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Abstract

An autonomous method for recognizing radar pulse modulations based on modulation components analysis is
introduced in this paper. Unlike the conventional automatic modulation classification methods which extract
modulation features based on a list of known patterns, this proposed method classifies modulations by the

existence of basic modulation components including continuous frequency modulations, discrete frequency codes
and discrete phase codes in an autonomous way. A feasible way to realize this method is using the features of
abrupt changes in the instantaneous frequency rate curve which derived by the short-term general representation of
phase derivative. This method is suitable not only for the basic radar modulations but also for complicated and hybrid
modulations. The theoretical result and two experiments demonstrate the effectiveness of the proposed method.
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Instantaneous frequency rate

1 Introduction

Pulse modulation classification plays an essential role in
modern intercept receivers for electronic warfare (EW)
applications such as threat recognition and analysis, con-
struction of effective jamming responses and radar emit-
ter identification [1]. In the EW context, modulations on
radar pulses are divided into two classes, the intentional
modulation on pulse (IMOP) and the unintentional
modulation on pulse (UMOP). The feature of UMOP is
usually applied for the purpose of specific emitter identifi-
cation while the feature of IMOP is mainly used to collect
intelligence of a hostile radar system [2]. Pulse modulation
classification is a technique aiming at recognizing the
intentional intra-pulse modulations of radar signals and is
becoming more and more difficult because of the ever-
increasing number of emitters and low probability of
intercept (LPI) radar waveforms that have appeared in
modern electromagnetic environment [3]. The newly
emerging radar systems, such as the cognitive radar [4],
the waveform-agile radar [5], and the multiple-input
multiple-output (MIMO) radar [6, 7], are changing their
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operation modes and bringing waveforms with various
kinds of complicated IMOPs. Apart from that, some wave-
forms with hybrid IMOPs, such as the discrete phase
codes on linear frequency modulation (LFM) [8, 9], mul-
tiple frequency-shift keying (FSK) waveform outperformed
by a chirp modulation [10], and the combination of FSK
and phase-shift keying (PSK) modulations [11], have also
been reported. These complicated and hybrid IMOPs
are posing a particular threat to modern EW intercept
receivers.

However, nearly all of the existing pulse modulation
classification algorithms are realized based on some
known emitter databases and are suitable only for a
certain group of IMOPs [12]. For example, an atomic
decomposition method employing chirplet dictionary
was proposed in [13], and it can realize the automatic
detection and classification of radar pulses with LFM,
PSK, and FSK modulations. An supervised classification
system achieving overall correct classification rate of
98 % at signal-to-noise ratio (SNR) of 6 dB based on
multilayer perception networks was proposed in [14]
and eight classes of radar signals are classified. Algo-
rithms based on some time-frequency distributions such

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-016-0394-3&domain=pdf
http://orcid.org/0000-0002-6259-6597
mailto:wangpei1128@foxmail.com
http://creativecommons.org/licenses/by/4.0/

Wang et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:98

as the ambiguity function (AF) [15], Zhao Altas and
Marks (ZAM) representations [16], the Rihacek distribu-
tion and the Hough transform [17], were also applied to
extract modulation features for five kinds of radar
pulses. These existing algorithms work effectively when
the radar IMOPs are in the list of their databases, but
fail when they are faced with some complicated or un-
known modulated pulses.

In this paper, we try to classify radar pulse modulations
using an autonomous method. A two-stage classification
procedure which contains a “modulation family classifica-
tion” and an “accurate classification” is proposed. The
former part works autonomously based on a modulation
components analysis (MCA) method and can extract par-
tial information even when the IMOP of the radar pulse is
not in the knowledge database. The latter part is a supple-
mentary part to classify an IMOP in detail and is exten-
sible. The paper is organized as follows. Section 2 gives a
universal category of IMOPs and describes signal models
using the instantaneous frequency rate (IFR) curves.
Section 3 describes the whole classification procedure
of the proposed method. Two experiments to demon-
strate the effectiveness of the proposed method are
designed in Section 4, and Section 5 gives the main
conclusions.

2 Signal model and abrupt changes analysis in

IFR curve

2.1 Categories of possible radar pulse modulations

In order to analyze the various kinds of IMOPs conveni-
ently, we categorize them based on three kinds of basic
IMOP components including the continuous frequency
modulation (CFM), the discrete frequency coded (DFC)
modulation and the discrete phase coded (DPC) modu-
lation. Possible IMOPs in CFM class include constant
frequency (CF), LEM and various nonlinear frequency
modulations (NLFM). The DFC class contains binary
frequency codes (BFC), the Costas codes and so on. The
DPC class includes IMOPs such as binary phase codes
(BPC), quadriphase codes (QPC) and polyphase codes
(PPC).

Various modulations can be realized by a single IMOP
or combinations of different IMOPs. According to the
phase properties between different IMOPs, three modu-
lation families are extended as the CFM family, the DFC
family and the DPC family as shown in Fig. 1. But be-
yond that, a fourth family which contains intra-pulse
modulation agile waveform, noise-like waveform and so
on may also appear. For the convenience of analysis,
here, we consider only the former three families. It is
easy to see that not only the common radar pulse modu-
lations that have been used so far, but also the existing
and possible complicated or hybrid modulations are
under this context.
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Fig. 1 Possible IMOP families for radar pulses

2.2 Signal model
For the intercept receivers, the received radar pulse
could be modeled as follows

r(t) = s(t) + w(t)
= Aexp(jo(t)) + w(t),

where T is the pulse duration time, A is the complex
amplitude of the signal, ¢(¢) is phase of the intercepted
radar pulse, and w(f) is the complex additive white
Gaussian noise (AWGN) with variance ¢. The corre-
sponding discrete model is

r(n) = Aexp(jp(n)) + w(n),

where the sampling frequency is f;.

To identify an unknown, or a complicated modulated
radar pulse, we should find out which basic modulation
exists and that is why we call the method as “MCA”. For
a signal in the CFM family, the phase function can be
considered as a polynomial phase signal according to the
Weierstrass theorem.

0<t<T 1)

n=0,...N (2)

P
Perm(t) = Zﬂktk, 0<t<T (3)
k=0

where {a}x-o,. p is the polynomial coefficients and P is
the highest order of the polynomial coefficients.

For a signal in the DFC family, the basic modulation is
frequency coding.

M-

Ppasicprc(t) = Z 2nf i tg (t-KTp),

k=0

—

0<t<T  (4)

where M is the number of sub-pulses, f; is the carrier fre-
quency of the kth sub-pulse, T), is the width of sub-pulse,
and g(¢) is a rectangular function and g(t) =1 when 0<¢<
T,. Considering complicated modulations such as hybrid
modulations of CFM and basic DFC components, the phase
function of a signal in DFC family can be expressed as
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$pec(t) = Pcrm(t) + Ppasicorc(t) (5)

For a signal in the DPC family, the basic modulation is
phase coding.

I-1
Ppasicopc (t) = Z Og(t-kTc),  0<t<T (6)
=0

where L is the number of phase codes; 6 is kth phase
and T, is the width of phase code. Considering com-
plicated modulations such as hybrid modulations of
basic DPC modulations with CFM or DFC modulations,
the phase function of a signal in DFC family can be
expressed as

$ppc(t) = Gcrm(t) + Ppasicorc(t) + Poasicopc(t)  (7)

The MCA method distinguishes basic modulation
components based on the abrupt changes in their phase
derivatives. Here the IFR curve is used as example.

2.3 IFR propertis for basic modulation components

The direct derivation of IFR is the second derivative of
signal phase which can be expressed as:

1d°¢(¢)

IFR(t)~ o d (8)

Different modulation families show different proper-
ties in their IFR curves. For convenience, three basic
modulations which belong to different modulation fam-
ilies are considered here in discrete case.

For the basic modulation in the CFM family, the IFR
is shown as

1
IFRCFM(I’I) = ;ﬂz + ((l’l) (9)
where ((n) is a polynomial phase function. Thus, there
are no abrupt changes in the IFR curve. The IFR curve
of an LFM pulse is shown in Fig. 2a.
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The IFR of a basic DFC modulation is
M
IFR(n) :fsz (fxfi1)8(n-kT)) (10)
k=1

1, n=0
0, otherwise *
appears if the adjacent sub-pulses have different
frequencies and the amplitude of the abrupt change de-
pends on the difference of the two adjacent frequencies.
The IFR curve of a Costas coded pulse is shown in Fig. 2b.
The IFR of a basic DPC modulation is

IFR(n) = ];—752121% (ck—ck-1)(6(n-1-kT.)-8(n-kT.))

k=1

where §(n) = { Thus, an abrupt change

(11)

There will be two abrupt changes which have a same
absolute value and opposite signs in the IFR curves and
the amplitude of the abrupt changes depend on the
adjacent phases. The IFR curve of a QPC pulse is shown
in Fig. 2c.

A traditional way to approximately realize the phase
derivatives is using phase unwrapping and phase differ-
ence operations. But, it suffers a rapid degradation of
performance even at a high SNR. Figure 3 shows the
estimated IFR curves of the same three pulses using the
phase-based way at SNR =20 dB, and it seems impos-
sible to extract the features of abrupt changes in the IFR
curves especially for the DFC signal.

2.4 Robust IFR estimation and abrupt changes analysis

As the MCA method analyzes the abrupt changes in the
IFR curves, methods which are robust to noise and
sensitive to abrupt changes need to be found. The IFR
estimation was firstly used for chirp signal estimation
[18] and the concept of any order phase representation
was generalized through the term of general representa-
tion of phase derivative (GRPD) [19]. In [20], the IFR
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Fig. 2 IFR curves of three basic modulations: (@) LFM; (b) Costas; and (c) QPC
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Fig. 3 IFR curves of three basic modulations at SNR= 20 dB: (a) LFM; (b) Costas; and (c) QPC
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was derived using the short-term polynomial phase esti-
mation in the EW context and the influence of window
length on parameter estimation was analyzed. On the
basis of previous studies, we will extract features from
the abrupt changes in the IFR curves and then classify
the modulation family autonomously in this paper.

The GRPD method is a kind of multi-linear method
which is suitable for IFR estimation. It has been proved
that the GRPD method using a sliding window has a
good performance which approaches the Cramer-Rao
bound (CRB) for the IFR estimations [20]. According to
the GRPD theory, the ideal representation of an arbitrary
instantaneous phase derivative (IPD) of a signal can be
written in the form

IPDx(t,Q) = A25<Q—¢<’<) (t)) (12)

where Q is the axis which corresponds to the Kth
derivative of the phase function ¢(¢). In order to
obtain the distribution concentrated along Kth phase
derivative, a generalized complex moment (GCM) is
defined as

GCMX[s](¢, 1) (13)

N1
= H SONK (t + wN,kr)

k=0

where wpy = ¢P™*N When K =1, the GRPD is the con-
ventional time-frequency distribution.

GCM\ s

H S Nk(t+mr)

(14)

For example, when N=1, it leads to the short-time
Fourier transform (STFT), and when N =2, it leads to a
Wigner-Ville-like distribution.

When K =2, it is a time-“frequency rate” representation.

GCM% s

Aﬁ 7 <t+ka\/§7> (15)

To calculate the IFR, here, we consider a simple case
for N = 2. Therefore, the GCMs are

GCM;s, ti)(t) = s(t + V/7)s(t-/T) (16)
where r€[-T7, /4, T2 /4]. For a time instant £, the IFR is
estimated using a short-time window by the relations as
follows.

IFR(t;) = argmax
f

/GCM% [s, ti](r)e Y dr (17)
R

Supposing that the length of sliding window in
calculating the IFR value at a certain time instant is N,,,
it can be approved that [20]

1 90f!
T2 N°SNR'

CRB{IFR(t;)} = (18)

Therefore, for a given SNR and a given mean square
error (MSE) of estimators, the length of the sliding win-
dow should satisfy the following relation.

s L 90f?
"=\ w2 MSE{IFR(t;) }SNR

(19)

Figure 4 shows the estimated IFR curves of the same
three pulses in Figs. 2 and 3 at SNR =3 dB.

It shows that the short-time GRPD method is robust
to noise and sensitive to abrupt changes. Therefore, the
IFR curves are feasible to realize the autonomous MCA
method.



Wang et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:98

Page 5 of 11

a x 107 b x10% c x10%
2 2 2
15} 15 15
1 1 1
o5k { 05 _ osf
K] 3 5] |
At [ £,
o 4 L\ @
w w w
25t 25 25
1 -1 -1
ast 15 15
2 1 2 3 4 5 0 7 3 s 2 1 2 3 r 5 8 76 s 2 1 2 3 r 5 O 7 B 0
time (us) time (us) time (us)
Fig. 4 Estimated IFR curves of three basic modulations at SNR=3 dB: (a) LFM; (b) Costas; and (c) QPC

3 Autonomous modualtion classification flow
based on the MCA method

The autonomous classification methods focus on the
essential differences among the three basic IMOPs. Here,
we employ the abrupt changes caused by the DFC and the
DPC modulations in the IFR curves. The signal processing
flow for radar pulse modulation classification is shown in
Fig. 5.

The modulation information is given after three steps.
The samples of pulse will be processed to extract some
modulation features. Then the MCA method is applied
to classify the pulse into a modulation family and this
can be also called a “coarse classification”. At last, an ac-
curate classification will be done within the modulation
family and some possible modulation parameters will be
estimated at the same time using existing algorithms.

3.1 Modulation families classification based on MCA
method

From the analyses above we know that the estimated
IFR curve for an IMOP in the CFM family has no abrupt

changes. Thus a basic CFM component can be distin-
guished from the DFC and the DPC families. The esti-
mated IFR curve using a short-time window of a pure
DFC components has abrupt changes regularly. Once a
change appears, its values will keep positive or negative
for a short period. By contrast, the abrupt changes in the
estimated IFR curve for a basic DPC component appear
mixed and disorderly. According to the differences of
abrupt changes, we can recognize the IMOP family of a
pulse autonomously. Figure 6 shows the modulation fam-
ily classification flow based on the MCA method.

The flow chart contains several important modules:
SNR estimation and sliding window setting module,
IFR estimation module, and abrupt changes analysis
module.

3.1.1 SNR estimation and sliding window setting

SNR is an important parameter in signal processing.
When it comes to a non-cooperative situation, a simple
and effective method to estimate the SNR is the 2nd and
4th order moments (M2M4) algorithm [21, 22]. This

signal samples input

Feature extraction and abrupt change detection

The
MCA

Method

Basic modulation component analysis and coarse classification

|
|
|
|
|
' |
|
|
|
|

Accurate classification within a coarse family

Fig. 5 Autonomous modulation classification flow for radar pulses
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Fig. 6 Modulation family classification flow chart based on the
MCA method

MSEs of the M2M4 algorithm approaches its theoretical
variance for SNR > -5 dB and SNR < 15 dB [22]. In this
paper, we assume that the classification problem is
considered when the M2M4 algorithm works well.
For the discrete receiving signal in AWGN, it is easy
to calculate the 2nd order moment M, and 4th order
moment M,.

N1
My =Eryri|2—=> |r| (20)
ey 2
) N-1
M, _E[(w;;) ]ENZ e (21)
n=0

where E[+] is the mathematical expectation of the
random receiving variables and the mark ‘@ means
“approximately equals to”. Thus the estimated SNR is
expressed as

20311,

SNR = (22)

M~/ |2M3-Ms|

Given a requested MSE 07, of the IFR estimation, the
length of the window can be obtained by (19).

- { 1 9of? -‘
Ny = 7% 62, . SNR

where the mark T« 7 is the top integral function which
gives the minimum integral value that satisfies the equa-
tion. From the above equation, we can calculate that if

(23)
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the estimated SNR has a maximum error of 0.5 dB, then
the length of the sliding window has a maximum error
of less than 3 %. Therefore, the length of the sliding win-
dow can be estimated accurately when the M2M4
algorithm works well.

3.1.2 IFR estimation using a sliding window

To realize the IFR estimation by (17), some parameters
should be considered according to the signal processing
capability and they are adjustable for the algorithm de-
signer. These parameters are:

The maximum value /FR,,, of the possible IFRs,
The minimum value IFR;, of the possible IFRs,
The IFR increment or the step length AIFR, and
The length sliding window N,,;,, an odd number
that satisfies N,,;;, >N W

For a given time instant 7., the IFR can be calculated
using the window with length Ny

2
IFR(n,;) = leargmaxﬂFRT(w) * Y, (M) (24)
T o
(Nwmﬂ)
where y,;,(n.)eC 2 *!, the mth element is

Nyin 1

Wainlne)ly = rCrc=m)r(ne 4 m), 0sms =212
(25)

(Nyin+1)
and IFRTeCNm*—3 is a transform matrix to calcu-

late the IFR and Ny is the number of possible IFR
elements.

[IERT (©)],,,, = exp(~jom(n-1)*) (26)

where w,, = 27IFR,,/f>. As long as the IFR values caused
by the abrupt changes range from IFR;, to IFR,,,, the
proposed MCA method will perform well.

3.1.3 Abrupt changes analysis and the thresholds in IMOP
family recognition

We set the thresholds in the MCA method through
Monte Carlo simulations for a broad span of SNR and
modulations. The threshold T#h1 follows two strategies
and is a trade-off between two sub-thresholds, T/, and
Thgy. Thy, is an SNR-dependent threshold and Thg, is
an SNR-independent threshold related to the signal pro-
cessing capability. For a signal in the CFM family, there
are no abrupt changes in the IFR curve in theory. How-
ever, some outliers that seem like abrupt changes may
appear when the signal is disturbed by noise. Assuming
that the ratio of abrupt changes in the IFR curve is a
and Thl is used to distinguish it from the other two
IMOP families. According to the properties of a CFM
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modulation, the threshold should be a slowly decreasing
function of SNR values and always positive. By the Monte
Carlo simulations for a broad span of SNR values, a pos-
sible threshold can be defined as

Thoy = pexp(-SNR)/SNR (27)

where p € (0, 1) is a small coefficient. On the other hand,
the SNR-independent threshold 7%, is related to the
maximum ratio #; of abrupt changes in the IFR curve
for a CFM modulation at low SNR.

Thy =1, (28)
Thus, the threshold T/41 should be
Thl = min(Th01, Thoz) (29)

where min(e) is the minimum value function. If a > Th1,
it means that the abrupt changes caused by modulations
are detected.

The thresholds Th2 and Th3 are used to determine
whether an IMOP belongs to DFC family or DPC family.
The ratio of the regular changes in all abrupt changes /3
and the number of change segments N, are defined
here. From the analyses above, we conclude that g is
close to 1 when the IMOP belongs to the DFC family at
high SNR while it approximates 0 when the IMOP is a
DPC modulation. Th2 is a threshold to evaluate the pro-
portion of regular changes in all abrupt changes.

Th2 =y, (30)

According to the majority rule, there is #, € (0.5, 1) for
an IMOP in the DFC family. In order to increase the re-
liability of recognition, the threshold 7%3 is set to com-
pare with the number of change segments N, While
the window slides along the received signal samples,
there is at most one change segment caused by the adja-
cent sub-pulses for signal in the DFC family. It means
that the maximum number of change segments for DFC
modulation will not be bigger than the number of sub-
pluses. However, as the signal processing is non-
cooperative, the number of sub-pulses is difficult to ob-
tain. Here, we assume that the number of points of the
sliding window is less than that of a sub-pulse; therefore,
we have

Th3 = N/Nyip. (31)

Thus, a modulation type belongs to the DFC family
will be recognized if 8 > Th2 and N, < Th3.

The thresholds Thy; and Th3 change their values
autonomously for different intercepted signals with dif-
ferent SNRs while Thg, and Th2 are optional empirical
thresholds which can improve classification performance
according to noise level. So far, the IMOP families are
recognized using the MCA method.
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3.2 Accurate modulation classification within modulation
families

The MCA method based on the abrupt changes can only
classify an IMOP into a modulation family. If more infor-
mation of an intercepted pulse is wanted, it is necessary to
carry out an accurate modulation classification within a
certain modulation family. Thus, it becomes a new classi-
fication problem. Four basic IMOPs including the CF,
LEM, BPC, and BFC modulations are considered here as
examples. The modulation features are extracted from the
instantaneous phase and instantaneous frequency law
(IFL) curve which is calculated according to (14) and (17).

H“/\L(ti) = argmax

/GCM%[S, t(r)e™ dr|, 1€[-T,, T,)
f R

(32)

For the BFC modulated signal in the DFC family, we
can recognize it by counting the number of frequencies
in the IFL curve. For the BPC modulated signal in the
BPC family, we can recognize it by determining whether
the squared signal shows properties of a CF modulation.
For an IMOP in the CFM family, we use the piecewise
linear fitting method to the IFL curve. The mean square
errors are derived between the instantaneous frequency
and its least squares linear fitting. The corresponding
classification flow is carried out as follows.

(1)Estimate the IFL curves and do linear fitting to get
the corresponding initial frequency f; sy and chirp
rate k ro.

(2)Divide the IFL into two equal pieces and do linear
fitting to each piece to get fir1, k1 p1 and f g, kzp, and
here, we suppose that k; ry = k; p. knay is the
maximum of the two absolute values |k | and |k g

(3)Calculate the ratios, a4 = fir1/frro T2 = fre2!fLr0s
re=kemlkip

Table 1 Parameters for radar pulse generation and signal processing

Parameters Values
Maximum processing points 1000
Sampling frequency 100 MHz
Carrier frequency 6 MHz
Code rate for BPC and QPC 4 MHz
Code rate for PPC 5 MHz
Code rate for DFC 1 MHz
Chirp rate for LFM 10 MHz/ps
Number of phase increments for PPC 64

SNR [-7,10] dB
Number of Monte Carlo experiments 500
Possible IFR range [—=15, 15] MHz/us
Given RMSE of IFR estimation 0.5 MHz/ps
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Table 2 The IMOPs for the MCA method in the simulation
IMOPs

Modulation family

CFM CF, LFM, VFM, SFM
DFC BFC, Costas coding, LFM-BFC,
DPC BPC, QPC, Frank, P1, P2, P3, P4, LFM-BPC, BPC-BFC

(DI rygn <rp < Fgo, Tan <7 < T, and Kmax < Kmax 77
the IMOP is determined as a CF modulation.
Otherwise, if 7,1 < i < rygo, the IMOP is determined
as an LFM.

The thresholds 7,1, 72 and kpax 7, are determined
according to the maximum errors which can be designed
at the initial stage of the signal processing procedure.
The accurate modulation classification is realized based
on the known modulation families.

4 Results and discussion

Two experiments are designed to demonstrate the ef-
fectiveness of the proposed method. The first one is used
to check the performance of the MCA method and radar
pulses are classified into different IMOP families. The
second one is designed to classify four commonly used
IMOPs by accurate classification within their IMOP
families and the results are compared with the AF-based
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method [15]. In these two experiments, we evaluate the
performances by the probability of successful modulation
family recognition (PSMFR) and the probability of suc-
cessful modulation recognition (PSMR) which are both
calculated using the Monte Carlo experiments. The simu-
lation parameters are shown in Table 1.

In the MCA method, the coefficient p in Thy, is set as
0.25 and the maximum ratio of abrupt changes #; for
the CFM components in Thy, is set as 0.2, and the pro-
portion of regular changes in all abrupt changes for the
DFC components 7, is set as 0.7. In the accurate modu-
lation classification part, threshold ry,; is set as 0.8 while
T is set as 1.2. The maximum value k. 77 from a CF
modulated signal is set as 10" Hz/s which is related to
minimum chirp rate for an LEM signal. These thresholds
are verified by a broad band of experiments.

4.1 Autonomous classification for modulation families
The first experiment gives the performance of the pro-
posed MCA method. The simulation adopts modula-
tions in Table 2. The three kinds of hybrid modulations
are the LFM-BFC modulation [10] in the DFC family
and the LFM-BPC (8, 9] and the BPC-BFC [11] modula-
tions in the DPC family.

Figure 7 gives the probabilities of successful modula-
tion family recognition (PSMFRs) for the simulated

DPC family; and (d) Hybrid IMOPs in the DFC and DPC families
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IMOPs. Figure 7a shows that the PSMFRs for the signals
in the CFM family reach 98 % when the SNR is
above -3 dB. These signals have similar PSMFRs and
the reason is that they are classified by the same
threshold Thl. Figure 7b shows the PSMFRs of BFC
and Costas coded signals in the DFC family, and they
can be classified well when the SNR is above 3 dB. In
Fig. 7c, several IMOPs in the DPC family are classi-
fied and can be classified well when the SNR is above
4 dB. Figure 7d gives the PSMFRs of three hybrid
modulations, and the proposed method achieves a
successful probability of 95 % for the three kinds of
signals when the SNR is above 2 dB. This experiment
shows that the MCA method can give partial infor-
mation about the modulation family for various kinds
of IMOPs.

4.2 Accurate classifications for four basic radar pulse
modulations

This experiment is designed to verify how the proposed
method performs compared with the method based on
the AF properties [15]. As the comparison method can
only deal with a limited number of IMOPs, we do our
experiment here for the four commonly used basic
IMOPs, the CF, LEM, BPC, and BFC modulations. For a
better comparison, we choose the pulse width as 5 s
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which has been used in [15]. The PSMRs are calculated
using 1000 Monte Carlo trials for each SNR value. The
PSMRs for the above four kinds of IMOPs are shown in
Fig. 8.

For the CF signals, Fig. 8a shows that the proposed
method and the comparison method have nearly the
same PSMRs which are greater than 96 % when the SNR
is above -2 dB. The PSMRs for the LFM signals ap-
proaches 100 % for both of the two signals when the
SNR is above 0 dB in Fig. 8b. However, the proposed
method performs better than the comparison method
when the SNR decreases. In Fig. 8c, we see that the
PSMRs are greater than 97 % when the SNR is above
2 dB. The comparison method has slow increasing
PSMRs when the SNR values ranges from -6 to 2 dB
while the proposed method has steep rising PSMRs
when the SNR is close to 1 dB. For the BPC signals, the
PSMRs for both methods are greater than 98 % as Fig. 8d
shows when the SNR is above 2 dB and the proposed
method has a slightly better performance than the
comparison method when the SNR is smaller than 2 dB.
Figure 8 shows that the proposed method and the com-
parison method differ slightly only when the SNR is
below 2 dB.

From the two experiments above, we know that if an
IMOP has features matched with a known database, it
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can be recognized with a similar overall performance to
the method based on the AF properties whose PSMR is
more than 96 % when the SNR is above 2 dB. However,
if an IMOP does not belong to a known database, the
proposed method can still work and obtain partial infor-
mation by classifying it into a modulation family while
the conventional methods fail to work. In general, the
proposed method gives a different classification structure
for classification methods of radar pulse modulations.
What is more, the accurate modulation classification
part can be extended easily within a certain modulation
family.

5 Conclusions

A two-stage pulse modulation classification method
which contains a “modulation family classification” and
an “accurate classification” is presented. The former
stage is autonomously realized based on the proposed
MCA classification method and different IMOPs are
classified into three modulation families based on the
abrupt change features extracted from the IFR curves. A
final decision is done by the latter stage which provides
supplementary information for accurate classifications.
This method can deal with a broad range of IMOPs and
gives partial or complete modulation information while
the existing methods give complete information for only
a limited number of IMOPs. The theoretical analysis is
validated by two designed experiments. The proposed
method gives a different classification structure for radar
pulse modulations and can be extended easily. Future
work will focus on the study of different realization
methods for the MCA structure and the extension of
the accurate modulation recognition part to some com-
plicated or hybrid modulations.
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