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Abstract

Background: Bio-ontologies are becoming increasingly important in knowledge representation and in the machine
learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the
SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of
daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to “understand”
biomedical data.

Results: This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were
applied to create predictive models for ADL disabilities for the first year after a patient’s cancer diagnosis. The first
method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for
reasoning with ontologies. The models showed that a patient’s race, ethnicity, smoking preference, treatment plan and
tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance
levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL
performance levels (P < 0.1) than methods without ontologies.

Conclusions: This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML
algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule
learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The
ontology-guided ML method achieved better performance than the method without ontologies. The presented method
can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge
and consistency with existing clinical expertise is critical.
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Background
Precision medicine is an emerging approach for dis-
ease prevention and treatment that takes into account
individualized patient information including genomics,
environment, and lifestyle [1]. This new era in medi-
cine and health requires advanced methodologies for
analyzing, synthesizing, and disseminating heteroge-
neous data, as well as the ability to harness existing
knowledge in order to discover relationships and cre-
ate computational models for improving care and
quality of life. The focus on big data analysis in the

biomedical field creates an even greater need for ad-
vanced computational methodologies that can translate data
into computer-interpretable knowledge and produce com-
prehensible models that can then be used to advance
patient-centric healthcare. Machine learning (ML) is already
widely used in creating predictive models within a variety of
arenas of big data analysis, and is gaining popularity in med-
ical and health applications [2].
One major challenge in ML is communicating the

meaning of data attributes and their significance to
the learning algorithm. Biomedical data are extremely
complex, heterogeneous, and characterized by intri-
cate semantics. Very few ML algorithms are capable
of interpreting data beyond the mechanical fitting of
input data/matrix of numbers into a given model.
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The majority of ML methods (including the most
popular Support Vector Machines, Random Forests,
Logistic Regression, etc.) work with and almost exclu-
sively focus on numeric data stored in flat tables
while ignoring the semantic relationships (meaning)
of data elements. Two existing ML disciplines that
address complex data are statistical relational learning
[3, 4] and inductive logic programming [5]. Both dis-
ciplines are concerned with the more general problem
of learning from datasets with complicated structures
(relational databases or predicates). However, while
healthcare data are particularly rich in knowledge, the
use of standard ML methods does not allow for the
encoding of attribute types, hierarchies, ontologies,
and other coding systems. Typically, in order to use
any background knowledge or ontological relation-
ships when applying ML methods, one needs to
encode these in problem representations, i.e., by cre-
ating additional dimensions that correspond to inter-
actions between existing ones. This is because the
ML method for input is a matrix of numerical data.
One example of using ontology in conjunction with
ML is the work by Kassahun et al. [6], in which the
researchers classified types of epilepsy patients and
their localization using an ontology-based classifica-
tion (OBC) methods that classified patients (slightly)
more accurately than clinicians.
An ontology formally represents domain knowledge as

a set of concepts and relationships between those con-
cepts. In artificial intelligence (AI), ontologies have been
applied as artifacts to represent human knowledge. They
are also critical components of knowledge management,
e.g. Semantic Web, business-to-business applications,
and natural language processing [7–10]. In biomedicine,
ontologies have been widely adopted and used in know-
ledge management, data integration, and decision sup-
port and reasoning [11, 12]. Bio-ontologies are slowly
emerging in data-driven science, including data mining
and ML, although mainly in the capacity and context of
natural language processing applications [13].
There are many existing bio-ontologies, each with a

scope, purpose, and role of its own with no industry
standard. Consequently, there are communication bar-
riers between the various information systems or appli-
cations when different vocabularies are used. In order to
address these barriers, the Unified Medical Language
System (UMLS) was developed by the National Library
of Medicine (NLM) in 1986 [14, 15]. The 2016 AB
version of the UMLS contains more than 3 million
concepts (CUIs) and 13 million unique concept names
(AUIs) from 199 source vocabularies [16]. The UMLS
establishes mappings between bio-ontologies by assign-
ing a concept unique identifier (CUI) to names from
various vocabularies that have the same meaning. The

vocabulary mappings allow computer systems to trans-
late data among the diverse information systems. Rich
relationships (22 million) between concepts in the
UMLS also provide a solid foundation for reasoning in
medical knowledge [11].
Thus, given the advantages of bio-ontologies know-

ledge, UMLS mappings, and the ability of ML to develop
and learn from predictive models, this paper aims to
describe and apply an ontology-guided ML method (em-
phasis on rule learning) by incorporating hierarchical
relationships from the UMLS. The UMLS is used to pro-
vide medical domain knowledge for the ML method to
“understand” the meaning and significance of the bio-
medical data, with regards to the existence of specific
hierarchical relationships between concepts. By applying
the ontology-guided ML method to SEER-MHOS data,
the technique is able to predict the cancer patients’ abil-
ity to perform activities of daily living (ADLs). The out-
come of which is generated rules that are highly
transparent and easy to understand. Thus, the rules can
be interpreted by the non-technical end users. This
proof of concept study suggests that the combination of
bio-ontologies and ML methods provides an advanced
computational and quantitative technique for analyzing
biomedical data.

Methods
AQ21 rule learning
AQ21 is a multi-task ML and data mining system for
attributional rule learning and rule testing that can be
applied to a wide range of classification problems [17]. It
was developed in the Machine Learning and Inference
Laboratory (MLI) at George Mason University. The sys-
tem has been recently extended to include features spe-
cific for processing biomedical data [18]. AQ21 is a type
of natural induction system that seeks to identify
patterns represented as attributional rules [19] that are
easily interpretable to end users. The basic form of an
attributional rule is: CONSEQUENT < = PREMISE
where both CONSEQUENT and PREMISE are conjunc-
tions of attributional conditions. Each attributional con-
dition involves attributes present in the data or
constructed by the program. Additionally, AQ21 can
learn rules with exceptions given by the formula CON-
SEQUENT < = PREMISE |_ EXCEPTION. The AQ21
system can also handle inconsistencies in data. The
system learns standard rules and generates exception
phrases that represent covered negative examples. EX-
CEPTION can be either an attributional conjunctive
description or a list of examples constituting exceptions
to the rule. In the medical datasets, the exceptions are
always negative examples such as cancer recurrence and
disease progression.
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Learning rules generated by AQ21 consist of several
steps, which can be classified as input preprocessing,
rule generation, and rule optimization. The steps are
generally executed in this order, although AQ21’s learn-
ing process is iterative in several ways. Input preprocess-
ing includes rearranging data into classes, removing
ambiguous examples, and modifying representation
space through simple preprocessing methods (i.e.,
discretization, attribute selection) or more advanced
ones that employ constructive induction algorithms [20].
At its core, rule learning implements modification of a
simplified version of the algorithm quasi-optimal (Aq)
for constructing rules, which is a well-known sequential
covering algorithm [21]. The algorithm starts with a ran-
domly selected positive example, called the seed, and
generates all possible (high quality) rules that cover the
seed and do not cover (or approximately do not cover)
any of the negative examples. The best quality top rules
are then selected and stored. Among positive examples
not covered by these selected rules, another random
seed is selected and the operation is repeated. This
process results in a number of very general rules (typic-
ally more than needed) that need to be optimized and
prepared for output. Optimization of rules includes their
trimming, adjusting of generality through following hier-
archies, selection, and mapping of attributes. The overall
goal of AQ21 is to produce rules that maximize user-
defined quality criteria that typically provide tradeoff
between accuracy (precision/recall) and their simplicity
and transparency. Finally, the program employs a num-
ber of methods designed to provide output in human-
oriented forms, including the generation of the rules into
a natural language representation (layman terms) [22].
AQ21 is the latest development from a series of AQ

rule learners that dates back to the 1970s [23]. A num-
ber of well-known rule learners have been developed
over the last decades [24–26], but many are not utilized
in mainstream research at the present time. In the past
few years the ML field has been dominated by statistical
methods that focused primarily on providing highly
accurate models. However, the community has begun to
slowly transition back to understandability and transpar-
ency of models produced, which is particularly import-
ant in biomedical applications.

Ontology-guided AQ21 (AQ21-OG)
AQ21-OG is an extension of the AQ21 rule learning
system. It applies hierarchical reasoning methods [27] to
include UMLS and other ontologies when analyzing data.
Currently, the program allows for mapping IS-A relation-
ships. The implementation of the AQ21-OG includes:

Step 1: Mapping data to the UMLS CUIs. This step is
used to identify the base CUIs. The candidate CUIs are

identified automatically (SQL) and then reviewed by
experts for the problematic mappings.
Step 2: Extracting complete sub-hierarchies by following
IS-A relationships using base CUIs. This is done by
following IS-A relationships in the UMLS for each
concept until the complete parent, child, and sibling
sub-hierarchy is extracted. The complete sub-hierarchy is
defined as the path from base CUI (furthest child(ren) in
the hierarchy) to the root (“super parent”, i.e. a parent
that is not also a child). This extraction is the basis for
the input file (in Step 4) that AQ21 will use to find the
farthest common ancestors for base CUIs (in Step 5).
Step 3: Resolving inconsistencies in the hierarchy. Due to
nature of the UMLS, a number of inconsistencies (e.g.,
cycles, duplicates) may happen when due to being
constructed from multiple source terminologies [28–31].
Cycles are not permitted in AQ21, so they are resolved
by breaking links that connect back to concepts higher in
the hierarchy, as measured by distance from the root.
Other types of inconsistencies are removed from the
final hierarchy.
Step 4: Encoding extracted hierarchies into
ML-software readable format. AQ21 requires a list of
parent-child pairs for all relationships that form the
hierarchy. The data is read from text files that include
all semantic information required to correctly reason
with the data. Specifically, in the AQ21, hierarchical
relationships are part of the definition of attributes’
domains (set of possible values) that describe data.
Step 5: Optimizing the rules by using the extracted
UMLS hierarchies from Step 2. AQ21-OG finds the
highest level of generalization in the hierarchy, which is
either consistent with data or maximizes the rule
quality measures. This is particularly valuable when
analyzing coded medical data with potentially hundreds
of thousands of binary attributes. For example, ICD-9-
CM diagnosis codes can result in the need to create
close to 10,000 binary attributes. Therefore, the need to
generalize those codes to reduce the number of features
is a necessity.

Study population
SEER-MHOS (Surveillance, Epidemiology, and End
Results - Medicare Health Outcomes Survey) data from
1998 to 2011 (1,849,311 records) were used to extract
comorbidities and activities of daily living (ADLs), as
well as cancer characteristics. This dataset links two
large population-based data that provide detailed infor-
mation about Medicare beneficiaries with cancer [32].
The SEER data extracted from the cancer registry
contains clinical, demographic and cause of death in-
formation for persons with cancer, while the MHOS
data is extracted from survey responses and provides
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information about the health-related quality of life
(HRQOL) of Medicare Advantage Organization (MAO)
enrollees.
A number of steps were followed to create the study

population dataset. First, the study population was lim-
ited to those who completed at least one survey before
their cancer diagnosis and one survey roughly one year
after the diagnosis. If a patient completed multiple sur-
veys, the surveys closest to before the cancer diagnosis
and the 1-year follow-up were used. These very strict
criteria significantly reduced the sample size and re-
sulted in a cohort of 723 cancer patients.
Dependent/Output Variables: the primary outcomes

were six ADLs (walking, dressing, bathing, moving in/
out of chair, toileting, and eating) reported in a patient
survey taken one year after the cancer diagnosis.
Independent/Input Variables: the potential predictors

were selected based on the prior research [33–37] and
are as follows:

(1)Patient demographics: age, race and marital status
(2)Six ADLs reported in a patient survey taken before

the cancer diagnosis
(3)Thirteen self-reported comorbidities extracted from

a patient survey taken before the cancer diagnosis:
Angina Pectoris/Coronary Artery Disease, Arthritis
of Hand/Wrist, Arthritis of Hip/Knee, Back pain,
Congestive heart failure, Emphysema/Asthma/
Chronic obstructive pulmonary disease, Diabetes,
Crohn’s Disease/Ulcerative Colitis/Inflammatory
Bowel Disease, Hypertension, Myocardial Infarction,
Other Heart Conditions, Sciatica and Stroke

(4)Six cancer characteristics namely grade, staging,
tumor size, histology, tumor extension, and behavior
extracted from the SEER registry

(5)Cancer radiation and surgery treatment indicators
extracted from the SEER registry

Analysis of the SEER-MHOS data with AQ21 and AQ21-OG
The dataset was randomly divided into training (80%)
and testing (20%) sets. The training set was used to cre-
ate predictive models and the testing set was used to as-
sess the model discrimination. Models were first created
in order to find the predictor or set of predictors that
could be used to predict the outcome (the six ADLs post
cancer diagnosis). Two ML methods were used to create
models: AQ21 and AQ21–OG as previously described
above. The quality of the two methods were assessed
using the number of positive (p), negative (n) cases cov-
ered by the generated rules and the quality of the rules
Q(w). The rule R quality, Q(R,w) with weight w, or just
Q(w) (denoted by q in the rule), is calculated using the
following formula described by Michalski and Kaufman
[38]. P and N indicate total numbers of positive and

negative examples in data (here, disabled vs. functionally
independent in terms of ADLs).

Q R;wð Þ ¼ compl Rð Þw� consig Rð Þ1‐w

where

compl Rð Þ ¼ p=P

consig Rð Þ ¼ p= pþ nð Þð Þ– P= PþNð Þð Þð Þ� PþNð Þ=N

The w is a weight (from 0 to 1) that represents the tra-
deoff between completeness and consistency gain. The
lower the w is, the more consistent the rules need to be
(fewer negative examples covered). The higher the w is,
the more complete the rules need to be (more positive
examples covered). Based on experimental evaluation of
the rules, we decided to select w = 0.3 which indicates
slightly higher weight for more consistent rules. This
value was used in both cases, with and without ontology.
Completeness is frequently referred to as recall in
machine learning. Consistency gain can be viewed as
normalized precision that measures how much precision
we gain over a random guess.

Table 1 Characteristics of Patients in the final dataset (n = 723)

Number %

Age

< 65 23 3%

65–74 353 49%

75–84 293 41%

> =85 54 7%

Top 5 Comorbidities

Hypertension 432 60%

Arthritis of Hip 274 38%

Arthritis of Hand 256 35%

Other Heart 181 25%

Sciatic 166 23%

Cancer Type

Bladder 57 8%

Breast 181 25%

Colorectal 105 15%

Head Neck 22 3%

Lung 87 12%

Melanoma 58 8%

Pancreas 11 2%

Prostate 166 23%

Stomach 11 2%

Uterus 25 3%

Min et al. Journal of Biomedical Semantics  (2017) 8:39 Page 4 of 8



Results
Patient cohort
This retrospective SEER-MHOS study included 723 can-
cer patients. The average age was 74.7 +/− 6.63 years. A
summary of the dataset is shown in Table 1. Table 2
shows the number of patients who reported ADL limita-
tions before and after cancer diagnosis. The increased
number of patients reporting disabilities after diagnosis
show that cancer has an impact on ADLs. Walking and
chairing-in/out were the most affected ADLs among
these Medicare recipients with cancer.

Rule induction from the SEER-MHOS
AQ21 methods generated a number of models (rulesets)
for describing and predicting patients’ deficiencies in
performing ADLs from the SEER-MHOS dataset. Below
is an excerpt of two sample rules, one from each AQ
method, from a model for predicting a decline in the
ability to perform bathing independently.

Sample 1: AQ21

[Bathing
impairment] < ==

[Race = Black, White, Chinese: 70, 245, 22%]
[Hispanic = No: 64, 241, 20%]
[Smoking = Some days, Not at all: 68, 238, 22%]
[Surgery = 51,40,27,0,45: 45, 113, 28%]
[Histology = Squamous cell neoplasm, Transitional
cell papillomas and carcinomas, Adenomas and
adenocarcinomas, Nevi and melanomas, Cystic,
mucinous and serous neoplasm, Ductal and
lobular neoplasm, Epithelial neoplasms, NOS: 74,
252, 22%]
[Stage = In situ, Localized only, Regional by direct
extension only: 69, 244, 22%]
[Primary site and
morphology = C0153458,C0153492,C0153532,
C0242787, C0949022,C0235653,
C0153483,C0153611,
C0153555,C0153435,C0346782,C0153491,C0153612:
30, 34, 46%]
: p = 22, n = 2, q = 0.642

Sample 2: AQ21-
OG

[Bathing
impairment] < ==

[Race = White, Chinese: 64, 219, 22%]
[Hispanic = No: 64, 241, 20%]
[Smoking = Some days, Not at all: 68, 238, 22%]
[Surgery = 32,51,40,0,45: 40, 95, 29%]

(Continued)

[Histology = Squamous cell neoplasm, Adenomas
and adenocarcinomas, Nevi and melanomas,
Cystic, mucinous and serous neoplasm, Ductal and
lobular neoplasm, Epithelial neoplasms, NOS: 68,
229, 22%]
[Cancer site = Lung and Bronchus, Melanoma,
Descending Colon, Rectum, Pancreas, Urinary
Bladder, Breast, Larynx
: 61, 169, 26%]
[Primary site and morphology = C0154077,
C0007102, C0153532, C0005684, C0153555,
C0024624, C0006142, C0235652, C0864875,
C0346647, C0345921, C0242379, C0346629,
C0345865, C0242788, C0034885, C0007107,
C0345713, C0587060, C1263771: 38, 49, 43%]
: p = 23, n = 2, q = 0.653

The predictors of bathing disability include patient
demographic (race and ethnicity), smoking history,
tumor characteristics (histology, stage, and cancer
sites) and treatment (surgery). The interpretation of
the first two lines of the first rule is: a patient is
likely to have bathing impairment if the patient’s race
is White, Black or Chinese and the ethnicity is non-
Hispanic. The surgery codes (treatments) in the
fourth line can be found from https://seer.cancer.gov/
manuals/2016/appendixc.html. The meaning of the
CUIs in the last line is presented in Appendix. The
first two numbers, following the colon, within each
condition (attribute) describe the number of patients
who have the bathing impairment and who do not
have the bathing impairment that satisfy the specific
condition. For example, among the White, Black or
Chinese patients, 70 of them have the bathing impair-
ment while the remaining245 patients do not have
the bathing problem. The last number is prevalence
of the positive class that indicates the ratio of the
number of positive (p) examples over the number of
positive and negative (n) examples, p/(p + n). The
rule outputs are similar using AQ21 and AQ21-OG.
However, the quality of the rule, as measured by
Q(w), generated by the second method (AQ21-OG) is
slightly more accurate. The last line in the rule set
describes the numbers of positive examples (p), nega-
tive example (n) covered by the rule, and the rule
quality. While the numbers don’t appear to make a
large difference, the rules are simply an illustration of
the type of improvement made by the method. Table 3

Table 2 Number of patients reported ADL disabilities before
and after cancer diagnosis

ADLs No. of patients before
cancer diagnosis

% No. of patients after
cancer diagnosis

%

Bathing 39 5% 85 12%

Dressing 27 4% 61 8%

Eating 10 1% 32 4%

Chairing 65 9% 113 16%

Walking 98 14% 146 20%

Toileting 21 3% 50 7%

Table 3 Quality metrics for the AQ21 and AQ21-OG for the
sample rules

Sample 1 (AQ21) Sample 2 (AQ21-OG)

Precision 0.91 0.92

Recall 0.29 0.31

F1-score 0.44 0.46
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shows the precision, recall and F1-Score of both
AQ21 and AQ21-OG for the above two sample rules.
Although the recall in the Table 3 seems low, this is
the number for one example rule out of a set of
rules.
Note that the rules presented above correspond to

each other; however, AQ21 and AQ21-OG are not
guaranteed to generate similar rules. The ability to
generalize available data differentially within the hier-
archies derived from an ontology may steer the
process in a different direction causing the rules to
differ. Consequently, the quality of rules improves.
Table 4 shows the quality of the rules generated by the

two methods for each of the six ADLs. In all cases, the
Q(R, w) improved after including UMLS, except for
toileting which remained unchanged. A paired t-test
was performed to compare the sample means for the
quality of rules (Table 5). Although the sample size was
small, after adding ontology, the mean of Q(R, w) values
increased by 6% (P = 0.05). There was a statistically sig-
nificant difference (P < 0.1) between the effectiveness of
those two methods.

Discussion
AQ21 and its ontology-guided version, AQ21-OG, are
highly configurable and robust systems with features es-
pecially valuable for: learning from biomedical data such
as individual patient data, learning from aggregated data,
and using medical knowledge. One major advantage is
that AQ21-OG can optimize attributional rules with the
assistance of medical knowledge from the UMLS, for the
purposes of rule generalization based on the hierarchical
relationships. In this research, the rule generalization
procedure continued until negative data against medical

knowledge was found. This was done automatically by
the AQ21 to increase accuracy of the predictive models.
One big challenge for the ontology-guided ML

method is performance. Performance is impacted by:
(1) the extreme size and complexity of UMLS and
other medical ontologies which limit the application
of standard search methods and (2) the size of the
SEER-Medicare dataset. Although this study only
worked with a small subset of SEER-MHOS data, the
hierarchical structure from the UMLS was already
large and complicated. As previously discussed many
concepts in the UMLS contain more than one parent,
thus the generalized rules may contain more CUIs
due to the complexity of the UMLS.
One limitation of this study was that the method was

tested and validated based on a small sample of SEER-
MHOS patients (n = 723). Additionally, survey data are
typically not best suited for ML applications because of
their biases and subjectivity and limited potential use in
real decision support applications. Future work will in-
clude increasing the sample size by using the entire SEER-
MHOS data as an opposed to a subset of a 5% sample. On
the methodological side, AQ21 will be extended to handle
other types of semantic relationships in the UMLS. Fur-
ther, more experimental evaluation is needed to improve
accuracy of the generated rules in order to match the ac-
curacy of state-of-the-art statistical methods.

Conclusions
This paper presents how AQ21 and its ontology-guided
ML version AQ21-OG were successfully applied to the
SEER-MHOS data set and generated a set of models for
describing and predicting cancer patients’ deficiencies in
performing six ADLs. These models are highly transpar-
ent and relatively easy to understand. The results show
that the AQ21-OG outperforms the original AQ21 since
AQ21-OG can optimize attributional rules with the
assistance of medical knowledge from the UMLS. This
research further demonstrates that bio-ontologies can be
used to promote the effectiveness and efficiency of ML
in healthcare.

Table 4 Q(R, w*), precision, recall and F1-score calculated for a selected rule for each ADL

ADL AQ21 Q(R, w) AQ21-OG Q(R, w) AQ21 precision AQ21OG precision AQ21 recall AQ21-OG recall AQ21 F1-score AQ21-OG F1-score

Bathing 0.642 0.653 0.91 0.92 0.29 0.31 0.44 0.46

Chairing 0.489 0.546 0.92 1.0 0.12 0.13 0.21 0.23

Dressing 0.451 0.633 0.86 1.0 0.1 0.21 0.17 0.35

Eating 0.617 0.697 1.0 1.0 0.2 0.3 0.33 0.46

Toileting 0.584 0.584 1.0 1.0 0.16 0.16 0.28 0.28

Walking 0.457 0.472 1.0 1.0 0.07 0.08 0.13 0.15

*w = 0.3

Table 5 T-test results for comparison of two methods

Without ontology With ontology P

Mean 0.54 0.60 0.05

Variance 0.0071 0.0066
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