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Abstract

An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel
digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are
obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are
converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these
time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of
the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed
to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for
the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can
be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of
numerical simulations.
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1 Introduction
Digital beamforming (DBF) technology offers a signif-
icant improvement in performance over analog beam-
forming technology [1]. Many applications, including
modern wireless communications, radar systems, surveil-
lance, radio astronomy, and sonar, take advantage of this
technology to gain benefits in terms of beam steering,
improved signal-to-interference ratio (SIR), and inter-
ference rejection [2]. Recently, multi-input multi-output
(MIMO) technology has attracted the attention of many
researchers because it offers the ability to transmit multi-
ple probe signals via transmit antennas, thereby providing
additional diversity [3]. At the receiving end, DBF technol-
ogy has been applied to sample combinations of reflected
array signals from each element of an array to achieve dif-
ferent functions [4, 5]. Another research topic of interest
is a type of flexible array called a frequency diverse array
(FDA), which was proposed in [6, 7]. A small frequency
increment is applied across all array elements to obtain
a range-angle-dependent beam pattern. DBF technology

*Correspondence: duozhang@foxmail.com
Ministerial Key Laboratory of JGMT, School of Electronic Engineering and
Optoelectronic Technology, Nanjing University of Science and Technology,
210094, Nanjing, China

has thus been used to enhance beamforming performance
[8–10].
The DBF technique is based on the signals received at

each antenna element. The set of such signals collected
at a given instant of time constitutes a snapshot. The
traditional way to obtain such snapshots is to connect
each array element to an independent radio frequency
(RF) receiver. Therefore, the number of receivers must be
equal to the number of antenna elements, which usually
causes the overall system to be complicated, bulky, and
costly [11]. This problem becomes more serious in the
case of large-scale arrays. Moreover, the channel unifor-
mity, which significantly affects the performance of the
system, should be carefully designed [12].
Various efforts have been made to reduce the hardware

cost and design complexity of such systems. One feasi-
ble solution is to use a single-RF-channel structure in the
antenna array. There are two main kinds of single-RF-
channel structures, which use only one receiver channel
and therefore are cost effective. The first is the switched
antenna array (SAA), in which the connections of the
antennas to the single receiving channel are periodically
switched to sample the array signals. This structure was
proposed in [13], and the corresponding array signal pro-
cessing method has been discussed in [14–16]. However,
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although the number of low-noise amplifiers (LNAs) and
mixers is reduced, the numbers of low-pass filters and
analog-to-digital converters (ADCs) still must be pro-
portional to the number of elements [17]. The second
type of structure is the time sequence phase weighting
(TSPW) antenna array [18, 19], in which the combined
phase weighted array signals are sequentially sampled by
a single RF-receiving channel. Each antenna element is
followed by a 1-bit digitally controlled 0/π phase shifter.
The weighted array signals are combined to form a single-
channel output, and only one ADC is required to sample
this output. In previous research, the base-band signal
has typically been assumed to be time-invariant. This
assumption is acceptable for most communication sce-
narios in which the sampling cycle is equal to the period
of each data symbol [20, 21]. However, when the target
has a relative radial velocity, the echo signal will contain a
Doppler frequency, which causes the received signal to be
time-varying. Therefore, a TSPW array cannot obtain the
correct array signals in the case of movement. This is a key
problem that must be addressed before the use of TSPW
antenna arrays can become widespread.
A Doppler frequency compensation algorithm was pro-

posed in [22] to solve this problem. By observing the
targets for a certain length of time, the number of targets
and the Doppler frequency of each target are estimated
beforehand. This prior information is used to compensate
the received single-channel-sampled signals to obtain the
correct original signals. However, this algorithm requires
pre-observation to estimate the number of targets and the
Doppler frequencies, which obviously increases the total
processing time. In [23], a time-reversal motion compen-
sation algorithm was proposed to overcome this draw-
back. Without requiring prior information, this method
allows the correct original array signals to be obtained
through interpolation. However, this method requires the
sampling frequency to be N times higher than that in a
typical multichannel system. This requirement limits the
application of this method for large-scale arrays.
In this paper, a sparse-reconstruction-based signal pro-

cessing algorithm is proposed. It uses analog mixers and
standard (high-rate) shift registers [24] to transform the
spatially parallel array signals into time-sequence signals.
This signal processing algorithm is quite different from
that used in a TSPW array. A random sampling matrix is
adopted in place of the Walsh-Hadamard matrix, which is
used in TSPW arrays, to achieve the reduced-dimension
transformation. The original spatially parallel array sig-
nals are recovered from the time-sequence sampled sig-
nals by exploiting the second-order sparse property of
the array signals. No prior observation is required to
obtain the number and Doppler information of the tar-
gets. The required sampling frequency is equal to that
of a typical multichannel system. With the aid of the

proposed algorithm, the direction of arrival (DOA) and
the Doppler frequency of the target can be estimated
simultaneously. Additionally, this paper also proposes a
hardware-achievable measurement matrix optimization
method based on the artificial bee colony (ABC) algo-
rithm to improve the reconstruction performance in prac-
tical applications.
The remainder of this paper is organized as follows.

In Section 2, the array structure and signal model are
discussed. In Section 3, the sparse-reconstruction-based
signal processing algorithm is proposed. To improve the
reconstruction performance, a method for optimizing the
measurement matrix, which is based on the artificial bee
colony (ABC) algorithm, is proposed in Section 4. The
simulation results are provided in Section 5 to demon-
strate the effectiveness of the proposed algorithm. Con-
clusions are given in Section 6.

2 The systemmodel
2.1 Single-RF-channel DBF array
The structure of the single-RF-channel DBF array is
shown in Fig. 1. It is similar to that of a TSPW array.
The difference is that the 1-bit digitally controlled phase
shifters are replaced with analog mixers and standard
(high-rate) shift registers to increase the bandwidth of the
system [24]. To highlight the signal processing flow, the
diagram eliminates several components that may be used
in a practical system, such as band-pass filters, low-pass
filters, IF amplifiers, quadrature detectors, and so on.

2.2 Signal model
To simplify the analysis, this paper adopts the follow-
ing assumptions. (1) The echo signal is assumed to be
the far-field narrowband signal. (2) The target is moving
with a constant relative velocity within one transforma-
tion period Tsingle, where Tsingle = 1/PRF. In other words,
the Doppler frequency fd exhibits no significant change
during one Tsingle. 3). The direction of arrival (DOA) of
the target does not change within one Tsingle.
The signal received by the nth antenna can be consid-

ered as being modulated by the rectangular pulse rect(t)
and can be written as [25]

Fig. 1 The structure diagrams of single-RF-channel DBF array
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sn(t) =
m=∞∑

m=−∞
rect

(
t − mTsingle

)
Re

⎡

⎣
K∑

k=1
zk(t)ej�φnej2π fct

⎤

⎦

(1)

where n = 1, 2, . . . ,N , fc is the carry frequency, and
j2 = −1. zk (t) = ej4π(Rk−vkt)/λc is the base-band echo
signal of the kth target, where Rk and vk are the ini-
tial range and the velocity, respectively, of the kth target.
�φk,n = 2π (n − 1) dsin(θk)/λc is the spatial phase differ-
ence between the nth element and the first element that is
produced by the echo of the kth target, where the element
spacing is d and θk is the angle of kth target. Let

xn(t) =
K∑

k=1
zk(t)ej�φk,n = z̃(t)ej�φ̃n (2)

denote the base-band signal received by the nth ele-
ment. The frequency of xn(t) induced by the kth target
is fd,k = 2vk/λc, where λc is the wavelength. Let Q (t) =
m=∞∑
m=−∞

rect
(
t − mTsingle

)
. Equation (1) then can be rewrit-

ten as

sn(t) = Q(t)Re
[
xn(t)ej2π fct

]
n = 1, . . . ,N (3)

Let the weighting value assigned to the nth phase
shift at time instant t be denoted by Hn(t). The N-
dimensional array signal after weighting, combining, and
down-converting, is converted into a one-dimensional
single-channel signal (point a in Fig. 1). In practice, the
signal at point A is a complex signal and is usually rep-
resented by both in-phase (I) and quadrature (Q) paths.
However, Fig. 1 shows only a single path for simplicity. The
signal can be expressed as

SA(t) = Q(t)
N∑

n=1
{GnHn(t)[ xn(t) + εn(t)] } (4)

where Gn is the gain of the nth low noise amplifier (LNA)
and εn(t) is the receiver noise of the nth element.
Within the duration of each pulse, the signal SA(t) can

be sampled many times by only one analog to digital con-
verter (ADC) in accordance with the sampling frequency.
The average data can be used as the final weighted result
for a signal pulse. For minimum-sampling-rate operation,
the sampling rate of the ADC is equal to the PRF and only
one sample is taken at the end of each pulse. The signal
at point B is called the single-channel-sampled signal and
can be expressed as

SB(mTsingle) =
N∑

n=1

{
GnHn(mTsingle)

[
xn(mTsingle)

+εn(mTsingle)
]}

(5)

After M pulses, the signal SB(mTsingle) has been mul-
tiplied by Hn(mTsingle), m = 1, . . . ,M. It contains all
of the information of the target and can be used to
recover the original signals. The signal at point C rep-
resents the recovered spatially parallel signal for the ith
single-channel-sampling period.
When the target is static, the base-band signal received

at the nth element xn(t) can be regarded as a time-
constant signal in one Tsingle. It can be denoted as xn(1) ≈
· · · ≈ xn(M) = x̃n. When the target is moving, the base-
band signal xn(t) is a time-varying signal. The amplitude
and phase may vary significantly in one Tsingle. A Doppler
phase difference �ϕ̃fd is added to the adjacent single-
channel sampled signals. The first sampling performed in
one Tsingle is taken as the reference point. The signals at
other sampling times in one Tsingle can then be written as

xn(m) = xn(1)ej(m−1)�ϕ̃fd = z̃(1)ej(m−1)�ϕ̃fd ej�φ̃n (6)

It can be seen that the signal is disturbed by both the
Doppler phase difference �ϕ̃fd and the spatial phase dif-
ference �φ̃n. If the matrix inversion algorithm proposed
in [19] was still to be used to obtain the original sig-
nals, then the recovered signal SC,n(iTsingle)would contain
incorrect target information and could not be used for
further signal processing.

3 Sparse-reconstruction-based signal processing
3.1 Time-sequence sampling model
Before sparse reconstruction theory can be applied, the
time-sequence samplingmodel should first be established.
Equation (5) can be rewritten in matrix form as

SB(m) =< G � �(m), x(m) > +σ(m) (7)

where G = [G1, · · · ,GN ]T ; � (m) = [H1 (m) , · · · ,
HN (m)]T ; x (m) = [ x1 (m) , · · · , xN (m) ]T ;

⊙
and <,>

denote the Hadamard product and the inner product,
respectively; and σ(m) is the receiver noise. The weighting
vector �(m) is produced by the analog mixers and shift
registers shown in Fig. 1, and the value of each element of
�(m) is 1 or −1. Thus, the vector �(m) can be designed
as a Bernoulli random vector, which also consists of values
of ±1 and has a low coherence with any fixed basis.
After M pulses, the single-channel-sampled signals can

be grouped into a vector Y1:M as follows:

Y1:M =
⎡

⎢⎣
SB(1)

...
SB(M)

⎤

⎥⎦ =
⎡

⎢⎣
< G � �(1), x(1) >

...
< G � �(M), x(M) >

⎤

⎥⎦ + σ (8)

where σ = [ σ (1) , · · · , σ (M) ]T is the M-dimensional
noise vector. Equation (8) is a natural mathematical
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description of the processing of the single-channel-
sampled signals. However, it is not in a standard matrix
operation form and cannot be directly solved. An equiva-
lent standard matrix form of (8) is

Y1:M = �̄X (9)

=

⎡

⎢⎢⎢⎢⎣

G � �(1) 0 . . . 0
0 G � �(2) . . . 0
...

...
...

0 0 . . . G � �(M)

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

x(1)
x(2)
...

x(M)

⎤

⎥⎥⎥⎥⎦
+ σ

where �̄ is the equivalent measurement matrix and 0 is a
1 × N zero vector.
The (NM)-dimensional vector signal X =

[ xT (1) , · · · , xT (M) ]T contains the same information
as that contained in the multi-snapshot array signal
X̃ =[ x (1) , · · · , x (m) ], which is the N × M-dimensional
matrix obtained by a normal multichannel DBF array.
However, there are certain differences between these
two signals. The signal X̃ has a parallel structure and is
obtained by directly sampling the signals from each array
element with multiple receivers. It is known immediately
after sampling. By contrast, the signal X has a sequential
structure and cannot be obtained directly after sam-
pling. It is wrapped in the single-channel-sampled vector
Y1:M which consists of the real signals sampled in the
single-channel DBF system.

3.2 The first-order sparse expression for the array signal
The signal X can be recovered using sparse signal recon-
struction theory, if and only if the signal is sparse or com-
pressible [26–28]. According to the spatial sparsity feature
of array signals [29–31], an array signal at time instantm is
spatially sparse. The desired angular region can be decom-
posed into P ≥ N segments. Let θ =[ θ̃1, · · · , θ̃P], where θ̃p
denotes the central direction of the pth segment. The N-
dimensional base-band array signal at time instant m can
be expressed as

x(m) = �ξ(m) (10)

where ξ(m) is a P-dimensional spatially sparse projec-
tion vector. Because the vector ξ(m) is sparse [30], it
has only K � N ≤ P nonzero entries. The matrix
� =[a

(
θ̃1

)
, · · · , a(θ̃P)] is a sparse transformation matrix

which based on the steering vector. The steering vector

[32] is defined as a
(
θ̃p

)
=

[
1, · · · , ej2π(N−1)dsin

(
θ̃p

)
/λc

]T
.

Using Eq. (10), the array signal X can be expressed as

X =

⎡

⎢⎢⎢⎣

� 0 · · · 0
0 � · · · 0
...

...
...

0 0 · · · �

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

ξ(1)
ξ(2)
...

ξ(M)

⎤

⎥⎥⎥⎦ (11)

Because Eq. (11) transforms the array signal only in
spatial domain, it can be regarded as the first-order
sparse expression of the array signal. However, the sig-
nal X contains M snapshots, and the time information
has been added into the signal. The sparse projection vec-
tor ξ̃ = [ξT (1) , · · · , ξT (M) ]T will have K × M nonzero
entries, which causes (11) to be an imperfect sparse
expression. The signal X should be written in a sparser
form to ensure a better performance before applying
sparse reconstruction theory to recover it.

3.3 The second-order sparse expression for the array
signal

The time information of an array signal is associated with
the Doppler frequency of the target. Because the number
of targets is usually limited, the Doppler frequencies of the
targets are also sparse with respect to the entire Doppler
frequency spectrum. In radar signal processing theory,
the Fourier transform is a common tool for obtaining
Doppler information. Let the Fourier transform matrix be
denoted by F ∈ C

M×M. Then, the first-order sparse pro-

jection vector ξ̃ =
[
ξT (1) , · · · , ξT (M)

]T
can be written

in second-order projection form as

ξ̃ =
[(
F−1)T ⊗ IP

]
χ (12)

where F−1 is the inverse Fourier transform matrix, IP is
a P × P unit matrix, χ is a K-sparse (PM)-dimensional
vector, and⊗ is the right Kronecker product of two matri-
ces. A schematic diagram of the transformation of the
first-order projection into the second-order projection is
shown in Fig. 2.
To illustrate the advantages of the second-order sparse

property of the array signal, Fig. 3 compares the sparsity of
the first-order projection vector ξ̃ with that of the second-
order projection vector χ . Six spatial signals are assumed
to be arriving at the front of the system from six differ-
ent directions and at different velocities. The number of
angles is P = 180, and M = 200. The signal-to-noise ratio
(SNR) is equal to 10 dB. The SNR is defined as the ratio
of the signal power to the observed noise power. The first
8000 entries of these two projection vectors with descend-
ing indices are shown. It can be seen that the number
of nonzero entries of the vector ξ̃ is much greater than
that of the vector χ . The l0-norm of the first-order vec-
tor, which is also the number of nonzero entries, is 6557,
whereas that of the second-order vector is 448. Thus, by
using the second-order sparse projection vector, the num-
ber of nonzero entries is reduced by approximately 93.2%,
demonstrating that the second-order sparse projection
of the array signal is more suitable than the first-order
projection for recovering the array signal X.
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Fig. 2 The transforming schematic diagram

The substitution of (12) into (11) and the application
of the properties of the Kronecker product together yield
the following second-order sparse expression for the array
signal:

X =
[(
F−1)T ⊗ �

]
χ (13)

3.4 Sparse reconstruction
By utilizing the second-order sparse expression (13) and
the single-channel sampling model (9), the single-channel
sampling vector can be rewritten as

Y1:M = �̄�̄χ + σ (14)

where �̄ =
[(
F−1)T ⊗ �

]
is the second-order joint angle-

Doppler sparse transform matrix for the array signal.

Fig. 3 The first-order and second-order sparse projection vectors of
array signal

Theoretical studies [33] show that the equivalent sensing
matrixD = �̄�̄ will satisfy the condition of the restricted
isometry property (RIP) with high probability if the num-
ber of single-channel measurements M in one sampling
cycle Tsingle satisfies

M ≥ C0K log(N/K) (15)

where C0 is a positive constant. Notably, increasing M
can improve the Doppler frequency resolution at the cost
of significantly extending the processing time. There is
therefore a trade-off between the performance and the
processing time cost in practical applications.
Equation (14) is a classical Lasso problem and can be

solved by solving the following equation:

χ̄ = argmin
χ

1
2

∥∥�̄�̄χ − Y1:M
∥∥2
2 + η‖χ‖1 (16)

where η > 0 is the regularization parameter, which corre-
sponds to the noise power, and ‖ · ‖1 denotes the l1-norm,
which is equal to the sum of the absolute values of the
vector entries. The parameter η controls the trade-off
between the sparsity approximation and the least square
error of the recovered signal [34]. The parameter selection
method has been comprehensively studied in [35], and we
therefore omit such a discussion in this paper.
The recovered second-order projection vector χ̄ con-

tains the angle information and the Doppler frequencies
of the targets. After the vector has been obtained, the orig-
inal array signals from all M samplings can be recovered
as follows:

X̂ = �unvecM,P(χ̄)F−1 (17)



Zhang et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:99 Page 6 of 10

where unvecM,P(·) is the inverse vectorization function
such that unvecM,P(χ̄) is anM×Pmatrix that enables the
conversion from theMP × 1 vector χ̄ .

4 Optimization
4.1 Optimization of the measurement matrix
Because analog mixers and shift registers can easily be
realized in practical applications, they are used in the
single-channel DBF array to measure the array signals.
The shift registers provide only two phase-weighting
states. Therefore, the measurement matrix � consists of
values of ±1.
The measurement matrix can be optimized to achieve

better reconstruction performance [36–39]. However, the
existing algorithms generally ignore the practical prob-
lem that arises when the values of the optimal measure-
ment matrix elements are too precise to be achieved
by the hardware. In other words, the hardware-based
measurement matrix generally cannot provide the mea-
surement values that are produced by such optimiza-
tion algorithms. For example, the digital micromirror
device (DMD) in a single-pixel camera [40] cannot pro-
vide reflection directions other than ±10°. The recovery
algorithm based on the single-RF-channel DBF array also
faces the same problem. Thus, to improve the recon-
struction performance, an optimization algorithm is pro-
posed that can produce hardware-realizablemeasurement
values.
Let D̃ denote the column normalized form of the equiv-

alent sensing matrix D. The mutual-coherence of D is
defined as

μ(D) = max[ triu(L)] (18)

where L = D̃HD̃ is the so-called Gram matrix and triu(·)
is a function such that triu(L) extracts the upper trian-
gular entries from the off-diagonal part of the matrix L.
To achieve high-reconstruction performance, the value of
(18) should be designed to be as small as possible [41].
From section 3.4, we know that �̄ is a fixed matrix asso-
ciated with the detection requirements; therefore, we can
optimize only �̄ to reduce μ(D).
Based on the fact that the hardware can provide only

two weighting values of ±1, all possible observations
form the feasible solution set �. The optimal observation
matrix �opt that minimizes μ(D) must be included in this
set. For a single-RF-channel system with N elements and
M observations, the number of feasible solutions in � is
2NM. Directly finding an optimal solution from within this
enormous feasible set is certainly an NP-hard problem.
The Artificial Bee Colony (ABC) algorithm is a swarm-

based meta-heuristic algorithm [42] that is suitable for
solving this optimization problem. It finds the optimal
solution by simulating the behavior of bees. The model

used in the ABC algorithm consists of three essential
components: food sources, employed foraging bees, and
unemployed foraging bees. The artificial bees can move
toward better solutions by means of a neighbor search
mechanism, while abandoning poor solutions. When
using the ABC algorithm, a rough objective function can
be selected as described below:

�opt = min
�̄

μ(D) (19)

s.t.�̄ ⊆ �

D = �̄�̄

The steps of the ABC algorithm for optimizing the
measurement matrix for the recovery algorithm are
as follows.

1) The control parameters are initialized, and the initial
food sources are prepared. Each food source is a
feasible matrix from the collection �. The Bernoulli
random matrix can be used for initialization.

2) The employed bees search for new food sources
within the neighborhood of the current food source.
The strategy for determining neighboring food
sources is described as follows:

(a) A zero entry of the matrix 
̄m − 
̄k is
randomly selected, where 
̄m is the current
food source and 
̄k is the randomly selected
neighboring food source.

(b) The element value of 
̄m is reversed at the
position selected in a).

(c) The new food source is used to calculate the
fitness value by applying the function described
in [42]

3) The unemployed bees then work to find the best
solutions.

4) If the maximum number of cycles has been reached,
then the algorithm terminates and outputs the
optimal solution. Otherwise, the process is repeated
from step 2.

4.2 Optimization of the computational complexity
The numbers of angle grids P and single-channel sam-
plings M influence the angular and velocity resolutions,
respectively, of the recovery algorithm. The values of these
two parameters can be increased to improve the recov-
ery performance. However, this will significantly increase
the computational complexity. To reduce the computa-
tional complexity for practical applications, a coarse grid
can be used first to find the approximate source informa-
tion. Then, the neighboring regions of the targets can be
searched again, using a finer grid. The accurate sparse pro-
jection vector is thus obtained by using a fine grid in a few
small regions.
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In practice, when searching in these small regions, the
processing time can be shortened by using multiple Dig-
ital Signal Processors (DSPs) with a parallel structure.
The search region can be separated into several segments
according to the angle and Doppler information shown in
Fig. 2. Based on the detection results obtained using the
coarse grid, the corresponding segments can be extracted
and assigned to multiple processors to search for more
accurate results with finer grids.
Table 1 shows the CPU processing times achieved while

processing data of different scales. The experiments were
performed on a platform with a Core i7-4710MQ CPU
2.50GHz, 8 GB of RAM, and the Windows 7 operating
system. The computations of the method could be per-
formed in a reasonable time on this platform. Because the
processing time for the fast Fourier transform (FFT) can
be greatly reduced by embedding the transform in a Field-
Programmable Gate Array (FPGA), the processing time of
this method can thus be shortened even further.
The processing time of the proposed algorithm includes

two primary components. The first is the time con-
sumption of the single-channel sampling procedure. This
procedure has the same complexity as that for a typi-
cal multichannel DBF array, which is O(M). The second
component is the time consumption of the sparse recon-
struction procedure. The computational complexity of
this procedure primarily depends on the chosen recov-
ery algorithm. For example, the computational complexity
of the recovery algorithm used in this paper is O((MP)3)
[43]. However, this recovery algorithm could be replaced
with a faster one. For example, the Orthogonal Matching
Pursuit (OMP) algorithm could be adopted, in which case
the computational complexity would be O(KM2P).

5 Simulation results
In this section, several numerical simulations are pre-
sented to evaluate the proposed algorithms. First, the
original spatially parallel signals are recovered using the
proposed algorithm, and the results are compared with
those that are obtained directly by a typical multichan-
nel DBF array in a moving scenario. Second, the ability
of the proposed algorithm to simultaneously estimate the
angle and Doppler information of the targets is evaluated
by means of a classical parameter estimation problem.

Table 1 The CPU processing time

W P Angle
resolution
(degree)

Velocity
resolution
(m/s)

CPU
time (s)

CPU time
of parallel
structure (s)

100 30 3 30 2.24 0.96

100 90 1 30 4.19 1.18

200 180 0.5 15 66.47 11.87

300 180 0.5 10 147.71 24.80

Finally, a simulation is presented to demonstrate the
performance improvement achieved using the proposed
measurement matrix optimization method.
A linear X-band antenna array with N = 64 elements

is used. The spacing of the adjacent elements is 0.5λ, and
the center frequency is 10 GHz. The PRF is 200 kHz, the
number of single-channel samples is M = 200, and the
number of angle grids is P = 180. The receiver noise is
assumed to be zero-mean Gaussian white noise.

5.1 Evaluation of the signal reconstruction
In this section, the array signals received at each ele-
ment that are recovered by the proposed algorithm are
compared with those directly obtained by a typical mul-
tichannel DBF array. To demonstrate the effectiveness of
the proposed algorithm, the processing results obtained
using the algorithm presented in [44] are also proposed.
Assume that there are three targets in front of the antenna.
The azimuth angles are 10°,−20°, and 45°. First, the signals
that are received when these targets are static are given
in Fig. 4a. It can be seen that all systems obtain the same
array signals, which demonstrates that they exhibit the
same beamforming performance in static scenario. Sec-
ond, we consider a scenario in which the velocities of these
targets are 135, 240, and 45 m/s, respectively. The recov-
ery results for this scenario are shown in Fig. 4b. It can be
seen that the reconstruction algorithm used in [44] cannot
obtain the correct original signals in the moving scenario,
whereas the proposed algorithm can do so.
It is worthmentioning that the proposed algorithm does

not require additional time to be spent in obtaining the
number of targets and their Doppler frequencies as prior
information and that the required PRF is equal to that for
the multichannel system. Table 2 compares the require-
ments of the proposed algorithm with those of two other
algorithms proposed in [22] and [23].
Figure 5 shows the average recovery errors as a func-

tion of the SNR. For comparison, the results produced by
the algorithms proposed in [22] and [23] are also repre-
sented. The number of targets is 1, 2, and 3 respectively.
Different directions and different Doppler frequencies are
randomly selected in each trial. Monte Carlo simulations
were performed 500 times to verify the average recov-
ery error between the true and reconstructed signals. The
recovery error is defined as

MSE = 20log10E

⎛

⎜⎝

∥∥∥X̂ − X
∥∥∥
2

2
‖X‖22

⎞

⎟⎠ (20)

The performance of the algorithm proposed in [22] is
associated with the frequency estimation errors. When
the frequencies of two targets are close to each other,
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Fig. 4 The amplitude and phase signals received by each antenna
element in the a static and bmoving scenarios, respectively

it becomes difficult to distinguish them with the normal
methods. This may cause a serious decline in recovery
performance. The performance of the algorithm proposed
in [23] is associated with the number of samples. More
samples will obtain a higher reconstruction accuracy.
However, it will spend much more time in sampling and
computing. In this simulation, the number of samples is
1024, which is four times as much as that used in the pro-
posed method. It can be seen from Fig. 5 that the recovery
error of the proposed method is less than −10 dB when
the SNR is greater than 0 dB. However, in the low-SNR
scenario, the algorithm fails to function properly.

5.2 Parameter estimation
The proposed algorithm can simultaneously obtain the
angle and Doppler information for the targets. A parame-

Table 2 The comparison of requirements

Normal
DBF radar

Method
in [22]

Method
in [23]

This paper

Priori information No need Need No need No need

Samping frequency PRF PRF N × PRF PRF

Number of receiving
channels

N 1 1 1

Fig. 5 The average recovery errors as a function of SNR

ter estimation problem in classical array signal processing
is considered to evaluate this capability. Assume that there
are three targets in front of the system. The azimuth
angles are 3°, 4.5°, and −5°, and the velocities are 30, 60,
and −75 m/s, respectively. The Doppler frequencies are
2, 4, and −5 kHz, respectively. A positive frequency is
defined as one for which the target is moving toward the
system. The SNR is 10 dB. Figure 6 shows the estimated
results for the two-dimensional angle-Doppler spectrum.
It can be seen that the angle and Doppler information

of the targets are estimated correctly. Moreover, it can be
seen from the estimated results for targets A and B that
the sources can be resolved even when the angle of sep-
aration between them is less than the classical Rayleigh
resolution limit. This finding indicates that the algorithm
has the capability of angular super-resolution.

Fig. 6 The angel-Doppler spectrum estimated by the proposed
algorithm
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5.3 Optimization of the measurement matrix
In this subsection, the measurement matrix optimization
method is evaluated. For these calculations, the parame-
ters of the ABC algorithm were set as follows: the number
of employed and unemployed bees is 40, the number of
food sources is 20, and the number of cycles for foraging
is 3000.
The histograms in Fig. 7 show the distribution of the

absolute values of μ(D). For comparison, 500 random
Bernoulli measurement matrices were generated in 500
trials. The worst and best results, which have the largest
and smallest values of μ(D), respectively, among the 500
random matrices, are shown in Fig. 7a, b, respectively. It
can be seen that the mutual-coherence of the best result
is reduced by approximately 13% with respect to that of
the worst. However, when the optimization method is
used, the mutual-coherence is further reduced by 10%
compared with that of the best result.

5.4 Simulations of the weighting circuit error
The weighting circuit that is used in a practical appli-
cation is subject to gain and phase shift errors. Because
these errors generate a non-orthogonal Walsh-Hadamard
measurementmatrix, these errors can result in completely
incorrect recovered array signals.
However, the measurement matrix used in the proposed

algorithm is required only to satisfy a certain probability
distribution. The requirements on the absolute gain and
phase shift values can be relaxed. Thus, the influence of
the imperfections of the device can be greatly reduced.

Fig. 7 The histograms of absolute entries of μ(D) before and after
optimization. a and b are the worst and best result of 500 trials,
respectively. c is the optimal result

Figure 8 presents a reconstruction result obtained when
the weighting circuit is not ideal. One static target with an
incidence angle of 3° is assumed to be present in front of
the array. The amplitude and phase shift errors are within
15% and 30°, respectively. The results presented in Fig. 8
indicate that the proposed algorithm is robust to ampli-
tude and phase errors in the weighting circuit. In addition,
a correction technique is also available when needed.

6 Conclusions
Array signal processing algorithms based on sparse signal
reconstruction are proposed for a low-cost single-channel
DBF array. The second-order sparse property of the array
signals is used to decouple the angle and velocity informa-
tion and to obtain the correct original parallel array signals
from the weighted time-sequence signals. The DOA and
Doppler information of the targets can be simultaneously

Fig. 8 The reconstruction results when the weighting circuit is not
ideal. a and b are the amplitude and phase, respectively
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estimated using this low-cost scheme, which uses a low-
cost, high-efficiency receiver array in place of the tradi-
tional design. The proposed approach can be adopted in
several expensive and complicated array systems, such as
FDAs and MIMO systems, to reduce their total cost.
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