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Abstract
Using PDE-constrained optimization we introduce a parameter identification
approach which can identify the blood perfusion rate from MR thermometry data
obtained during the treatment with laser-induced thermotherapy (LITT). The blood
perfusion rate, i.e., the cooling effect induced by blood vessels, can be identified
during the first stage of the treatment. This information can then be used by a
simulation to monitor and predict the ongoing treatment. The approach is tested
with synthetic measurements with and without artificial noise as input data.
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1 Introduction
Laser-induced interstitial thermotherapy (LITT) is a minimally invasive, local therapy
used to destroy tumors through thermal ablation. For this, laser radiation is transmitted
by an optical fiber to an application system (see Fig. 1) that is inserted into the tumorous
tissue. Absorption of the radiation by the tissue results in a temperature increase around
the applicator which destroys the tumor cells due to coagulative effects. The goal of the
therapy is to completely destroy the tumor while protecting the healthy tissue. To reach
this goal, computer simulations can assist physicians in the planing and monitoring of
treatments. However, such simulations can only yield reliable results if all necessary pa-
rameters are known. While typically good measurements are available for many of the tis-
sue parameters, a critical role is the determination of the blood perfusion rate that models
the cooling effect induced by blood vessels.

The blood perfusion rate is a nonlocal whose magnitude depends on the presence of
blood vessels. Further, it depends on the shape and size of the vessels. The induced cooling
effect significantly influences the temperature. The knowledge of the location of the blood
vessels in the vicinity of tumorous tissue (and, thus, close to the applicator) is crucial for
the performance of the therapy as well as for the reliability of a simulation model as e.g.
discussed in [1–5]. Unfortunately, the location relative to the applicator varies for each
patient and treatment. The location of major vessels can be determined a-priori, e.g., with
the help of image decomposition techniques. However, this is tedious and may give a rather
bad approximation of the actual perfusion rate.
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Figure 1 Schematic of the setup and the boundary decomposition

A more promising approach for the identification of the blood perfusion rate is to
use temperature measurements obtained by magnetic resonance (MR) thermometry. MR
thermometry methods are based on MR measured parameters depending on temperature
like the longitudinal relaxation time, the diffusion coefficient, or the proton resonance fre-
quency (PRF) of tissue water. The linear temperature dependence of the proton resonance
frequency and its near-independence with respect to tissue type make the PRF-based
methods the preferred choice for many applications. For a more deeper understanding
to MR-Thermometry we refer to the review paper [6].

The idea proposed in this paper is to identify the perfusion rate in a short time period
during the beginning of the treatment from MR thermometry data. This information can
then be used to simulate the remaining treatment. This is of great benefit for LITT as it
can be integrated into an online therapy monitoring and prediction tool, individualized
for every patient. In the following we derive a parameter identification approach for the
blood perfusion rate from MR thermometry data using techniques from optimal control
for partial differential equations. Synthetic measurements are used to demonstrate the
approach.

This paper is structured as follows. In Sect. 2 we introduce our mathematical model of
LITT. Section 3 gives the details of the parameter identification problem and its formula-
tion as a PDE constrained optimization problem. The numerical solution of the problem
is described in Sect. 4. The validation of our method is done in Sect. 5, where we discuss
the results of some model problems using synthetic measurements.

2 Mathematical model
For the modeling of the LITT we use the same model as [7] which was proposed in [8].
The model is summarized in the following. The liver tissue is denoted by Ω ⊂ R

3. Its
boundary Γ consists of the following three parts: The ambient boundary Γamb, i.e., the
surface of the liver, as well as two parts corresponding to the interface between tissue and
laser applicator (the latter is not part of Ω): Γcool, the part of the applicator boundary that
is cooled, and Γrad, the part of the boundary where radiation is emitted. Further, t and τ

denote the time [s] and the time horizon of the simulation [s], respectively.
To model the tissue temperature during LITT we use Pennes’ bio-heat equation [9] that

is coupled with a P1-approximation for the laser radiation [10] and the Arrhenius law that
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models tissue damage [8]. The bio-heat equation [9] reads

⎧
⎪⎪⎨

⎪⎪⎩

ρCpṪ – ∇ · (κ∇T) + ξ (T – Tb) = μaϕ in (0, τ ) × Ω ,

κ∂nT + α(T – Text) = 0 on (0, τ ) × Γ ,

T(0, ·) = T0 in Ω ,

(1)

where T is the tissue temperature [K], and κ , ρ and Cp denote the liver’s thermal conduc-
tivity [W/(m K)], density [kg/m3] and specific heat capacity [J/(m K)], respectively. The
term ξ (T – Tb) models the heat transfer between blood vessels and liver tissue, where ξ

denotes the perfusion rate [W/(K m3)] and Tb is the blood temperature [K]. As the perfu-
sion rate is typically unknown, we propose a method for identifying this quantity later on.
The energy generated by the laser enters the equation as a source term, where μa is the
absorption coefficient [1/m] and ϕ is the radiative energy [W/m2], which we explain in
the following paragraph (cf. (2)). The term ∂nT denotes the normal derivative of T in the
direction of the outer unit normal vector n, i.e., ∂nT = n ·∇T . The heat transfer coefficient
[W/(K m2)] is denoted by α and the external temperature [K] by Text. Note that these two
parameters vary over the boundary, in particular, we have that α = αcool and Text = Tcool

on Γcool ∪ Γrad as well as α = αamb and Text = Tamb on Γamb. Finally, the initial temperature
of the tissue [K] is denoted by T0.

We model the radiative energy ϕ via the P1-approximation [10, 11]:

⎧
⎪⎪⎨

⎪⎪⎩

–∇ · (D∇ϕ) + μaϕ = 0 in (0, τ ) × Ω ,

D∂nϕ = q on (0, τ ) × (Γcool ∪ Γrad),

D∂nϕ + 1
2ϕ = 0 on (0, τ ) × Γamb,

(2)

where D denotes the diffusion coefficient [m] that is defined as

D =
1

3(μa + μs(1 – g))
.

Here, μs is the scattering coefficient [1/m] and g is the anisotropy factor. Furthermore, q
is a boundary source that models the radiation coming from the laser applicator. On Γcool

there is no radiation, so q = 0, and on Γrad we have q = qapp
|Γrad| , where |Γrad| denotes the area

of the radiating surface Γrad and qapp is the effective laser power. The latter is given by

qapp(t) =

⎧
⎨

⎩

(1 – βq)q̂app if ton ≤ t ≤ toff ,

0 otherwise,

where q̂app is the total power emitted by the laser [W] and βq is the coolant absorption
factor that models the absorption of energy by the coolant (cf. [7]). Additionally, ton and
toff denote the times where the laser is switched on and off, respectively.

Finally, we consider the coagulation of the tissue molecules using Arrhenius’ law (cf. [8])
which reads

ω(t, x) =
∫ t

0
A exp

(

–
Ea

RT(θ , x)

)

dθ , (3)
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Table 1 Values for the various parameters of the liver tissue

Parameter [unit] Value

general
tissue density ρ [kg/m3] 1.08× 103

universal gas constant R [J/(mol K)] 8.31
total laser power q̂app [W] 22
ton [s] 25
toff [s] 1175
end of treatment τend [s] 1200
perfusion rate in a blood vessel ξmax [W/(K m3)] 6× 104

thermal
heat conductivity κ [W/(m K)] 0.48
specific heat capacity Cp [J/(m K)] 3.69× 103

heat transfer coefficient αcool [W/(K m2)] 250
heat transfer coefficient αamb [W/(K m2)] 0
coolant absorption factor βq [1] 0.14
initial temperature T0 [°C] 21.8
cooling temperature Tcool [°C] 20
blood temperature Tb [°C] 21.8
ambient temperature Tamb [°C] 21.8

optical (native)
absorption coefficient μan [1/m] 50
scattering coefficient μsn [1/m] 8× 103

anisotropy factor gn [1] 0.97

optical (coagulated)
absorption coefficient μac [1/m] 60
scattering coefficient μsc [1/m] 3× 104

anisotropy factor gc [1] 0.95

tissue damage
frequency factor A [1/s] 3.1× 1098

activation energy Ea [J/mol] 6.28× 105

where A denotes the frequency factor [1/s], Ea is the activation energy [J/mol] and R the
universal gas constant [J/(mol K)]. It is important to note that this quantity does not only
depend on the temperature at the current time t, but on its entire history. As tissue damage
influences the optical parameters substantially, we model the effect of coagulation on them
according to [7, 8] by

⎧
⎪⎪⎨

⎪⎪⎩

μa = μan + (1 – exp(–ω))(μac – μan),

μs = μsn + (1 – exp(–ω))(μsc – μsn),

g = gn + (1 – exp(–ω))(gc – gn),

where the subscript n denotes the native value of that parameter and the subscript c the
respective coagulated one. The parameter values used in this paper are shown in Table 1
(cf. [7, 12–15]). Note, that these parameters represent healthy tissue. It is, however, eas-
ily possible to account for tumorous tissue through local variations of the corresponding
parameters.

3 Parameter identification
We now formulate the parameter identification problem and relate it to an optimal control
problem, which is subsequently treated with the help of the adjoint approach.



Andres et al. Journal of Mathematics in Industry           (2020) 10:17 Page 5 of 20

3.1 Problem formulation
Given a temperature measurement Tmeas at a certain time we want to identify (or recon-
struct) the blood perfusion rate ξ that induced the measured temperature distribution.
Without loss of generality we assume that the time of the measurement coincides with
the time horizon τ . Later on, we choose a time horizon that is much smaller than the end
time of the therapy τend to identify the perfusion rate at the beginning of the treatment. We
assume that our state equations (1) and (2) admit a unique solution (cf. [16]). We define
the cost functional J(T , ξ ) as

J(T , ξ ) :=
1
2

∫

Ω

∣
∣T(τ , ·) – Tmeas

∣
∣2 dx +

λ

2

∫

Ω

|ξ |2 dx, (4)

which is then used to model the parameter identification problem described above with
the following minimization problem:

min
ξ∈A,T

J(T , ξ ) s.t. (1) and (2). (5)

Here, the perfusion rate ξ plays the role of a control that is used to “steer” the state, i.e., the
simulated temperature, to the desired state, i.e., the temperature measurement. Further,
A ⊂ L2(Ω) denotes the set of admissible perfusion rates which is used in order to model
so-called control constraints, e.g., only nonnegative perfusion rates are physically mean-
ingful. The first term (also known as observation term) tries to minimize the difference of
T(τ , ·) and Tmeas. This means that we try to compute a perfusion rate such that the result-
ing temperature distribution at time τ is close to the measured temperature. The second
term is a so-called Tikhonov regularization with regularization parameter λ ≥ 0, which is
used to stabilize the (possibly) ill-posed problem (cf. [17, 18]).

We reformulate the optimization problem (5) equivalently thanks to our assumption
that the state equations admit a unique solution. To do this, we denote by T[ξ ] the solution
of (1) and (2) with blood perfusion rate ξ . We introduce the reduced cost functional Ĵ by

Ĵ(ξ ) := J
(
T[ξ ], ξ

)
, (6)

and see that (5) is equivalent to the reduced problem

min
ξ∈A

Ĵ(ξ ) =
1
2

∫

Ω

∣
∣T[ξ ](τ , ·) – Tmeas

∣
∣2 dx +

λ

2

∫

Ω

|ξ |2 dx, (7)

where the PDE constraint is formally eliminated. To solve this minimization problem, we
apply techniques from PDE-constrained optimization. In particular, we compute the gra-
dient of the reduced cost functional Ĵ which is then used to solve problem (7) numerically
with a gradient descent or a quasi-Newton method (cf. Sect. 4). For a detailed introduction
to optimization problems constrained by PDEs and their (numerical) solution we refer,
e.g., to [19–21].

3.2 Adjoint-based identification
To compute the gradient of Ĵ , we use the formal Lagrange method of [19, Chap. 2.10]. For
this purpose, we set up a Lagrangian L(ξ , T ,ϕ, p,ψ), where p and ψ are used as Lagrange
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multipliers for the PDE constraints (1) and (2). Then, the first order optimality conditions
for a stationary point of the Lagrangian (and, therefore, for a minimizer of (5)) are given
by the system

∂L
∂p

(ξ , T ,ϕ, p,ψ)[p̂] = 0 for all p̂, (8)

∂L
∂ψ

(ξ , T ,ϕ, p,ψ)[ψ̂] = 0 for all ψ̂ , (9)

∂L
∂T

(ξ , T ,ϕ, p,ψ)[T̂] = 0 for all T̂ , (10)

∂L
∂ϕ

(ξ , T ,ϕ, p,ψ)[ϕ̂] = 0 for all ϕ̂, and (11)

∂L
∂ξ

(ξ , T ,ϕ, p,ψ)[ξ̂ – ξ ] ≥ 0 for all ξ̂ ∈A. (12)

For our problem (5), this Lagrangian is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(ξ , T ,ϕ, p,ψ) = 1
2
∫

Ω
|T(τ , ·) – Tmeas|2 dx + λ

2
∫

Ω
|ξ |2 dx

–
∫ τ

0
∫

Ω
ρCpṪp1 dx dt +

∫ τ

0
∫

Ω
∇ · (κ∇T)p1 dx dt

–
∫ τ

0
∫

Ω
ξ (T – Tb)p1 dx dt +

∫ τ

0
∫

Ω
μaϕp1 dx dt

–
∫ τ

0
∫

Γ
κn · ∇Tp2 ds dt –

∫ τ

0
∫

Γ
α(T – Text)p2 ds dt

–
∫

Ω
(T(0, ·) – T0)p3 dx +

∫ τ

0
∫

Ω
∇ · (D∇ϕ)ψ1 dx dt

–
∫ τ

0
∫

Ω
μaϕψ1 dx dt –

∫ τ

0
∫

Γrad
Dn · ∇ϕψ2 ds dt

+
∫ τ

0
∫

Γrad

qapp
|Γrad|ψ2 ds dt –

∫ τ

0
∫

Γcool
Dn · ∇ϕψ3 ds dt

–
∫ τ

0
∫

Γamb
Dn · ∇ϕψ4 ds dt –

∫ τ

0
∫

Γamb
1
2ϕψ4 ds dt,

(13)

where p = [p1, p2, p3] and ψ = [ψ1,ψ2,ψ3,ψ4]. As the Lagrangian is linear in p and ψ , we
see that equations (8) and (9) of the optimality system are equivalent to the state equations
(1) and (2) that constrain the optimization problem (5).

Lengthy calculations show that (10) and (11) give rise to the conditions

ψ2 = ψ1 on (0, τ ) × Γrad, ψ3 = ψ1 on (0, τ ) × Γcool,

ψ4 = ψ1 on (0, τ ) × Γamb, p2 = p1 on (0, τ ) × Γ , and

p3 = ρCpp1(0),

such that we only have to consider the multipliers p1 and ψ1. Therefore, in the following
we drop the index and only write p = p1 as well as ψ = ψ1. Furthermore, with the above
conditions, (10) and (11) are equivalent to the following system of adjoint equations:

⎧
⎪⎪⎨

⎪⎪⎩

–ρCpṗ – ∇ · (κ∇p) + ξp + F1 + F2 = 0 in (0, τ ) × Ω ,

κ∂np + αp = 0 on (0, τ ) × Γ ,

p(τ , ·) – λ
ρCp

(T(τ , ·) – Tmeas) = 0 in Ω ,

(14)
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where

F1 = A exp

(

–
Ea

RT

)
Ea

RT2

∫ τ

t

∂μa

∂ω
ϕ(ψ – p) dθ ,

F2 = A exp

(

–
Ea

RT

)
Ea

RT2

∫ τ

t

∂D
∂ω

∇ϕ · ∇ψ dθ ,

and p solves

⎧
⎪⎪⎨

⎪⎪⎩

–∇ · (D∇ψ) + μaψ = μap in (0, τ ) × Ω ,

D∂nψ = 0 on (0, τ ) × (Γcool ∪ Γrad),

D∂nψ + 1
2ψ = 0 on (0, τ ) × Γamb.

(15)

Moreover, we remark that, as usual, the adjoint (bio-)heat equation is an equation that
is posed backward in time. For the analysis and numerical solution of this equation one
can introduce the time shift Θ = τ – t and then solve an equation that evolves forward in
Θ (cf. [19, 20]).

Finally, the optimality condition (12) is equivalent to the following variational inequality

Ĵ ′(ξ )[ξ̂ – ξ ] =
(
Ĵ ′(ξ ), ξ̂ – ξ

)

L2(Ω) ≥ 0 for all ξ̂ ∈A, (16)

where (u, v)H denotes the inner product of u and v in some Hilbert space H . Here, the
gradient of the reduced cost functional is given by

Ĵ ′(ξ ) = λξ +
∫ τ

0
(Tb – T)p dt. (17)

This relation is used in Sect. 4 for the numerical solution of the parameter identification
problem (5). Our results are summarized in Proposition 3.1.

Proposition 3.1 Let A be a convex subset of L2(Ω). The first order necessary conditions
for ξ ∗ being a minimizer of (7) are given by the state equations (1) and (2), the adjoint
equations (14) and (15), as well as the variational inequality (16). The gradient Ĵ ′(ξ ) of the
reduced cost functional is given by (17).

4 Numerical methods
In the following we discuss the numerical methods used to solve the parameter identi-
fication problem. First, we describe the numerical solution techniques for the state and
adjoint equations and then we elaborate the algorithms used for solving the optimization
problem.

4.1 Solution of the PDEs
We solve all PDEs, i.e., the state and adjoint equations, with the finite element method.
For this purpose, we triangulate our domain Ω with the help of GMSH, version 2.11.0
[22]. The assembly and solution of the linear systems is done with FEniCS, version 2018.1
[23, 24] and PETSc, version 3.10.5 [25], respectively. To solve the time-dependent PDEs
(1) and (14) we first discretize them in time with the implicit Euler method. Further, all
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PDEs are discretized in space with the help of linear Lagrange elements. The resulting
sequences of linear systems corresponding to (1), (2), and (15) are then solved with the
conjugate gradient method and an incomplete Cholesky factorization as preconditioner.
For the solution of the sequence of linear systems arising from (14) we use the MINRES
algorithm and the Jacobi method as preconditioner, as the corresponding matrices are
symmetric, but not necessarily positive definite.

4.2 Solution of the optimization problem
Let us now turn our attention to the numerical solution of the optimal control problem
(5) which we solve by the means of a projected quasi-Newton method described in [26].
The idea of the method is the following: Assume that we computed the k-th iterate ξk . To
compute the gradient of the reduced cost functional, we first solve the state equations (1)
and (2) and then the adjoint equations (14) and (15). Subsequently, we compute gk = Ĵ ′(ξk)
with the relation (17) and, with this, the search direction dk is computed by a L-BFGS
(limited-memory Broyden–Fletcher–Goldfarb–Shanno) update of the form

dk = –H–1
k gk , (18)

where Hk denotes the L-BFGS approximation of the (reduced) Hessian of Ĵ at ξk . The
application of the inverse of Hk is efficiently performed via the well-known BFGS double
loop [26, 27]. Next, we perform a line search along the projected path given by P(ξk +αdk),
where P denotes the projection onto A, to find a suitable step size αk . This is done by the
following Armijo rule (cf. [28, 29]): Define ξk(α) = P(ξk + αdk). Then, the step size αk is of
the form αk = βmk γ , where β ∈ (0, 1) and γ > 0 and mk is the smallest integer satisfying

Ĵ
(
ξk(αk)

) ≤ Ĵ(ξk) + γ
(
Ĵ ′(ξk), ξk(αk) – ξk

)

L2(Ω). (19)

For all of our numerical results we choose β = 1
2 and γ = 1 × 10–4 (cf. [27]). Finally, we

update the iterate by ξk+1 = P(ξk +αkdk). For the stopping criterion we define the stationary
measure as

Σ(ξ ) :=
∥
∥ξ – P

(
ξ – Ĵ ′(ξ )

)∥
∥

L2(Ω),

and terminate the method once the relative stopping criterion

Σ(ξk) ≤ tolΣ(ξ0) (20)

is satisfied, where tol is a user-defined tolerance (cf. [26]). This procedure is summarized
in Algorithm 1. A detailed description of the optimization methods can be found in, e.g.,
[26, 27], and their application to PDE-constrained optimization problems is covered in,
e.g., [19–21].

For the computation of the search direction with the quasi-Newton method in step 7 of
Algorithm 1 (cf. (18)) we use the algorithm given in [26, Chap. 5.5.3]. This corresponds
to a projected BFGS method that approximates the reduced Hessian of the problem. We
implemented this by the means of a limited memory BFGS update that only uses the infor-
mation of the last l ∈N steps. In particular, we get a complete projected BFGS method in
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Algorithm 1: Projected quasi-Newton algorithm
Input: initial perfusion rate ξ0, tolerance tol ∈ (0, 1)

1 for k = 0, 1, 2, . . . do
2 if Stopping criterion (20) is satisfied then
3 Stop with minimizer ξk

4 Solve the state equations (1) and (2)
5 Solve the adjoint equations (14) and (15)
6 Compute the gradient gk = Ĵ ′(ξk) via (17)
7 Compute the search direction dk as Hkdk = –Ĵ ′(ξk)
8 Compute a feasible stepsize αk with the Armijo rule (19)
9 Update the perfusion rate: ξk+1 = P(ξk + αkdk)

case l = ∞. On the other hand, for l = 0 we choose Hk = I , where I denotes the identity, and
the whole method reduces to the projected gradient descent method that is described, e.g.,
in [19, 20, 26]. Therefore, when we speak of using a (projected) gradient descent method
we refer to the case l = 0 and when we talk about using a (projected) L-BFGS method we
refer to the case l > 0. These two methods are compared in Sect. 5. Finally, note that in case
the curvature condition for the BFGS method is not satisfied we re-initialize the method
with the identity, i.e., we perform a gradient descent step (see [26, Chap. 4.2.2] for details).

4.3 Multiple measurements
The ideas and methods described before can be generalized to the case where multi-
ple measurements are taken during the therapy. To do so, assume that m measurements
T (1)

meas, . . . , T (m)
meas are taken at times τ1 < τ2 < · · · < τm and that we have an initial guess ξ0

for the perfusion rate. As before, all measurements should be taken before the end of the
therapy, so τm < τend and, additionally, we define τ0 = 0.

A first approach for solving this problem would be to use Algorithm 1 on each interval
(τk , τk+1) separately, where the initial temperature is given by the measurement. However,
this has the important drawback, that we would also need measurements of tissue damage
at τk which we cannot compute accurately from the thermometry data. Therefore, we
consider using the previously simulated temperature distribution and tissue damage as
initial conditions for the subsequent identification interval.

In particular, our method proceeds as follows: On the first interval, i.e., (0, τ1) we use Al-
gorithm 1 in order to identify the blood perfusion rate ξ (1) and the resulting temperature
distribution T (1) = T[ξ (1)] as well as damage function ω(1). These are then used as initial
conditions for the state equations for the identification in the subsequent interval (τ1, τ2).
Furthermore, we also use the perfusion rate ξ (1) as initial guess for the parameter identi-
fication algorithm on (τ1, τ2). These steps are then repeated until the last identification is
carried out. Therefore, the blood perfusion rate we compute with this approach is con-
stant on each interval (τk , τk+1), and the simulated temperature is the one corresponding
to this piecewise constant perfusion rate. As we want to predict the temperature in the
time interval (τm, τend), we choose the last computed perfusion rate ξ (m) as the perfusion
rate on this interval. We do so as the effect of the perfusion rate depends on the magnitude
of the difference T – Tb which increases over time. Therefore, the last identified perfusion
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rate should also be the most accurate one. The numerical experiments described in the
following section confirm that this approach works well.

5 Numerical results
We now apply the previously introduced techniques for identifying the perfusion rate to
a model problem: We generate an artificial temperature measurement Tmeas from a syn-
thetic perfusion rate ξmeas as solution of the state equations. Furthermore, for all of our
experiments we choose the set of admissible perfusion rates A as

A :=
{
ξ ∈ L2(Ω)|ξ ≥ 0 a.e. in Ω

}
.

As stated previously, this is sensible as all physically meaningful perfusion rates are non-
negative.

To demonstrate the behavior and capabilities of the parameter identification algorithm
of Sect. 4, we first assume that there is no noise present in the measurement, i.e., we per-
form the identification with an “exact” measurement. Afterwards, we investigate its per-
formance in the presence of noisy measurements. For simplicity, consider axisymmetric
problems such that we can perform the numerical studies in 2D. The axisymmetric geom-
etry is shown in Fig. 2a. The parameters used for our problem are taken from [7] and are
depicted in Table 1. Note that these parameters represent ex-vivo porcine tissue. However,
the values are close to the ones of human tissue [12] and the results can be transferred to
the in-vivo scenario.

5.1 Noiseless model problem
For this problem, we only compute the perfusion rate after τ1 = 60 s and simulate the rest
of the treatment with the perfusion rate computed in this first identification step. For the
optimization algorithms we choose the initial guess for the perfusion rate as ξ = 0 and the
relative stopping tolerance is set to tol = 1×10–3. Furthermore, we set the regularization
parameter as λ = 0, i.e., we do not use a Tikhonov regularization for this case. We stop the
parameter identification after 20 iterations in case the stopping criterion is not satisfied.
The synthetic perfusion rate ξmeas is depicted in Fig. 2b. The maximum perfusion rate
is chosen to be ξmax = 6 × 104 W/(K m3) in accordance to [1]. Outside the blood vessels
we set the perfusion rate to 0. For the numerical analysis of the parameter identification
we consider two different types of blood vessels: First, “smooth vessels” that are modeled
via two-dimensional Gaussian kernels with maximum height ξmax, and second, “square
vessels” that have a constant perfusion rate ξmax. Note that for the L-BFGS algorithm we
use (at most) the information of the last 5 iterations for the update of the approximate
Hessian.

A single measurement The identified perfusion rates are depicted in Fig. 3, where the
result of the gradient descent method is shown in Fig. 3a and the perfusion rate computed
with the L-BFGS method can be seen in Fig. 3b. The convergence history of both opti-
mization algorithms is shown in Fig. 4, where the function values are given in Fig. 4a and
the relative stationary measure is depicted in Fig. 4b. Finally, we also compare the simu-
lated temperature, radiative energy and tissue damage to our artificial measurements. The
absolute and relative errors in L∞(0, τend; L∞(Ω)) and L2(0, τend; L2(Ω)) norms can be seen
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Figure 2 Problem setting

in Table 2 for both the gradient descent method and the L-BFGS method. Note that we
define the tissue damage as δ = 1 – exp(–ω), i.e., the measure that indicates whether the
tissue is in its native (δ = 0) or coagulated (δ = 1) state as the parameter ω enters our model
only through δ.

First, we note that the proposed parameter identification performs well for both algo-
rithms. The identified perfusion rates in Fig. 3 approximate the “measured” perfusion rate
well, at least close to the applicator. The positions of the blood vessels in the first row
and next to the radiating boundary are the ones that are identified best, their position
and shape closely resembles the measurement data. However, the identification becomes
worse for the vessels located to the top and bottom of Γrad and for the vessels further away
from the applicator. In particular, the second row of vessels can only be seen very faintly
for the gradient descent method, whereas the three middle vessels are still recognizable
for the BFGS method, even though it underestimates the magnitude of the perfusion rate.
This is due to the following reason: The influence of the perfusion rate is proportional to
the temperature difference T – Tb. However, the temperature is highest close to Γrad and
decays with increasing distance from there. Thus, the temperature difference at the “outer”
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Figure 3 Identified perfusion rates

Figure 4 Convergence history of the optimization methods

vessel locations is not significant and neither is the effect of the perfusion rate. Thus, our
algorithm performs well by finding the significant blood vessels close to the applicator.

In Fig. 4 we can further observe that the BFGS method outperforms the gradient descent
algorithm as the values of the cost functions are always lower for the former and so are
the values of the stationary measure. As the computational cost of the L-BFGS method is
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Table 2 Comparison between the simulated and measured temperature for a single measurement

L∞-error L2-error

gradient descent
temperature T 8.684 (2.111%) 0.916 (0.731%)
radiative energy ϕ 9931 (2.738%) 27.711 (0.456%)
tissue damage δ 0.863 (86.26%) 0.017 (19.05%)

L-BFGS
temperature T 3.789 (0.921%) 0.413 (0.33%)
radiative energy ϕ 7002 (1.93%) 9.092 (0.15%)
tissue damage δ 0.253 (25.295%) 0.002 (1.8%)

ξ = 0
temperature T 44.835 (10.9%) 2.629 (2.098%)
radiative energy ϕ 2.103× 105 (57.985%) 372.502 (6.129%)
tissue damage δ 1 (100%) 0.063 (69.422%)

Figure 5 Evolution of the error in temperature over time for one measurement

essentially the same as for the gradient descent algorithm, we can save valuable compu-
tational time by using the former, as it needs about half as many steps to reach a certain
tolerance in the cost function compared to the latter.

The comparison of the simulated and measured physical quantities shown in Table 2
emphasizes the fact, that the BFGS method exhibits better properties. Furthermore, com-
paring the errors of the simulated physical quantities to the ones we get for a vanishing
perfusion rate we observe that the effect of blood perfusion is significant for the therapy
planning as stated in [1]. We observe that the simulation results of our algorithms are
significantly better than those of the simulation that does not consider the effect of the
perfusion rate. Moreover, the errors generated by the BFGS method are only about half
of those generated with the gradient descent method for T and ϕ, however, the error in
tissue damage goes down dramatically by a factor of 3.5 in the L∞ norm and by a factor of
10 in the L2 norm, underlining the superior behavior of the BFGS method.

Finally, we also show the evolution of the error in temperature over time in Fig. 5 for
both the L∞(Ω) and L2(Ω) norm. We observe a similar picture as before, where the BFGS
method outperforms the gradient descent method. Furthermore, we can see that even with
only one measurement the methods produce comparatively low errors in the simulation,
even though the results are “extrapolated” into the future. In particular, we again observe
that the effect of blood perfusion is significant here, as the error increases rapidly when
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Figure 6 Identified perfusion rates for multiple measurements

Table 3 Comparison between the simulated and measured temperature for multiple measurements

L∞-error L2-error

gradient descent
temperature T 4.068 (0.989%) 0.466 (0.372%)
radiative energy ϕ 3819 (1.053%) 5.914 (0.097%)
tissue damage δ 0.166 (16.6%) 0.002 (1.934%)

L-BFGS
temperature T 2.771 (0.674%) 0.253 (0.2%)
radiative energy ϕ 2443 (0.674%) 3.437 (0.057%)
tissue damage δ 0.105 (10.46%) 0.001 (1.373%)

considering ξ = 0, whereas the error stays comparatively small for the simulation with the
identified perfusion rate.

Multiple measurements Now, we also examine the quality of the identification for multi-
ple measurements. We choose the same setting as before, but this time we assume to have
temperature measurements at τ1 = 60 s, τ2 = 120 s and τ3 = 180 s. The identified perfusion
rates for this setting are shown in Fig. 6, and the comparison to the measurement data is
depicted in Table 3.
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Figure 7 Evolution of the error in temperature over time for 3 measurements

Again, we observe that the L-BFGS method outperforms the gradient descent algorithm:
In Fig. 6 we observe that it can identify more blood vessels and resolves them more accu-
rately, e.g., the first column of vessels is clearly visible and well identified, the three vessels
in the middle of the second column can be seen more clearly now, although their perfu-
sion rate is still underestimated by the method. For the gradient descent algorithm only
the middle vessels of the first column are identified accurately. The ones further away from
Γrad are better visible than before and the result resembles the one for the BFGS method
with one measurement shown in Fig. 3b.

The same is true for the comparison of the simulated and synthetic data (cf. Table 3).
Here, the errors for the temperature with the three measurement gradient descent algo-
rithm are very close to the errors obtained by the BFGS method with only one measure-
ment. However, the errors for the radiative energy and tissue damage are lower. The BFGS
method also improves its performance for three measurements compared to a single one,
albeit only slightly for most errors.

Again, we also show the evolution of the error in temperature over time for the whole
simulation in Fig. 7, this time in comparison to the results obtained with only one measure-
ment. The results depicted here are similar to the ones of Fig. 5. In particular, the BFGS
method outperforms the gradient descent one. Moreover, we can see that the results ob-
tained with the gradient descent method after three identifications are comparable to the
ones of the BFGS method for only one identification process. It can also be seen that the
error is smaller overall if we use three temperature measurements compared to using only
one, and that it gives way better results even for late points in time during the therapy.

Summing up, we observe that a single measurement can be sufficient for our purposes
if the identification is carried out with the BFGS method. Doing so saves a lot of computa-
tional time and is a stepping stone for the use of the method in an online therapy-planning
and -monitoring tool.

5.2 Noisy model problem
Let us now consider the case of noisy measurement data: We choose the same desired
perfusion rate as before (cf. Fig. 2b) and generate the measurement by solving the state
equations. Then, we add Gaussian noise with zero mean and a standard deviation of σ =
2°C. This is in accordance with [30] and [31] where the accuracy of temperature measure-
ments using MR thermometry is reported to be 2.3°C and 1.3°C, respectively. To identify
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the perfusion rate for this problem, we first smooth the data with an isotropic linear diffu-
sion process with end time 2 × 10–7, which is equivalent to convolving the noisy data with
a Gaussian kernel that has a standard deviation of 6.32×10–4. Using a higher standard de-
viation leads to more smoothing but also introduces bias to the synthetic measurements
such that the data is not compatible with the model anymore. For more details on linear
diffusion processes for filtering noise we refer to, e.g., [32]. As this problem is less regular
we choose the regularization parameter as λ = 2.5 × 10–10. We compare the BFGS and
gradient descent method in the same context as before: First, we have a single measure-
ment of temperature at τ = 60 s and, second, we consider three measurements at τ1 = 60 s,
τ2 = 120 s and τ3 = 180 s. All other parameters are chosen as in Sect. 5.1.

A single measurement In the case of a single measurement at τ = 60 s we see that there
is not much of a difference between the gradient descent method and the L-BFGS algo-
rithm. The computed perfusion rates, depicted in Fig. 8, look nearly identical, and so do
the errors, as can be seen in Table 4 and Fig. 9. As is to be expected, the results obtained
from the noisy measurements are worse than the ones we got in Sect. 5.1, where we did
only consider noiseless data. In particular, the computed perfusion rates are worse com-
pared to the previous cases and one can hardly distinguish the isolated vessels anymore.

Figure 8 Identified perfusion rates for noisy measurements
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Table 4 Comparison between the simulated and measured temperature for a single measurement

L∞-error L2-error

gradient descent
temperature T 8.805 (2.141%) 0.737 (0.588%)
radiative energy ϕ 111237 (30.67%) 159 (2.62%)
tissue damage δ 0.973 (97.27%) 0.016 (17.879%)

L-BFGS
temperature T 8.876 (2.158%) 0.712 (0.568%)
radiative energy ϕ 112285 (31%) 160 (2.64%)
tissue damage δ 0.974 (97.4%) 0.017 (18.3%)

Figure 9 Evolution of the error in temperature over time for one noisy measurement

Instead, the vessels are more “smeared out”. However, we can still observe that we have
three peaks in the perfusion rate, corresponding to the vessels in the middle of the first
column for the desired perfusion rate. Additionally, we can observe that the middle one
of these three shows a higher perfusion rate, as it is the case for the synthetic blood perfu-
sion (cf. Fig. 2b). We also observe that both methods underestimate the perfusion rate by
about 20%. This is due to the effect of the regularization term that penalizes large values
of ξ .

The quality of approximation for the whole therapy, as shown in Table 4, is comparable
for both methods, neither one of them performs significantly better than the other. The
same is true when investigating the evolution of the error in temperature over time (cf.
Fig. 9), where there is barely any difference visible between both algorithms.

Multiple measurements For the case of three noisy measurements, both the gradient
descent algorithm and the L-BFGS method perform significantly better and there are more
differences between the methods. In particular, the obtained perfusion rates are much
closer to the synthetic one as Fig. 10 shows. Here, we observe that both methods can
resolve the individual peaks of the blood vessels placed in the first row, now even all five of
them are well visible. Again, we observe that the algorithms underestimate the perfusion
rate, however, the error is smaller for the L-BFGS method. We can also see that there are
some artifacts contained in the computed perfusion rates. We observe that noise is added
to the regions behind the first column, especially in the L-BFGS method.

The quality of approximation for the whole therapy also improves, as can be seen in
Table 5. Again, both methods show significant improvements, in particular for the error
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Figure 10 Identified perfusion rates for multiple noisy measurements

Table 5 Comparison between the simulated and measured temperature for multiple noisy
measurements

L∞-error L2-error

gradient descent
temperature T 5.148 (1.25%) 0.51 (0.41%)
radiative energy ϕ 38413 (10.6%) 50 (0.823%)
tissue damage δ 0.589 (58.9%) 0.006 (7.16%)

L-BFGS
temperature T 4.374 (1.06%) 0.4 (0.32%)
radiative energy ϕ 40890 (11.27%) 50.15 (0.825%)
tissue damage δ 0.62 (62%) 0.006 (6.93%)

in temperature, which is about halved in the L∞-norm, and in tissue damage, which de-
creases nearly by two-thirds in the L2-norm. The evolution of the temperature error also
confirms these findings, as the results are substantially better as for only one measure-
ment. Additionally, we can see that the L-BFGS method now also performs better than
the gradient descent algorithm (see Fig. 11).
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Figure 11 Evolution of the error in temperature over time for 3 noisy measurements

6 Conclusions
We have demonstrated that the proposed parameter identification approach based on
techniques from PDE-constrained optimization can identify the blood perfusion rate in
the relevant region around the applicator. This was done using synthetic measurements
with and without artificial noise. Making use of three instead of one subsequent mea-
surements has notably improved the accuracy. The L-BFGS method uses significantly less
iterations to converge to an acceptable solution than the gradient descent method, while
the time per iteration is comparable for both methods. The next step will be to test the pa-
rameter identification with real MR thermometry data obtained from ex-vivo experiments
with artificial blood vessels.
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