sliding window detection method is used for range cell
samples.
First of all, the length of the sliding window which is

the possible length of range-spread targets is estimated
via the maximal SCR rule. Then, utilizing N reference
cells surround the sliding window, the test statistic of
the GS detection TGS is constructed for each scatterer
within the sliding window. At the same time, the first
threshold TGSP for TGS corresponding to the false alarm
probability PfGS is calculated by Eq. (11). As a result, the
sequence of “0” and “1” decisions are output by com-
paring TGS with TGSP for each scatterer. So far, the GS
detection for each scatterer within the sliding window
is completed. In addition, the second threshold QOPT is
adaptively estimated by Otsu’s method after the sliding
window is determined, where QOPT is the number of
dominant scatterers within the sliding window. Finally,
the local binary decision of single detector is obtained
by comparing the sum of the sequence of “0” and “1”
with QOPT.
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Fig. 3 Flow chart of the BINGS

The block diagram of the DTRN data fusion is shown
in Fig. 4. DTRN is formed from n local BINGS detec-
tors which are considered independent and a data fusion
center. The local binary decisions are transmitted from
the local detectors to the data fusion center. The overall
decision is obtained following them-out-of-n fusion rule.

3 Theory andmethodology
3.1 Length of range-spread targets estimation
Regardless of whether the range-spread targets or the
attitude angles of the same range-spread target are

different, the length of range-spread targets varies signif-
icantly, which has an important effect on the detection
performance. Here, the length of range-spread targets
will be adaptively estimated via the maximal SCR
rule [15].
The sliding window detection method is used for the

range-spread targets detection. The length of range cell
samples denoted by x(i), i = 1, 2, · · · ,Z is Z. The slid-
ing window is w = [ k, k + L − 1], where k and L are the
starting range cell and the length of the sliding window,
respectively. Assuming that the entire range-spread target
is inside the sliding window and all the range cells outside

Fusion center
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Fig. 4 Block diagram of DTRN data fusion
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of the sliding window are clutter, the average SCR can be
defined as follows:

ASCR(k, L) =
1
L

k+L−1∑

i=k
|x(i)|2

1
Z−L

(
k−1∑

i=1
|x(i)|2 +

Z∑

i=k+L
|x(i)|2

) . (1)

The starting range cell k and the length L of range-
spread targets are unknown. While the possible minimal
length Lmin and maximal length Lmax of range-spread
targets are known.
The window slides over the range profiles. For each

starting range cell k, the width of the sliding window�w is
adjusted between Lmin and Lmax. The length of the sliding
window can be estimated by the maximal SCR rule

L̄ = arg
(

max
Lmin≤L≤Lmax,1≤k≤Z−L

(ASCR(k, L))

)

(2)

where L̄ is the estimation value of the possible number of
range cell samples that range-spread targets occupy.

3.2 Number of dominant scatterer estimation
The radar echo energy of range-spread targets is mainly
distributed in dominant scatterers. Hence, the distribu-
tion of dominant scatterers on range-spread targets has an
important effect on the detection performance. The num-
ber of dominant scatterers within the sliding window is
used as the threshold for binary integration detection.
Similar to Otsu’s method initially utilized in picture pro-

cessing [16], the number of dominant scatterers within the
sliding window is adaptively estimated. When the vari-
ance between various classifications is maximal, the range
cells within the sliding window are divided into domi-
nant scatterers and the others (small scatterers that can be
regarded as clutter and/or clutter) according to amplitude.
And in this situation, the probability of false segmentation
is minimal.
The amplitude of L range cells inside the sliding window

are normalized and sorted in descending order. The new
sequence x′(i) is obtained as follows:

x′(1) ≥ x′(2) ≥ · · · ≥ x′(L) > 0 , (3)

where x′(i) is divided into two classes, namely, C1 (domi-
nant scatterers) andC2 (small scatterers that can be regard
as clutter and/or clutter) by a threshold Ttb. The average
amplitude of C1 and C2 are given by

⎧
⎪⎨

⎪⎩

u1 = 1
L1

∑

i∈C1

x′(i)

u2 = 1
L2

∑

i∈C2

x′(i) , (4)

where L1 and L2 are the sample number of C1 and C2,
respectively. The average amplitude of x′(i) is denoted by
u, and the variance between C1 and C2 is denoted by σ 2

b .

u = ω1 ∗ u1 + ω2 ∗ u2 (5)

σ 2
b = ω1 ∗ (u1 − u)2 + ω2 ∗ (u2 − u)2 , (6)

where ω1=L1/L and ω2=L2/L. Plugging Eqs. (4) and (5)
into Eq. (6) yields

σ 2
b = L1 ∗ L2

L2

⎛

⎝ 1
L1

∑

i∈C1

x′(i) − 1
L2

∑

i∈C2

x′(i)

⎞

⎠

2

. (7)

The optimal threshold Tb that maximizes σ 2
b can be

selected as follows:

Tb = arg
(

max
Ttb∈{x′(i),i=1,2,··· ,L−1}

{
σ 2
b
}
)

. (8)

Tb is obtained by searching the one-dimensional param-
eter space. Then, the number of scatterers whose ampli-
tute is greater than or equal to Tb within the sliding
window is estimated as the optimal threshold QOPT .

3.3 Test statistic of single detector
yj,p (j = 1, 2, · · · ,M, p = 1, 2, · · · , L) denotes the range cell
samples under the test, whereM is the number of integra-
tion pulses. xi,q (i = 1, 2, · · ·M, q = 1, 2, · · · ,N) denotes
the reference cell samples, where N is the number of ref-
erence cells. The test statistic of the GS detection for each
range cell within the sliding window is given by

TGS =
M∑

j=1
rj =

M∑

j=1

N∑

i=1
u

(
yjp − xji

)
, (9)

where rj =
N∑

i=1
u

(
yjp − xji

)
is the rank of the single

scatterer under test, u
(
yjp − xji

) =
{
1, yjp ≥ xji
0, yjp < xji

.

The corresponding detection strategy is
{
TGS ≥ TGSP, scatterer
TGS < TGSP, no scatterer , (10)

where TGSP is the threshold for the single scatterer GS
detection that corresponds to the false alarm probability
PfGS , which is derived as follows [17]:

PfGS = Pr (TGS ≥ TGSP|H0)

=
MN∑

k=TGSP

Pr (TGS = k|H0), (11)

where the scatterer is absent under hypothesis H0 and the
scatterer is present under hypothesis H1.
The probability density distribution function of clut-

ter is c(t) and that of clutter plus the signal is s−c(t).
Assuming that the clutter samples are independent and
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identically distributed (i.i.d.), the probability density dis-
tribution of rj = r can be expressed as

Pr(rj = r) = Cr
N

∫

cr(t)[1 − c(t)]N−rd sc(t) , (12)

where r = 0, 1, · · · , N .
When the range cell under test is the pure clutter,

Eq. (12) can be simplified as

Pr(rj = r) = 1
N + 1

, 0 ≤ r ≤ N . (13)

The generating function of rj is

GSj(t) =
N∑

r=0

(
1

N + 1

)

tr . (14)

rj(j = 1, 2, · · · ,M) is an i.i.d. random variable. The gener-
ating function of TGS is given by

GS(t) = [
GSj(t)

]M (15)

Then,

Pr [TGS = k|H0] = 1
k!
dkGS(t)

dtk

∣
∣
∣
∣
∣
t=0

(16)

Equation (16) can be rewritten as

Pr [TGS = k|H0] = 1
(N + 1)M

•
dk

( N∑

r=0
tr

)M

k! dtk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
t=0

. (17)

The second term in Eq. (17) is equivalent to the coeffi-
cient of tk .
Equation (17) can be interpreted by combination and

mathematical statistics. Assuming thatM sets are present
and every set is {0, 1, · · · , N}, one integer is taken from
each set and M integers are obtained. (N + 1)M is equiv-
alent to the number of all the possible combinations. The
second term is equivalent to the number of combinations
in which the sum of these M integers is k. Therefore,
Pr [TGS = k|H0] is the probability of TGS = k under
hypothesis H0.
If the values of M and N are set, then the relation-

ship between PfGS and TGSP can be determined. Table 1
shows the relationship between PfGS and TGSP under the
condition ofM = 4 and N = 12.
For a given false alarm probability PfGS , TGSP can be

calculated. Then, the detection probability of the single
scatterer GS detection can be given by

PdGS = Pr(TGS ≥ TGSP|H1)

=
MN∑

k=TGSP

Pr(TGS = k|H1)
. (18)

Table 1 Relationship between PfGS and TGSP under the condition
ofM = 4 and N = 12

PfGS 0.000035 0.000175 0.000525 0.0012

TGSP 48 47 46 45

PfGS 0.0025 0.0044 0.0074 0.0116

TGSP 44 43 42 41

PfGS 0.0173 0.0250 0.0350 0.0478

TGSP 40 39 38 37

PfGS 0.0637 0.0832 0.1064 0.1437

TGSP 36 35 34 33

The test statistic of the BINGS detetion is expressed as
follows:

TBGS =
L∑

p=1
sgn (TGS − TGSP)

=
L∑

p=1
sgn

(
M∑

j=1

2N∑

i=1
u(yjp − xji) − TGSP

) , (19)

where sgn(·) denotes the sign function.
The false alarm probability PfBGS of the BINGS detection

is derived as follows:

PfBGS =
L∑

k=Qopt

Ck
L P

k
fGS(1 − PfGS)

L−k . (20)

PfBGS is irrelevant to the distribution of clutter. Mean-
while, the threshold for the test statistic of the BINGS
detection is independent of the distribution of clutter.
Therefore, this detector is a nonparametric detector.
The detection probability PdBGS of the BINGS detection

is derived as follows:

PdBGS =
L∑

k=Qopt

Ck
L P

k
dGS(1 − PdGS)

L−k (21)

3.4 Distributed terahertz radar network
The parallel structure is adopted in DTRN, which is
formed from n local detectors (the BINGS detector) and
a data fusion center. The local binary decisions are trans-
mitted from the local detectors to the data fusion center.
The overall decision is obtained on the basis of them-out-
of-n fusion rule [17]. Assuming that the local detectors
have the same performance characteristic, the false alarm
probability of each detector is PfBGS and the detection
probability of each detector is PdBGS . When the m-out-of-
n fusion rule is used, the overall false alarm probability of
DTRN is given by

PF =
n∑

k=m
Ck
nPkfBGS(1 − PfBGS)

n−k (22)
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and the overall detection probability of DTRN is given by

PD =
n∑

k=m
Ck
nP

k
dBGS(1 − PdBGS)

n−k (23)

If the value of m is 1, then the m-out-of-n fusion rule is
the OR fusion rule. If the value of m is n, then the m-out-
of-n fusion rule is the AND fusion rule.

4 Experiments and results
The terahertz radar system based on a solid-state source
is shown in Fig. 5. The system operates at 0.34THz with a
bandwidth of 20GHz which is adjustable [18].
The range-spread target is a metallic pistol model whose

length is 14 cm, as shown in Fig. 1. The metallic pistol
model is placed on the foam platform at a distance of 5m
off the radar. The high-resolution range profiles of the
metallic pistol model in different radar views are markedly
different, as shown in Fig. 6. The range profiles of the tar-
get are extracted and occupy 33, 28, and 36 range cells in
radar views 1, 2, and 3 respectively.
The range profiles of a person in 360◦ are considered

the clutter data (the ground clutter and thermal noise are
included). The range profiles of the 10,000th, 20,000th,
30,000th, and 40,000th pulse in the clutter data are shown
in Fig. 7. Every range profile includes 200 range cells.
The clutter is related to the distribution of scatterers on a
person.

Fig. 5 Image of the 0.34-THz radar system

Rayleigh distribution, gamma distribution, G0 distri-
bution, K distribution, Weibull distribution, logarithmic
normal distribution, and Nakagami distribution curves
are fitted against real clutter data, as shown in Fig. 8.
The distribution of real clutter cannot be effectively rep-
resented by any of these distribution models. By com-
parison, the distribution of real clutter data fits the G0
distribution model better.
The radar echoes are synthesized by real range-spread

targets data and real clutter data.M range profiles are ran-
domly selected from the same group of real range-spread
targets data. The range profiles of the range-spread tar-
get are extracted from theseM range profiles, and each of
them is normalized. Meanwhile, M sequential range pro-
files of clutter are randomly selected from real clutter data
and each of them is normalized. M range profiles of the
range-spread target and M range profiles of clutter are
synthesized into M radar echo pulses. The SCR of each
synthesized radar echo pulse is calculated by the following
formula:

SCR = 10lg

⎛

⎜
⎜
⎜
⎜
⎝

1
L

L∑

p=1

∣
∣C0yjp

∣
∣2

1
Z−L

(
K0−1∑

i=1

∣
∣xji

∣
∣2 +

Z∑

i=K0+L

∣
∣xji

∣
∣2

)

⎞

⎟
⎟
⎟
⎟
⎠
, (24)

where K0 is the starting position in which the range-
spread target is embedded in the clutter pulse, j =
1, 2, · · · ,M denotes the jth pulse. The synthesized data in
different single-pulse SCRs are obtained by adjusting the
value of C0, where C0 is the overall scaling factor for the
amplitude of range-spread targets. C0 does not influence
the distribution of scatterers on range-spread targets. As
shown in Fig. 6, the lengths of the range-spread target in
different radar views are estimated by the maximal SCR
rule and the estimation values are 31, 16, and 33, respec-
tively. The number of corresponding dominant scatterers
is 7, 5, and 9 respectively. It means that scatterers whose
normalized amplitude is more than 0.5 are distinguished
as dominant scatterers. Otsu’s method is proved to be
a valid approach to estimate the number of dominant
scatterers on range-spread targets.
When the number of integration pulses and reference

cells are different, the detection probability versus the
single-pulse SCR for the BINGS detection and the binary
integration parametric detector based on cell-averaging
(CA)-CFAR (BIPCA-CFAR) detection for the false alarm
probability PfBGS = 10−8 are shown in Fig. 9. M is the
number of integration pulses. N is the number of ref-
erence cells. The pulse repetition frequency is 1000Hz,
and the pulse repetition interval is 1ms. Considering the
slow movement of people, the range between the radar
and range-spread targets barely varies in a two-pulse or
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Fig. 6 Range profiles of the metallic pistol model in different radar views. a Range profile in radar view 1. b Range profile in radar view 2. c Range
profile in radar view 3

four-pulse repetition interval. Two or four pulses are con-
sidered for integration, which would not lead to range cell
migration of range-spread targets. Therefore, setting M
as 2 or 4 is reasonable. The BIPCA-CFAR detection is
similar to the BINGS detection. The differences are that
the CA-CFAR detection is used for each range cell within
the sliding window and the distribution of real clutter
data is assumed to be the G0 distribution model in the
BIPCA-CFAR detection.
The BIPCA-CFAR detection is incapable of maintaining

CFAR when the assumed distribution model of clutter is
inconsistent with the distribution of real clutter, as shown
in Fig. 9a. The detection performance of the BINGS

detector is better, as shown in Fig. 9b. Comparing the
detection performance curves in the case of M = 4, N =
12 with the case of M = 2, N = 12 for the BINGS detec-
tor, more integration pulses result in the improvement in
the detection performance. However, a high number of
pulse integrations is not recommended, which will lead
to range cell migration. Comparing the detection perfor-
mance curves in the case of M = 2, N = 24 with the
case of M = 2, N = 12 for the BINGS detection, a
high number of reference cells leads to degradation of
the detection performance. Thus, the number of integra-
tion pulses and reference cells should be carefully chosen
on the basis of the practical application environment. As
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Fig. 7 Range profiles of a person in different degrees. a Range profile of the 10,000th pulse. b Range profile of the 20,000th pulse. c Range profile of
the 30,000th pulse. d Range profile of the 40,000th pulse
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Fig. 8 Clutter data fit to different distribution models. Amplitude distribution of clutter after the noncoherent integration of a the 10,000th,
10,001th, 10,002th, and 10,003th pulse; b the 20,000th, 20,001th, 20,002th, and 20,003th pulse; c the 30,000th, 30,001th, 30,002th, and 30,003th
pulse; and d the 40,000th, 40,001th, 40,002th, and 40,003th pulse

shown in Fig. 9b, the detection performance of the BINGS
detector in the case ofM = 4, N = 12 is superior.
We assume that DTRN consists of 3 terahertz radars

and that the DTRN observes the same range-spread tar-
get from different radar views. The BINGS detector is
used as the local detector. The single-pulse SCR of these
local detectors are equal. The other parameters are set as
PF = 10−15,M = 4, and N = 12. Figure 10 represents the

detection performance curves of single radar and DTRN
for different fusion rules. The detection performance of
DTRN for the AND fusion rule and single radar is poorer
than that of DTRN for the 2-out-of-3 fusion rule and the
OR fusion rule. The detection probability of DTRN for the
AND fusion rule remains at approximately 0.93 when the
single-pulse SCR is high. The result shows that the prac-
tical false alarm probability of DTRN for the AND fusion

Fig. 9 Detection performance of two detectors with different numbers of integration pulses and reference cells. a Detection performance curves of
the BIPCA-CFAR detector. b Detection performance curves of the BINGS detector
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Fig. 10 Detection performance of single radar and DTRN for different
fusion rules

rule is higher than the theoretical false alarm probability
(the false alarm probability is irrelevant to the single-pulse
SCR). The theoretical false alarm probability must be set
lower to control the practical false alarm probability.
Given the different detection ranges and radar views,

the single-pulse SCR of the local detectors are consistently
different. We assume that DTRN consists of 3 terahertz
radars and that the DTRNobserves the same range-spread
target from different radar views. The BINGS detector is
used as the local detector. The single-pulse SCR of the
two detectors are equal, and the single-pulse SCR of the
third detector is less than that of those two detectors
by 5 dB. The other parameters are set as PF = 10−15,
M = 4, and N = 12. Figure 11 shows the detection per-
formance curves of DTRN for different fusion rules when
the SCR of one local detector is different. The horizon-
tal axis represents the single-pulse SCR of two detectors
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Fig. 11 Detection performance of DTRN when the SCR of one
detector is different

that have equivalent single-pulse SCR. By comparing the
detection performance curves in Fig. 11 with those in
Fig. 10, the detection performance loss of DTRN for the
AND fusion rule is determined to be more than 4.5 dB.
In addition, the detection performance loss of DTRN for
the 2-out-of-3 fusion rule is approximately 3 dB, and the
detection performance loss of DTRN for the OR fusion
rule is less than 1 dB. The overall decision for the AND
fusion rule relies on all the local binary decisions. When
the SCR of one of three detectors worsens, the detection
performance of DTRN for the AND fusion rule signifi-
cantly deteriorates. When the SCR of the local detectors
are highly different, the OR fusion rule is the optimal
fusion rule.

5 Conclusions
In this study, a binary integration nonparametric detec-
tion method based on the GS detector for range-spread
targets in DTRN is proposed to detect person-borne
concealed threats in range profiles. Experimental results
show that the BINGS detector in DTRN is capable of
not only observing range-spread targets from multiple
views but also achieving effective detection for concealed
threats under the circumstance of unknown clutter. If the
single-pulse SCR of the local detectors are almost equal,
then the m-out-of-n fusion rule is more appropriate for
use. Meanwhile, when the single-pulse SCR of the local
detectors are markedly different, using the OR fusion rule
is recommended. The reasonable choice of the false alarm
probability as well as the number of integration pulses
and reference cells based on the practical application
environment is a particular area of interest.
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