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Abstract

In this work, we propose a multi-camera object tracking method with surprisal observations based on the cubature
information filter in visual sensor networks. In multi-camera object tracking approaches, multiple cameras observe an
object and exchange the object’s local information with each other to compute the global state of the object. The
information exchange among the cameras suffers from certain bandwidth and energy constraints. Thus, allowing only
a desired number of cameras with the most informative observations to participate in the information exchange is an
efficient way to meet the stringent requirements of bandwidth and energy. In this paper, the concept of surprisal is
used to calculate the amount of information associated with the observations of each camera. Furthermore, a
surprisal selection mechanism is proposed to facilitate the cameras to take independent decision on whether their
observations are informative or not. If the observations are informative, the cameras calculate the local information
vector and matrix based on the cubature information filter and transmit them to the fusion center. These cameras are
called as surprisal cameras. The fusion center computes the global state of the object by fusing the local information
from the surprisal cameras. Moreover, the proposed scheme also ensures that on average, only a desired number of
cameras participate in the information exchange. The proposed method shows a significant improvement in tracking

average transmissions to the fusion center.

accuracy over the multi-camera object tracking with randomly selected or fixed cameras for the same number of
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1 Introduction

Object tracking is an extensively studied topic in visual
sensor networks (VSN). A VSN is a network composed
of smart cameras; they capture, process, and analyze the
image data locally and exchange extracted information
with each other [1]. The main applications of a VSN are
indoor and/or outdoor surveillance, e.g., airports, massive
waiting rooms, forests, deserts, inaccessible locations, and
natural environments [2]. In general, the typical task of a
VSN is to detect and track specific objects. The objects
are usually described by a state that includes various
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characteristics of the objects such as position, velocity,
appearance, behavior, shape, and color. These states can
be used to detect and track the objects. Recursive state
estimation algorithms are predominantly used to track
objects in a VSN [3].

In [4-11], the authors presented several Kalman filter
(KF)-based object tracking methods. Extended Kalman
filter (EKF)-based object tracking method is proposed in
[12]. The unscented Kalman filter (UKF) is applied for
visual contour tracking in [13] and object tracking in [14].
In terms of object tracking in a VSN, the cubature Kalman
filter (CKF) is primarily applied in our previous work [15].
In [16-24], the authors presented particle filter (PF)-based
object tracking. The object tracking methods based on
these conventional Bayesian filters have a varying degree
of complexity and accuracy.
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In general, the performance of the tracking algorithms
suffers from different adverse effects such as distance
or orientation of the camera, and occlusions. However,
a VSN with overlapping field of views (FOVs) is capa-
ble of providing multiple observations of the same object
simultaneously. The authors in [25] presented a dis-
tributed and collaborative sensing mechanism to improve
the observability of the objects by dynamically changing
the camera’s pan, tilt, and zoom. Other examples of dis-
tributed object tracking methods are presented in [26]
and [27].

Recently, information filters have emerged as suitable
methods for multi-sensor state estimation [28]. In infor-
mation filtering, the information vector and matrix are
computed and propagated over time instead of the state
vector and its error covariance. The information matrix is
the inverse of the state error covariance matrix. The infor-
mation vector is the product of the information matrix
and state vector. The information filters have an inher-
ent information fusion mechanism which makes them
more suitable for multi-camera object tracking. A more
detailed description of information filters is given in
Section 3. The authors in [29] and [30] presented informa-
tion weighted consensus-based distributed object track-
ing with an underlying KF or a distributed maximum
likelihood estimation. In our work [31], we have pre-
sented a robust cubature information filter (CIF)-based
distributed object tracking in VSNs. However, the limited
processing, communication, and energy capabilities of the
cameras in a VSN present a major challenge.

Nowadays, VSNs tend to evolve into large-scale net-
works with limited bandwidth and energy reservoirs. This
allows a large number of cameras to observe a single
object. In spite of the improved tracking accuracy, the
information exchange of the large number of observations
among the cameras increases the communication over-
head and energy consumption. Hence, allowing only a
desired number of cameras to participate in the informa-
tion exchange is a way to meet the stringent requirements
of bandwidth and energy.

Estimating an object’s state with a selected set of cam-
eras is a well-investigated topic. Several camera selection
mechanisms have been proposed in literature to minimize
and/or maximize different metrics such as estimation
accuracy, monitoring area, number of transmissions, and
amount of data transfer. In [32], the authors presented
an object tracking method based on fuzzy automaton in
handing over to expand the monitoring area. This method
selects a single best camera to control and track the
objects by comparing its rank with the neighboring cam-
eras. This method fails to select multiple cameras, and
cameras have to communicate with each other to select
the best camera. In [33], the authors presented an effi-
cient camera-tasking approach to minimize the visual hull
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area (maximal area that could be occupied by objects)
for a given number of objects and cameras. They also
presented several methods to select a subset of cameras
based on the positions of the objects and cameras to min-
imize the visual hull area. If the objects are recognized in
the vicinity of a certain location, then a subset of cam-
eras that is best suited to observe this location performs
the tracking. This method is capable of selecting multi-
ple cameras but not the desired number of cameras on
average. In [34], the authors presented a framework for
dynamically selecting a subset of cameras to track people
in a VSN with limited network resources to achieve the
best possible tracking performance. However, the camera
selection decision is made at the FC based on training data
and the selection is broadcast to the cameras in the VSN.
Hence, this selection process does not depend on the true
observations.

The observations received by the cameras in the VSN
are typically realizations of a random variable. Hence,
they contain a varying degree of information about the
state of the object. They can be broadly classified into
informative and uninformative observations. The non-
informative observations do not contribute significantly
to the tracking accuracy. Hence, a camera selection strat-
egy that allows only a desired number of cameras with
most informative observations to participate in the infor-
mation exchange and discards the cameras with non-
informative observations is an efficient way to meet the
requirements of bandwidth and energy.

In [35], the authors presented an entropy-based algo-
rithm that dynamically selects multiple cameras to reduce
transmission errors and subsequently communication
bandwidth. In this work, the cameras in the VSN use
the extended information filter (EIF) as the local filter
and calculate the expected information gain (EIG) in the
form of a logarithmic ratio of the expected and posterior
information matrices. If the information gain is greater
than the cost of transmissions, then the cameras par-
ticipate in the information fusion. The calculated EIG
in this method does not depend on the measurements
directly, and the cluster head has to run an optimiza-
tion step to select the best possible cameras at each step.
Moreover, this method is not capable of selecting only a
desired number of cameras on average. In [36], a cam-
era set is selected based on an individual image quality
metric (IQM) for spherical objects. The cameras that
detect the spherical target are ranked in ascending order
based on their value of the local IQM, and the required
number of cameras with highest IQM are chosen. This
approach is limited to spherical objects. However, it can
be easily extended to non-spherical objects. The major
disadvantage of this method is either all the cameras in
the VSN or the FC should know IQM of all the other
cameras in the VSN. Hence, this method does not ensure
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cameras to take independent decisions thus restricting the
scalability.

In our work, a multi-camera object tracking method
based on the CIF is proposed in which the cameras can
take independent decisions on whether or not to partici-
pate in information exchange. Furthermore, the proposed
method also ensures that on average, only a desired num-
ber of cameras participate in the information exchange
to meet bandwidth requirements. We model the state of
an object utilizing a dynamic state representation that
includes its position and velocity on the ground plane.
Further, we consider a VSN with overlapping FOVs; thus,
multiple cameras can observe an object simultaneously.
Each camera in the VSN has a local CIF on board. Hence,
they can calculate the local information metrics (infor-
mation contribution vector and matrix) based on their
observations. The cameras that can observe a specific
object form a cluster (observation cluster) with an elected
fusion center (FC). In this paper, we consider the concept
of surprisal [37] to evaluate the amount of information
in the observations received by the cameras in the VSN.
The surprisal of the measurement residual indicates the
amount of new information received from the corre-
sponding observation. The observations of a camera are
informative only if the corresponding surprisal of the mea-
surement residual is greater than a threshold. The thresh-
old is calculated as a function of the ratio of the number
of desirable cameras and the total number of cameras in
the observation cluster. This ensures that on average, only
the desired number of cameras are selected as the cam-
eras with informative observations (surprisal cameras).
The surprisal cameras calculate the local information met-
rics based on the CIF and transmit them to the FC.
Then, the FC fuses the surprisal local information metrics
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to achieve the global state by using the inherent fusion
mechanism of the CIF. The proposed selection mecha-
nism only requires the knowledge of the total number
of cameras in the observation cluster and the desired
number of cameras. Further, we compare the proposed
multi-camera object tracking method with surprisal cam-
eras with multi-camera object tracking with random
and fixed cameras using simulated and experimental
data.

The paper is organized as follows: Section 2 describes
the considered VSN with motion and observation mod-
els. Section 3 presents theoretical concepts of information
filtering. Section 4 describes the camera selection based
on the surprisal of the measurement residual and the
calculation of the surprisal threshold. Section 5 explains
the proposed CIF-based multi-camera object tracking
with surprisal cameras. Section 6 evaluates the pro-
posed method based on simulation and experimental
data. Finally, Section 7 presents the conclusions.

2 System model

In this work, we consider a VSN consisting of a fixed set
of calibrated smart cameras ¢;, where i € {1,2,---, M},
with overlapping FOVs as illustrated in Fig. 1. The task of
the cameras in the VSN is to monitor the given environ-
ment and to identify and track an object. As these cameras
are calibrated, there exists a homography to calculate the
object’s position on the ground plane. The cameras ¢; that
can observe the object at time k form the observation
cluster Ck. The state of the object comprises its position
(xk, yx) and the velocity (%, 7x) on the ground plane. Thus,
the state at time k is described as x; = [xk Vi X j/k] T
The motion model of the object at camera ¢; at time k
is given as

Fig. 1 Visual sensor network
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Xk = £k (Xk—1, Wik)
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where X and y represent the acceleration of the object in x
and y directions that are modeled by the independent and
identically distributed (IID) white Gaussian noise vector
Wik = [%‘,k yi,k]T with covariance Q;; = diag (gx;, gy)).
8 is time interval between two observations. The state
transition model (1) can be further written as

10560
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X = Xk—1 + w?,k’ (2)

where w; « is IID white Gaussian noise vector with
covariance
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The state of the object is estimated from observations
taken at each time step k. The observation model of the
object at camera ¢; and time £ is given as

Zik = hjr (xXp) + Vik, (4)

where v; ; is an IID measurement noise vector with covari-
ance R; x. The measurement function h; 4 is the non-linear
homography function which converts the object’s coordi-
nates from the ground to the image plane. The considered
motion model (1) and measurement model (4) are adapted
from [27].

3 Information filtering

The information filter is an alternative version of
the Bayesian state estimation methods. In informa-
tion filtering, the information vector and the infor-
mation matrix are computed and propagated instead
of the estimated state vector and the error covari-
ance. The estimated global information matrix Yz_jjx—1
and information vector yy_jj_; at time k — 1 are
given as

-1
Ykfllkfl = Pk—1|k—1’ (5)
Ye—1jk—1 = Ye—1jk—1Xk—1jk—1, (6)

whereXy_1jx—1 and Pi_|x_1 are the estimated global state
vector and error covariance matrix at time k — 1. At time
k and camera c;, the information filter has two steps: time
and measurement update.
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3.1 Time update
The information form of the predicted state and the cor-
responding information matrix are computed as

-1
Yikik—1 = Pi,k|k71’ )

Yikik—1 = Yikjk—1Xikjk—15 (8)

where X; k-1 and P;zx—1 are the predicted state vector
and the error covariance matrix, respectively.

3.2 Measurement update

Upon receiving the measurement z;;, the information
contribution matrix I; x and information contribution vec-
tor i; i are computed as

“1pT T
Lk = Yikk—1Pxz,ik R, Pyy kY k10 ©)

. -1
ik = Yikk—1Pxz,ikR; ;

o~ (10)
(ei,k + sz,i,kYi,k\k—l) ,

where Py, ;i x, Rix, and e; ; are the cross-covariance of the
state and measurement vector, the measurement noise
variance, and the measurement residual, respectively. The
measurement residual is defined as

€k = Zik — Ziklk—1, (11)

where Z; i x—1 is the predicted measurement. In this work,
the CIF is used at the cameras to track the objects
locally. We refer to Appendices 1 and 2 and [38] for the
CIF algorithm.

3.3 Information fusion

In multi-camera networks, multiple cameras have an over-
lapping FOV and thus can observe an object simultane-
ously. Hence, each camera c; where i € Cj that observes
the object computes its own information contribution
vector i;; and information contribution matrix I;x as
shown in (9) and (10), respectively. Let us consider that
each camera sends their local information metrics to an
elected FC, then the global information equivalents of the
estimated state and error covariances at the FC c,, where
o € Cy are calculated as

|Ckl

Yik = Youp-1+ Y _ Lk (12)
i=1
|Ck|

Yitk = Yokik—1 + Y _ i (13)

i=1

where Y, kjx—1 and Y, xx—1 are the predicted information
vector and matrix at the FC, respectively.
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4 Surprisal camera selection

The VSNs usually have limited bandwidth and energy
reservoirs. Therefore, it might be necessary that only a
desired number of cameras (subset) transmit their local
information to the FC. On the other hand, this can lead
to decreased tracking accuracy. A better tracking accuracy
can be achieved by selecting the cameras based on the
information associated with their observations. This strat-
egy improves the accuracy of the global state estimation
under the given bandwidth and energy constraints. The
information content associated with the observations can
be calculated by applying the concept of self-information
or surprisal.

4.1 Surprisal
The surprisal H is a measure of the information associated
with the outcome x of a random variable. It is calculated as

H = —log (Pr(x)), (14)

where Pr(x) is the probability of the outcome x and the
base of the logarithm can be considered as 2, 10, or e.
In this paper, the surprisal is calculated with the natural
logarithm (base e) for the sake of mathematical simplifi-
cation. The surprisal of the outcome of a random variable
depends only on the probability of the corresponding
outcome Pr(x). A highly probable outcome of a random
variable is less surprising and vice versa.

4.2 Surprisal of measurement residual

In multi-camera object tracking, the local observations
z;; of each camera ¢; are random variables because of
the additive Gaussian noise and the random initial state.
Hence, they contain a varying degree of information about
the state of the object. Within the framework of infor-
mation filtering, the measurement residual e;; at camera
¢; and time k is the disagreement between the predicted
observation and the actual observation (see (11)). Hence,
the surprisal of the measurement residual e;; gives the
additional information associated with the received obser-
vations that is not available in the predicted observations
through the predicted state. The surprisal of the mea-
surement residual e;; at camera ¢; and time k can be
computed as!

Hiy = —log, (p (eix)) -

Under the assumptions of IID additive Gaussian obser-
vation noise, the measurement residual becomes approxi-
mately a Gaussian distributed variable with zero mean and
the covariance P, ; , called the innovation covariance

(15)

ek ~ N (0,Pyyik) . (16)

By substituting (16) in (15), the surprisal of the measure-
ment residual e; ; becomes
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1. Tp-1 .
€xp (_fei,szz,i,kel»k)

H;j = —log, = T
(2m)2 det? (Pzz,i,k) (17)
1 _
=i+ Eei,Tszz%i,keivk’
where o i is
n; 1
g = ?loge Qr) + Eloge (det(Pyzik)) » (18)

and 7, is the length of the observation vector of cam-
era ¢; at time k. The observations of the camera ¢; at
time k are informative enough if the surprisal of the cor-
responding measurement residual H;y is greater than a
threshold

> Xk
Hi { < Xk

informative

1
non-informative. (19)

The cameras with enough informative measurements
are called surprisal cameras. The threshold y; has to be
defined based on the bandwidth and energy constraints in
such a way that at each time k, on average, only a given
number of cameras are selected as surprisal cameras.

4.3 Surprisal threshold

Let sp = (Sl,k,sz,k, e ,S|Ck‘,k) be the indication vector at
time k, where |Cy| is the number of cameras in the obser-
vation cluster. Each element s; ; in the indication vector is
either 1 or 0

1
Sik = 0

From (17), (19), and (20), the average number of times a
camera c; becomes a surprisal camera is given as

E [s,;k] =DPr (s,-,k = 1)
= Pr (Hix > xk)

=P Lo p-t >
=Prioic+ e, 22,ik €k = Xk

surprisal camera

. (20)
non-surprisal camera.

2 21)
=Pr (eZkP;z%i,kei’k > 2 (—ey + Xk))
= Pr (efkp;z%iykei,k > ﬁk) :
where B = 2 (—a;x + xx)- Since ejx ~ N (0, P, ),
P ki ™ Ko (22)

where x2 is a chi-square distribution with a degree of
freedom of n,. The surprisal threshold S in (21) should
be calculated in such a way that on average, |/;| cameras
are selected as surprisal cameras. Thus,

ICxl [Ckl

E Zsi'k = ZE [Si,k]
i=1 i=1

= |Ck| E [sixc] = il -

(23)
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From (21), (23), and (22), it is implied that

- ||
Pr (eij,wkpzz{i,kei,k = ﬂk) = 1Cyl . (24)

The surprisal threshold B; can be calculated as the
value for which the probability of chi-square distributed

squared and normalized measurement residual x> is
greater than or equal to |lx| / |Ci| as

-1 |lk|>
. =F 1——1,
P X( |Cxl

where F szzz is the cumulative distribution function of the

(25)

chi-square distribution anz with a degree of freedom of ;.

Hence, the surprisal threshold Sy at time k can be calcu-
lated by using the knowledge of the number of cameras in
the observation cluster |Cy| and the number of desirable
surprisal cameras |lx|. Thus, the cameras ¢; in the cluster
can independently decide whether their local observations
are informative or not.

5 Multi-camera object tracking with surprisal
cameras (MOTSC)

In the proposed scheme, the cameras c¢; where i €

{1,2,- -+, M} in the network that can observe an object at

time k form a cluster (observation cluster) C; with a FC

Cok as shown in the Fig. 2. The dynamic clustering can

be achieved in several ways. One of such methods is pre-
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sented in [39]. Further, each camera in the VSN has an
on-board CIF algorithm. At each time &, each camera in
the observation cluster Cy except the FC independently
decides whether it is a surprisal camera or not, as dis-
cussed in Section 4. All surprisal cameras in the cluster
Cy transmit their information contribution vectors and
matrices to the FC. Moreover, the FC also performs the
local filtering based on the on-board CIF. The locally cal-
culated and received information contribution metrics are
then fused together to achieve the estimated global state
of the object at time k.

The FC is initialized with the global initial information
vector and matrix (?O\OxYO|0)' At each time step £, it has
four main functions: surprisal threshold calculation, local
filtering, information fusion, and global state dissemina-
tion as shown in Algorithm 1.

e Surprisal threshold calculation: The surprisal
threshold can be calculated with the knowledge of
the size |Cy| of the observation cluster and desired
size |l;| of the surprisal cluster as shown in (25).
Hence, the FC which knows this information
calculates and broadcasts the surprisal threshold
whenever the observation and surprisal cluster sizes
change.

e Local filtering: The FC performs the local estimation
based on its measurement z, s by using the on-board
CIF. Firstly, the FC predicts the information vector
and matrix (?o,k\k—lr Yo,k\k—l) from the prior global
information vector and matrix (/Y\k—l\ k—1> Yk—1|k—1)

blue dot with cross represents the FC

Fig. 2 The VSN with the observation and surprisal clusters with a fixed FC. All the cameras (dots) inside the blue cluster can observe the object at a
given time and form the observation cluster. The cameras (dots) inside the red cluster are the surprisal cameras and form the surprisal cluster. The




Pathuri Bhuvana et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:50

as shown in Appendix 1. Then, it computes the
information contribution vector and matrix (io,lo Io,k)
by using its own local observations z, x as shown in
Appendix 2.

e Information fusion: The FC receives a set of
information contribution metrics (i,«,k, Ii,k) where
i=1,2,---,|lg] from the surprisal cameras in the
cluster. The global information vector and
information matrix (’y\k| o Yk k) are obtained by fusing
the received surprisal information contributions and
its own information contributions (ifx, Ir k) with the
predicted information vector and matrix
(Vik—1> Yijk—1)-

e Global state dissemination: After the information
vector and matrix (?k\k: Yk|k) are computed, the FC
broadcasts it in the network. Hence, the cameras in
the network have the global knowledge which can be
used as prior information for the local filtering in the
time step k + 1.

The cameras in the observation cluster Cj at time k
have two main functions to perform: time update and sur-
prisal update as shown in Algorithm 2. The cameras in the
observation cluster know the prior global information of
the object (?k—1|k—1,Yk—1|k—1)- At each time step k, they
perform the following:

e Time update: The camera predicts the information
vector and matrix (¥ k1, Yikjk—1) from the prior
global information vector and matrix
(?k—uk—l» Yk_1|k_1) using the CIF time update as
shown in Appendix 1.

e Surprisal update: Each camera receives the surprisal
threshold B¢ from the FC whenever the observation
and/or surprisal cluster size changes. Upon receiving
the measurement z; ¢, each camera c; calculates the
corresponding measurement residual and innovation
covariance (€;k, Pz, ). The proposed surprisal
threshold rule in Section 4.3 is used to determine
whether it is a surprisal camera or not. If the camera
is a surprisal camera, the information contribution
vector and matrix (i,',k, Ii,k) are calculated according
to (9) and (10). Thereafter, the information metrics
are transmitted to the FC. If the camera is not a
surprisal camera, then the surprisal update is aborted.

After the surprisal update, each camera ¢; in the network
receives the global information (?k‘k,Yk‘k) from the FC.
Hence, each camera in the network has the knowledge of
the global state of the object which can also be used as the
prior information in the local estimation for the next time
step k + 1.

In this paper, the FC is assumed to be fixed and
not effected by node failures. It is also assumed that
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the delays in transmitting local information to the FC
are all less than the sampling interval of the cam-
eras. Thus, the FC can fuse the arriving information
contribution in time. The communication links in the
network are assumed to be perfect. Hence, the only
cause of a missing information metric from a camera is
that the corresponding observations are not informative
enough.

Algorithm 1: MOTSC at Fusion Center (FC)

Start: Initialize the filter with (?OIO' Y0\0)~
At each time k, the prior information vector and
matrix (Ye—1jk—1, Yx—1k—1) are known

1. Surprisal Threshold Calculation
if (1], ICkD) # (k=115 1Ck—11)) then

(a) Calculate the new surprisal threshold By
/+ Equation (25) =%/

(b) Broadcast B in the observation cluster

2. Local Filtering

(a) Compute the predicted information vector and
matrix based on the CIF time update
Wkik—1, Yijk—1] = Time
Update[?k,l‘k,l,Yk,1|k,1] /* Appendix 1
*/

(b) Upon receiving the measurement zg x, calculate
the information contribution vector
and matrix based on the CIF measurement
update
[if,k, If,k] = Measurement Update
[Viik—1 Yrik—1,2rk] /* Appendix 2 «+/

3. Information Fusion

(a) Receive the information contribution metrics
{ii,k» Ii,k}: where i € Cy from the surprisal
cameras in the cluster

(b) Perform information fusion to achieve the
global information
[Yij Yxix] = Information Fusion

[/Y\k\k—p Y-, {iijo Tix}» (i Lrk) ]
4. Global State Dissemination

Broadcast global information [’)7/4/(, Yk|k] in the
network
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Algorithm 2: MOTSC at each local camera in the
cluster

Start: Initialize the filter at each camera with (’)70‘0, Yo‘o)
At each time k, each camera receives the prior
information vector and matrix (?k—1|k—1: Yk—l\k—l)
from the FC.

1. Time Update
Compute the predicted information vector and
matrix based on the CIF time update
[Vikik—1, Yikk—1] = Time
Update[?k_l‘k_l, Yk—1|l<—1] /* Appendix 1 %/

2. Surprisal Update

(a) Upon receiving the measurement z; t,
calculate the measurement residual e;
/* steps 1 to 4 in Appendix 2
*/

(b) Calculate the innovation covariance Py, ; x
(c) Compare the information content in the

measurement residual e; ; with surprisal

threshold B

if e/,P . e;x > pi) then

I" Calculate the information
contribution vector and matrix (ii,k, Ii,k)
/% steps 5 to 7 in

Appendix 2 x/

I Transmit (i,"k, Ii,k) to the FC

6 Results

In this section, the efficiency of the proposed MOTSC
method is evaluated based on the simulation and experi-
mental data. In our approach, the efficiency is defined in
terms of the sum of the root mean square errors (RMSEs)
of the estimated global state and the ground truth in x and
y directions. Moreover, the energy and bandwidth effi-
ciency are calculated in terms of the average number of
transmissions from the cameras in the observation cluster
to the FC.

6.1 Simulation results

The simulation considers a VSN with cameras having
overlapping FOVs as shown in Fig. 2. All of the cameras
that can observe the xy-plane, where x € [—500, 500] and
y € [—500,500] form an observation cluster with a FC.
The motion of the object is modeled with Gaussian dis-
tributed acceleration as given in (1). The ground truth of
the position of the object is simulated by assuming that
the process noise covariance Q; and measurement noise

(2016) 2016:50
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covariance Ry are diag(5,5) and diag (1, 1), respectively.
Each camera ¢; in the cluster has its own homography
function 4;. Since we assume static cameras, the homogra-
phy of the cameras do not change with time k and object.
The algorithms are evaluated on 1000 different trajecto-
ries with different initializations. Figure 3 shows some of
the simulated trajectories of the object.

6.1.1 Scenario 1

In this scenario, the accuracy of the CIF- and EIF-based
object tracking methods in the VSN are compared. In
this comparison, the proposed surprisal selection method
is not employed. Hence, all the cameras in the observa-
tion cluster participate in the information fusion. In the
abovementioned simulation setup, each camera calculates
the local information metrics based on the local observa-
tions. The information metrics from the local cameras are
fused at the FC. Moreover, the process noise covariance
Qi and measurement noise covariance Ry are considered
to be known to all the cameras in the cluster. The clus-
ter is also assumed to be fully connected with perfect
communication links to the FC.

Under the above conditions, Fig. 4 shows the aver-
age RMSE (ARMSE) of the multi-camera object tracking
methods based on the CIF and EIF for different obser-
vation cluster sizes. To achieve statistical reliability, the
RMSE is averaged over a thousand simulation runs and
1000 simulated trajectories to yield the ARMSE. From
Fig. 4, we can infer that the CIF-based object tracking
outperforms the EIF-based method, though the tracking
accuracy of the two methods improves with increasing
cluster size.

6.1.2 Scenario 2
In this scenario, the accuracy of the proposed MOTSC
is analyzed in comparison with multi-camera object
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> oF

-100
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Fig. 3 Simulated trajectories of the object
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Fig. 4 Tracking accuracy of the multi-camera object tracking methods based on the CIF and EIF in terms of average RMSE for different cluster sizes

5

6 7 8 9 10

tracking with random cameras, fixed cameras, best
cameras, and active sensing cameras.

e Multi-camera object tracking with random cameras
(MOTRC): A random subset of cameras in the
observation cluster transmit their local information
metrics to the FC independent of the information
contained in their measurements.

e Multi-camera object tracking with fixed cameras
(MOTEC): A fixed subset of cameras in the
observation cluster transmit their local information
metrics to the FC.

e Multi-camera object tracking with best cameras
(MOTBC): All the cameras in the observation cluster
Cr send their surprisal of the measurement residual
to the FC. The FC ranks the cameras in the ascending
order of their surprisal score and informs || best
cameras to share their local information metrics.
Then, the informed cameras send their local
information metrics to the FC. The total number of
transmissions to and from the FC involved in this
method are ||Ci| + 2|lk||. The MOTBC method is an
adoption from [36].

e Multi-camera object tracking method with active
sensing cameras (MOTAC): The FC activates or
deactivates the cameras from participating in
information exchange by maximizing reward-cost
utility function as given in [35]. The reward is
expected information gain (EIG). At each time k, the
EC evaluates the utility function for all possible
activated and deactivated camera combinations

before activating the best cameras to participate in the
information fusion. Refer to [35] for complete details.

Figure 5 shows the RMSE of the MOTSC, MOTRC,
MOTEC, MOTBC, and MOTAC methods. The x-axis of
the figure represents the average number of cameras par-
ticipated in the information fusion at each time k. The
total number of cameras |Cy| in the observation cluster
remains 10. From Fig. 5, we can infer that the track-
ing accuracy of these methods improves with increasing
size of the subset that can participate in the informa-
tion fusion. However, the proposed MOTSC method out-
performs both the MOTRC and MOTEC for the same
number of cameras |[;| that can transmit to the FC.
The MOTSC, MOTBC, and MOTAC methods approx-
imately achieve the same tracking accuracy. However,
in the MOTAC method, at each time &, the FC has to
evaluate the reward-cost utility function for all possible
activated and deactivated camera combinations (219 in
this case) before selecting the best possible cameras to
participate in the information fusion. Moreover, the cam-
era selection at time k in the MOTAC method does not
depend on the current measurements. In the MOTBC
method, in order to select the best possible cameras,
the FC has to receive the surprisal scores from all the
cameras in the observation cluster. The centralized and
complex camera selection restricts the scalability of both
the MOTAC and MOTBC methods. On the other hand,
in the proposed MOTSC method, the cameras take deci-
sion independently whether to participate in information
fusion or not.
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Fig. 5 Tracking accuracy of the MOTSC, MOTRC, MOTFC, MOTBC, and MOTAC methods. The size |C| of the observation cluster is 10, and the size of

On the other hand, Fig. 6 shows the number of transmis-
sions sent to the FC in the MOTSC and MOTRS methods.
The x-axis shows the theoretical number |/;| of surprisal
cameras which is used to calculate the surprisal thresh-
old. The y-axis shows the number of transmissions to the
FC from the surprisal and random cameras in the corre-
sponding methods. From the figure, it is illustrated that on

average, the number of transmissions to the FC for both
methods is approximately equal and matches the theo-
retical requirements. Even though the MOTBC achieves
the same performance as the MOTSC, the number of
transmissions in MOTBC is equal to ||Cg| + 2|lx|| which
can be significantly higher than the average number of
transmissions |/;| in MOTSC.

10 T

Avg transmissions to the FC

—— MOTSC |7
= B = MOTRC

Fig. 6 The average number of transmissions to the FC in the MOTSC and MOTRC methods. The observation cluster size Cy is 10, and the size | /x| of

the random or surprisal subset varies from 1 to 10

6 7 8 9 10
Il
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6.2 Experimental results
The experimental setup consists of a self-aware multi-
camera cluster built in the lab of our institute. The camera
cluster consists of four atom-based cameras (1.6 GHz pro-
cessor, 2GB RAM, 30GB internal SSD hard disk) from
SLR Engineering and two PandaBoards on which the
middle-ware system ELLA [40] is developed. The cameras
in the cluster can perform object detection and tracking
together with state estimation locally. Moreover, they are
connected via Ethernet. In the experimental setup, the
four cameras in the network have overlapping FOVs. The
motion of the object is modeled by predefined tracks. The
experiment considers ten different such predefined tracks
within the overlapping FOV of the four cameras. Figure 7
shows some of the object tracks that are used for evalu-
ating the proposed MOTSC method. The x- and y-axes
represent the dimensions of the lab where the experimen-
tal setup is built. Each track has a duration of 120s. Each
camera ¢; in the cluster has its own homography function
h;. Since we assume fixed cameras, the homography of the
cameras does not change with time k. The process noise
covariance Qi and measurement noise covariance Ry are
considered as diag (10, 10) and diag (2, 2), respectively.
Figure 8 shows the average RMSE of the MOTSC,
MOTBC, and MOTRC methods. The x-axis of the figure
represents the size |/x| of random and surprisal subset of
the cameras that transmit their local information metrics
to the FC at each time k. The total number of cameras
|Ck| in the observation cluster remains four irrespective
of the desired size of the random and surprisal subset. To
achieve statistical reliability, the average RMSE is averaged
over ten predefined tracks discussed above. From Fig. 8,
we can infer that the proposed MOTSC outperforms
the MOTRC for the same number of cameras |[;| that
can participate in the information fusion. Even though
the MOTBC method achieves approximately the same
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Fig. 7 Examples of the predefined object tracks used for evaluating
the MOTSC method
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Fig. 8 Tracking accuracy of the MOTSC, MOTRC, and MOTBC methods
in the experimental setup defined above. The size of the observation
cluster is 4, and the size |/| of the random or surprisal subset varies
from 1to 4

tracking accuracy as the MOTSC method, the number of
transmissions to the FC is always ||Cy| + 2|/k]|.

On the other hand, Fig. 9 shows the average number of
transmissions sent to the FC in the MOTSC and MOTRC
methods. The x-axis shows the theoretical number |/i|
of surprisal cameras which is used to calculate the sur-
prisal threshold. The y-axis shows the average number of
transmissions to the FC by the corresponding methods
during the experiment. From the figure, it is illustrated
that on average, the number of transmissions to the FC for
both the methods is approximately equal and matches the
theoretical requirements. Hence, the proposed MOTSC
shows better accuracy than that of the MOTRC for the
same number of average transmissions.

7 Conclusions

In this work, a multi-camera object tracking with sur-
prisal cameras in a VSN is proposed. The cameras in
the VSN that can observe an object form an observa-
tion cluster with a fixed FC. However, due to bandwidth
constraints and energy limitations, it is usually desirable
to have only a subset of cameras exchanging their local
information to the fusion center. In our approach, each
camera runs a local object tracking algorithm based on
the on-board CIF. Each camera independently determines
whether its observations are informative enough or not by
using the surprisal of its measurement residual. Only if a
camera’s measurements are informative enough (surprisal
cameras), it calculates and transmits the local informa-
tion vector and matrix to the fusion center. The global
state of the object is obtained by fusing the local infor-
mation from surprisal cameras at the fusion center. The
proposed scheme also ensures that on average, only a
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Fig. 9 The average of number of transmissions sent to the FC in the multi-camera object tracking with surprisal and random cameras. The
observation cluster size |C| is 4, and the size |lx| of the random or surprisal subset varies from 1 to 4

desired number of cameras participate in the information
exchange. The proposed multi-camera object tracking
with surprisal cameras shows a considerable improve-
ment in tracking accuracy over the multi-camera object
tracking with random and fixed cameras for the same
number of transmissions to the fusion center.

Endnote

Tn general, the surprisal is defined for the discrete
random variables (DRV). Hence, we are considering the
innovation to be a DRV.

Appendices
The multi-sensor CIF constitutes of three main steps: time
update and measurement update at each sensor i and time

k.
Appendix 1: time update (TU)
Calculate the predicted information vector and infor-

mation matrix [?i,klk—l:Yi,klk—l] from global prior
information [/y\k—l\k—l» Yk—1|k—1]c

1. Calculate the state estimate

Xi—1jk=1 = Yi—1jk—1Vk—1[k—1-

2. Compute the cubature points m = (1,2, ...,2nx)

-1 ~
CPimk—11k—1 = 4/ Yk—l\k—lgm + Xk—1]k—1>

where 7y is the length of the state vector. &,
represent the mth intersection point of the surface of
the n-dimensional unit sphere and its axes.

3. Propagate the cubature points through the motion
model

xjn,klk—l =fik (Cpm,i,k—llk—l) .
4. Calculate the predicted state as

1 2ny
- _ *
Xiklk=1 = 5 Z Xomiklk—1
X m=1
5. Calculate the predicted error covariance as

T
Prik—1 = Mik—1M; 51 + Qo

where Q;« is the process noise covariance. The
predicted weighted centered matrix M; xx—1 is given
as

1

— * <. %
M kik-1 = Jon I:xl,i,k\k—l T Xiklk—=1 Xpikik—1

-~ * =
TXiklk=1"" Xy ikik—1 T xi,k\k—l] :

6. Compute the predicted information matrix and
predicted information vector

-1
Yikik-1 = P

Vikk—1 = Yikjk—1Xiklk—1-
Appendix 2: measurement update (MU)

Each sensor calculates its information contribution vec-
tor and matrix [ii,k, Ii,k] from the predicted information
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vector and matrix [’y\i,k| k=1, Yik| k—1] and the measurement
Zl',k.

1. Calculate the cubature points

CPum,ikik—1 = +/ Piklk=18m + Xikjk—1-

2. Propagate the cubature points through the
observation function

Zyikik—1 = Rik (ePomikik—1) -
3. Calculate the predicted measurement

2ny

—~ 1 *
Zjklk—1 = e Z Zyiklk—1
Nx
m=1
4. Calculate the measurement residual

€k = Zik — Zjklk—1-

5. Calculate the cross covariance
2n

1
*T
Z CPm,ik|k—1Zm,i k|k—1

sz,i,k|k—1 = ﬂ
m=1

~ ~T
— Xiklk—1Z; k|k—1°
6. Calculate the information contribution matrix

—v. ) —1pT T
Lk = Yl:k|k—1PXZ:l:k|k—Ri,k sz,i,k|k—1Yi,k|k—1’

where R;  is the measurement noise covariance
matrix.
7. Compute the information contribution vector

. -1
i = Yikjk—1Pxazikik—R;
T T =
(ez‘,k + sz,i,k\k—lYi,k\k—lxi,k\kfl) :
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