
Qiu et al. J Cheminform  (2018) 10:21 
https://doi.org/10.1186/s13321-018-0275-x

RESEARCH ARTICLE

Finding the molecular scaffold of nuclear 
receptor inhibitors through high‑throughput 
screening based on proteochemometric 
modelling
Tianyi Qiu1,2†  , Dingfeng Wu1†, Jingxuan Qiu1,3 and Zhiwei Cao1*

Abstract 

Nuclear receptors (NR) are a class of proteins that are responsible for sensing steroid and thyroid hormones and 
certain other molecules. In that case, NR have the ability to regulate the expression of specific genes and associated 
with various diseases, which make it essential drug targets. Approaches which can predict the inhibition ability of 
compounds for different NR target should be particularly helpful for drug development. In this study, proteochemo-
metric modelling was introduced to analysis the bioactivity between chemical compounds and NR targets. Results 
illustrated the ability of our PCM model for high-throughput NR-inhibitor screening after evaluated on both internal 
(AUC > 0.870) and external (AUC > 0.746) validation set. Moreover, in-silico predicted bioactive compounds were clus-
tered according to structure similarity and a series of representative molecular scaffolds can be derived for five major 
NR targets. Through scaffolds analysis, those essential bioactive scaffolds of different NR target can be detected and 
compared. Generally, the methods and molecular scaffolds proposed in this article can not only help the screening of 
potential therapeutic NR-inhibitors but also able to guide the future NR-related drug discovery.
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Background
As a ligand dependent transcription factors, nuclear 
receptors (NR) can be activated by important molecules 
such as steroidal hormones, endogenous hormones, glu-
cocorticoids and thyroid hormones [1, 2]. After activa-
tion, NR can regulate the expression of specific genes and 
then participate in several essential physiological pro-
cesses such as development, homeostasis and metabolism 
of the organism [1, 2]. Since NR can affect the expression 
of enormous genes which associated with various dis-
eases such as diabetes and hepatic adipose infiltration, 
it can be considered as an appropriate therapeutic target 
for new drug discovery. Till now, 48 nuclear receptors 

have been discovered in humans [3], 23 of them are cer-
tified as drug target by U.S. Food and Drug Administra-
tion (FDA). Meanwhile, over 13% FDA approved drugs 
were aimed at those nuclear receptors [4]. In that case, 
discover novel drugs as nuclear receptor inhibitors have 
acquired a particular significance for NR-related meta-
bolic diseases treatment. In drug design, scaffold is the 
fixed part of a molecule which is the essential part for 
biological activity of molecule. Therefore, scaffold based 
strategies were widely used for drug discovery [5–7]. It 
can be noticed that finding a new scaffold often lead to 
the discovery of a new inhibitor classes which may have 
the potential to become future drugs [8–10]. In that case, 
finding novel bioactive scaffolds is an essential process in 
the area of drug design.

In order to discover the molecular scaffold of a class 
of molecules such as NR-inhibitors, massive structure 
of molecules with bioactivity need to be screened and 
clustered to finding the consensus structure domain. 
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Traditionally, this screening evolving titration experi-
ments is a time-consuming, expensive and labor-inten-
sive process, which could be assisted by computer-aided 
drug design (CADD) [11]. In recent decades, different 
methods including virtual screening [12, 13], molecular 
docking [14, 15], de-novo drug design [16–18], phar-
macophore modeling [19–21] and molecular dynam-
ics [22, 23] were introduced to find bioactive molecules 
for further drug design. In the early 1960  s, quantita-
tive structure activity relationship (QSAR) approach 
was established to discover the relationship between 
ligand and target [24]. In general, conventional QSAR 
based approaches consider structure information and 
bio-active value to efficiently predict the relationship 
between ligand and target. However, its prediction abil-
ity is limited to single target and enable to map multiple 
ligand-target relationship [25]. Also, the prediction abil-
ity of conventional QSARs were limited since only ligand 
information were used for model construction [25–27]. 
To avoid the shortages of QSAR, an approach relying on 
the description of both ligand and target to quantitatively 
analyze their relations was invented and termed as Pro-
teochemometric (PCM) modeling in 2001 [28]. The main 
advantage of PCM modeling is to integrate information 
on both ligand and target to make the model applicable 
for multiple target screening, including GPCRs [29–31], 
proteases [32–34], kinases [35, 36], reverse transcriptase 
[37, 38]. However, according to author’s knowledge, PCM 
for NR-inhibitor prediction was hardly reported.

In this article, two major steps including PCM mod-
elling and scaffold finding were processed to guide the 
design of NR-inhibitors. Initially, based on a total number 
of 11 nuclear receptors and 9633 molecular compounds 
with EC50 values were derived from ONRLDB [39], a 
series of PCM modelling were generated to predict the 
inhibition ability for NR-inhibitors. After rigorous valida-
tion through both internal and external validation dataset, 
our PCM model was proved to have the potential ability 
for high-throughput NR-inhibitor screening. It should be 
noted that NR-targets validated in external dataset were 
not involved in our training set. That means for those 
NR proteins without enough bio-active data to establish 
a traditional QSAR models, our model may also have the 
ability to provide NR-inhibitor screening. Further, after 
molecular clustering based on our PCM model, novel bio-
active scaffolds for NR-inhibitors can be discovered. The 
potential bioactive scaffolds for different NR targets were 
proposed for future drug discovery of NR-inhibitors.

Results and discussion
Construction of proteochemometric modeling
To build a proteochemometric modeling, three parts are 
necessarily needed: (1) bio-active data between multiple 

compounds and multiple targets; (2) descriptors which 
includes both ligand and target information; and (3) suit-
able learning methods to link descriptors and bio-active 
data. Here, for model construction, bio-active data with 
the most strict cutoff of EC50 = 1 μm was chosen as clas-
sification indicator. Then, to test the performance of 
different target descriptors, both sequence similarity 
descriptor and structure similarity descriptor were tested 
and four types of descriptors marked as T1–T4 were gen-
erated in this study (see “Methods” Part). Further, five 
different machine learning approaches including Random 
Forest (RF), Ridge Classifier (RC), Logistic Regression 
(LR), Decision Tree (DT) and Support Vector Classifica-
tion (SVC) were used to establish different PCM models. 
Through 10-fold cross-validation, the performance of all 
five machine learning algorithms shows that Random 
Forest classifier can obtains the best prediction perfor-
mance with the highest accuracy over 0.73 among all five 
and followed by Decision Tree (Table  1 and Additional 
file 1: Table S1). The AUC (area under curve) value also 
indicated that Random Forest classifier can achieves bet-
ter prediction abilities than others for select NR-inhibi-
tors. Therefore, Random Forest classifier was chose to 
establish our PCM modeling.

After that, the performances of 4 different descriptors 
were also tested by RF classifier (Fig. 1a). Results showed 
that the performance of sequence descriptors and struc-
ture descriptors are quite similar, which may cause by the 
fact that the structure feature of NR family is highly con-
served. However, the performance of T1 and T2 is signifi-
cantly better that those of T3 and T4, that means protein 
descriptors based on background data of whole protein 
family can better describe the properties of target pro-
teins in model. And further, these protein descriptors can 
be extended to other proteins in the NR families. Con-
sidering that structure descriptors requires crystal struc-
tures which may not be available for several targets, in 
this study, sequence descriptors based on 30 background 
protein (T1) were used for model construction.

Further, the contribution of chemical descriptor was 
also analyzed. After statistic analysis, it can be found that 
lipo-hydro partition coefficient (MolLogP in RDKit) con-
tains the major contribution among all ligand descriptors, 
which means it might be the key element for molecu-
lar with potential inhibition abilities (Additional file  2: 
Fig. S1). It can also found that, for both active compound 
and inactive compound, the distribution of MolLogP 
follows Normal distribution with significant difference, 
which were calculate through T test (P value < 0.0001). 
Result showed that, lipo-hydro partition coefficient is 
important for the activity of NR inhibitor, active com-
pounds normally contain MolLogP around 5.775, while 
the MolLogP of inactive compounds were around 5.380. 
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Importance and P value of top 10 chemical structure 
descriptors can be found in Additional file 3: Table S2.

Evaluation of proteochemometric modeling
In this study, PCM modeling was systemically evaluated 
through both internal and external validations. By setting 
different cutoffs of bio-active data, results of different 
PCM models can be found in Fig. 1b, detailed informa-
tion of model performance on all four protein descriptors 
can be found in Additional file 4: Table S3. Generally, all 
PCM models can gives outstanding performance in inter-
nal validation by achieving an AUC value above 0.870 on 
different cutoffs. For external validation, all PCM model 
can also achieves a satisfied performance with AUC value 
over 0.746. Above results indicate the excellent ability 
of our PCM model for NR-related inhibitors prediction. 
Also, with the increasing of cutoffs, the performance 
of PCM models increased synchronously. This prob-
ably caused by the fact that the unbalance between posi-
tive and negative data according to different cutoff. For 
example, when set EC50 ≤ 1 as positive data and EC50 > 1 
as negative data, the ratio (positive/negative) of training 
set, testing set and external validation set were all close 

to 1 (Additional file  5: Table  S4). After the cutoff rising 
to 10, those ratios were quickly increased to 12.14, 12.95 
and 22.76 respectively (Additional file 5: Table S4). Sev-
eral reports also pointed out that the 1 μM cutoff may be 
more reasonable because it contains less noise [40]. In 
that case, the cutoff of EC50 value was set as 1 for further 
analysis.

Finding the molecular scaffolds for NR inhibitors
To further validate our PCM model, the active and inac-
tive inhibitors were predicted through our PCM model. 
Then, the Rubberbanding Forcefield approach in Data-
Warrior [41] (release version 4.5.2) was used to mapping 
all compounds into a 2-dimentional area, while similar 
molecules were located close to each other (see “Molec-
ular scaffold searching”). In that case, molecules with 
structure similarity over 0.95 will be clustered together. 
The molecules clustering and corresponding scaffolds 
for top clusters were illustrated in Fig. 2. Chemical name 
and smiles files of corresponding scaffolds were listed 
in Additional file  6: Table  S5. Background color map-
ping of different NR proteins were derived from experi-
mental values. Red color in background means active 
clusters while green ones means inactive clusters. Each 
spot represents one compound in our testing set, which 
were classified by our model. Red spot represents active 
compounds while green spot means inactive ones. The 
location of each compound determined by structure sim-
ilarity, compounds with similar structures tend to clus-
tered together. Compounds with similarity over a certain 
threshold will be defined as neighbors and connected 
with lines. The size of each compound spot is related to 
the number of its neighbor spots.

Generally, the prediction of our PCM model matched 
perfectly well with the experimental values. For three per-
oxisome proliferator-activated receptor (PPAR) protein 

Table 1  10-fold cross-validation results of  different 
machine learning methods

Results in Table 1 were calculated based on descriptor T1
a  This parameters can’t be calculated in here (continuous predict values are 
needed to calculate AUC value)

Method Accuracy Precision Recall F1_score AUC

RF 0.740 0.761 0.768 0.762 0.829

RC 0.624 0.643 0.713 0.674 –a

LR 0.453 0.490 0.000 0.000 0.452

DT 0.701 0.726 0.727 0.726 0.700

SVC 0.583 0.569 0.984 0.720 –a

Fig. 1  Performance of PCM modeling. a Cross-validation performance of PCM model constructed by RF classifier based on four different protein 
descriptors. b AUC value of PCM modeling constructed by RF classifier under different cutoffs of bio-active data, this results were obtained by 
descriptor T1. *Precision score means the area under the precision-recall curve
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targets, the top 10 clusters of each target including NR1C1 
(Fig.  2a), NR1C2 (Fig.  2c) and NR1C3 (Fig.  2d) were 
detected and marked in each sub-graphs. For PPAR pro-
tein targets, both unique and overlapped scaffolds can be 
detected. For example, target NR1C1 contains 7 bioactive 
scaffolds (marked as S1 to S7), 2 inactive scaffolds (marked 
as S8 and S9) and 1 mixed scaffold (marked as S10) con-
tains both active and inactive compounds. Among above, 
scaffold S1 and S6 were active in both NR1C1 and NR1C3 
(Fig. 2d), while S8 and S9 were both inactive scaffold. On 
the other hand, different pattern can be found in target 
NR1C2 (Fig. 2c). In NR1C2, 7 new scaffold clusters marked 
as S11 to S18 were detected. Besides that, as a major inac-
tive scaffold for NR1C1 and NR1C3, S8 was determined 
as active scaffold in NR1C2. Also, as an active scaffold 
in NR1C1 and mixed scaffold in NR1C3, scaffold S2 was 
defined as inactive scaffold for NR1C2. The results of two 
targets beside PPAR targets were quite different, totally 
new scaffolds were discovered and illustrated in Fig. 2e, f. 
All above illustrated that, even from the same protein fam-
ily, the inhibitor scaffolds of different NR protein targets 
were still distinguishable.

Also, it should be noticed that, the bioactivity of dif-
ferent compounds rely on multiple factors such as side-
chain composition, functional group, substituent and 
chirality. For instance, scaffold S10  N-benzylbenzamide 
contains different compounds including compound 1–3 
(Fig. 2b). The molecular structure of three compounds is 
extremely similar except for the chirality. The stereogenic 
center of compound 1 (Benzenepropanoic acid, α-ethyl-
4-methoxy-3-[[[[4-(trifluoromethyl)phenyl]methyl]
amino]carbonyl]-, (αS)-) and compound 2 (Benzenepro-
panoic acid, α-ethyl-4-methoxy-3-[[[[4-(trifluoromethyl)
phenyl]methyl]amino]carbonyl]-, (αR)-) are absolutely 
configured as S and R, respectively. Compound 3 was 
defined as mixture of stereoisomers which may combine 
with both S and R chirality.

Discussion
Computer-aided drug design (CADD) can assist and 
shorten the process of new drug discovery. To achieve 
that, one essential issue is to per-estimate the activity 
of different compound against different target proteins. 
By introducing PCM model into CADD, relationship 
between multiple compounds and targets can be deter-
mined. Based on high-throughput screening of com-
pounds, bioactive molecules can be clustered and 
essential molecular scaffolds can be detected to guide the 
future development of therapeutic drugs.

In order to process high-throughput screening of bio-
active inhibitors for targets from NR families, 7267 bio-
active data of 11 nuclear receptors were collected to 
establish an in silico model. Through both internal and 

external validation, our PCM models were proved to be 
sensitive for NR-inhibitor prediction which might be 
benefit from our descriptors. For target descriptors, gen-
eralized sequence similarity descriptors contain infor-
mation from 30 background targets from NR families. 
Models based on those descriptors can achieve a bet-
ter prediction performance on both internal and exter-
nal validation set, which means those descriptors can 
be extended to multiple targets from NR families. For 
chemical descriptors, since lipo-hydro partition coef-
ficient contains the major contribution for classification 
and parameter MolLogP is distinguishable for active and 
inactive compounds, this may provide a clue for future 
therapeutic NR-inhibitors discoveries.

Another essential issue for PCM model construction is 
to choose the suitable machine learning method. In this 
study, five different machine learning methods including 
both regression and classification approaches were tested 
to establish PCM modeling. Results showed that the per-
formance of RF and DT classifier are significantly higher 
than other methods, which means above algorithms might 
be more applicable in the case of NR-inhibitors prediction.

After high-throughput screening of NR-inhibitors, bio-
active molecules could be clustered according to struc-
ture similarity and molecular scaffold enriched in each 
clustered can be detected and might assist the process 
of drug design. In this article, the appropriate models 
selected after evaluations were used to molecular clus-
tering for five major NR targets. Results showed that 
our PCM model can successfully predict those poten-
tial NR-inhibitors which agree well with the experimen-
tal EC50 values. For each NR target, our algorithms can 
able to predict those potential therapeutic inhibitors and 
discover the molecular scaffolds for future drug develop-
ment. Currently, this method was established on NR pro-
teins and it can be extended to other protein targets after 
the accumulating of experimental data.

Methods
Data set
Training and validation dataset of nuclear receptor and 
its inhibitors were collected from ONRLDB [39], which 
including information of 11 protein targets and 9633 
molecular compounds (see Additional file  7: information 
of 9633 compounds.sdf). After filtration, a total number 
of 7267 inhibitors for 11 nuclear receptors with half maxi-
mal effective concentration (EC50) values were remained 
as our dataset. After primary statistic analyze, it can be 
found that the distribution of bio-active data for each pro-
tein targets were unbalanced (Fig. 3 and Additional file 8: 
Table S6). Major target contains more than thousands of 
bioactive data while several only covering tens of data. Five 
major protein target including NR1C1, NR1C2, NR1C3, 
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NR1H2, NR2B1 contains over 90% of the bio-active data, 
which provide an abundant data for model construction. 
The remaining 6 targets (NR1H3, NR1H4, NR2B3, NR2B2, 
NR1D1, and NR1I2) with bio-active data were selected 
as independent validation set. After above steps, internal 
dataset which including 6554 bio-active data with corre-
sponding protein targets (5 major nuclear receptor) and 
compounds were selected for Proteochemometric mod-
eling. For each target, 60% of the bio-active data were cho-
sen as training set and the rest remained as testing set. In 
general, 3931 bio-active data were selected as training set 
to generate our PCM model and the rest 2623 were used 
for model evaluation. Besides that, 713 bio-active data for 
other 6 NR proteins were collected as external validation 
dataset. Further, 30 crystal structures of NR from different 
sub-type with highest resolution were selected as back-
ground NR target (Additional file 9: Table S7).

Protein target descriptor
Here, both sequence similarity descriptors and struc-
ture similarity descriptors were used to characterize 
those five nuclear receptors. Firstly, a 30 protein targets 
from NR families can be derived from Protein Data Bank 
(PDB) [42] as background. For 11 protein targets in our 
dataset, the sequence and structure similarity compared 
with those 30 background protein target structures 
can be calculated by pairwise alignment respectively. 
Sequence alignment was calculated by smith-waterman 
alignment [43], while structure alignment was calculated 
by using jFATCAT [44]. Therefore, two types of gener-
alized target descriptor including sequence similarity 
descriptor (T1) and structure similarity descriptor (T2) 
can be obtained for each protein targets. For compari-
son, specific descriptors based on 5 protein target from 
our training set instead of 30 background protein target 

Fig. 2  Scaffold clustering of NR-inhibitors, colors in back ground and in spot represents the experimental confirmed active compounds and model 
predicted active compounds respectively. Red means active compounds while green means inactive compounds, white color means scaffold 
contains both active and inactive compounds. a Scaffold clustering of NR1C1-inhibitors. b Examples of compounds contains scaffold S10. c Scaffold 
clustering of NR1C2-inhibitors. d Scaffold clustering of NR1C3-inhibitors. e Scaffold clustering of NR1H2-inhibitors. f Scaffold clustering of NR2B1-
inhibitors
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were also established, recorded as T3 (specific sequence 
similarity descriptor based on 5 protein target) and T4 
(specific structure similarity descriptor based on 5 pro-
tein target). Two generalized target descriptors can be 
found in Additional file 10: Table S8-1, 2 and two specific 
target descriptors were also listed in Additional file  11: 
Table S9-1, 2.

Inhibitor descriptor
Chemical structure descriptors were calculated by using 
RDKit (release version 2016). RDkit provides differ-
ent chemical structure descriptors, which contains both 
chemical and physical properties such as Molecular 
Weight, Hydrogen Bond Donor Count, Hydrogen Bond 
Acceptor Count, Rotatable Bond Count and LogP etc. 

In addition, RDKit contains massive types of chemical 
descriptors derived from other tools and literatures, such 
as MOE-type descriptors for partial charges, MR contri-
butions, LogP contributions, EState indices and surface 
area contributions integrated from molecular operating 
environment (MOE). In general, 187 descriptors were 
used to characterize the structure features of inhibitor 
(Additional file 12: Table S10).

Proteochemometric modeling
In this study, 4 Proteochemometric models were cre-
ated from training set based on different combinations 
of descriptors (T1-L, T2-L, T3-L, T4-L). All models 
were implemented in scikit-learn (Version 0.18.1) by 
using Random Forest (RF) with default parameters. For 

Fig. 3  Clustering tree of nuclear receptors. 7 different subtypes of NR were marked in different colors and 11 NR proteins used in this study were 
marked in red as well as its data distribution
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classification, different thresholds of EC50 were selected 
to distinguish positive and negative data. Here, three 
different thresholds (EC50 < 1  μm, EC50 < 5  μm and 
EC50 < 10 μm) were used for classification respectively.

Model evaluation
For each combination of descriptors, 10-fold cross-vali-
dation was carried out for the model. The performance 
of four models was assessed by classification accuracy. 
Further, both internal and external validation data were 
tested from different aspects to evaluate the overall per-
formance of our models, including the area under the 
ROC curve (AUC) value, accuracy, precision, recall and 
F-score, statistical parameters were defined in the follow-
ing equations:

Positive samples are those with EC50 value below thresh-
old. TP represents True positive, TN represents True 
negative, FP represents false positive and FN represent 
false negative.

Molecular scaffold searching
For each protein target, the similarity of corresponding 
molecules were analyzed based on Rubberbanding Force-
field approach in DataWarrior [41] (release version 4.5.2). 
Initially, all molecules were translated into a series of 
descriptors to encode various aspects of chemical struc-
tures including both 2-D and 3-D structure information. 
After that, calculate the entire similarity matrix between 
all molecules and locate most similar neighbors to be con-
sidered for every molecules. Then, stepwise relocate all 
molecules to ensure similar molecules were located close 
to each other. Finally, molecules with structure similarity 
over 0.95 will be clustered together [41]. For each cluster, 
the major Bemis-Murcko scaffold [45] (covering over 80% 
of the molecules in this cluster) was defined as the repre-
sentative scaffold. Note that for several clusters, no major 
scaffold can be detected, in that case, the maximum com-
mon substructures for each two scaffolds can be calculated 
through RDKit and the major substructure was defined as 
the representative scaffold. After that, the Bemis-Murcko 
scaffold for each cluster can be derived and analyzed.

(1)Accuracy =
TP + TN

TP + FP + TN + FN

(2)Precision =
TP

TP+ FP

(3)Recall =
TP

TP + FN

(4)F-score = 2 ·
precision · recall
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