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Abstract 

Background: A wide range of chemical compound databases are currently available for pharmaceutical research. To 
retrieve compound information, including structures, researchers can query these chemical databases using non-
systematic identifiers. These are source-dependent identifiers (e.g., brand names, generic names), which are usually 
assigned to the compound at the point of registration. The correctness of non-systematic identifiers (i.e., whether an 
identifier matches the associated structure) can only be assessed manually, which is cumbersome, but it is possible 
to automatically check their ambiguity (i.e., whether an identifier matches more than one structure). In this study we 
have quantified the ambiguity of non-systematic identifiers within and between eight widely used chemical data-
bases. We also studied the effect of chemical structure standardization on reducing the ambiguity of non-systematic 
identifiers.

Results: The ambiguity of non-systematic identifiers within databases varied from 0.1 to 15.2 % (median 2.5 %). 
Standardization reduced the ambiguity only to a small extent for most databases. A wide range of ambiguity existed 
for non-systematic identifiers that are shared between databases (17.7–60.2 %, median of 40.3 %). Removing stereo-
chemistry information provided the largest reduction in ambiguity across databases (median reduction 13.7 percent-
age points).

Conclusions: Ambiguity of non-systematic identifiers within chemical databases is generally low, but ambiguity of 
non-systematic identifiers that are shared between databases, is high. Chemical structure standardization reduces the 
ambiguity to a limited extent. Our findings can help to improve database integration, curation, and maintenance.

Keywords: Molecular structure, Chemical databases, Non-systematic chemical identifiers, Chemical name ambiguity, 
Quality control
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Background
A wide range of chemical compound databases are cur-
rently available for pharmaceutical research [1]. They 
provide a variety of chemical information [2], most 
importantly compound structures, which can be used for 
different purposes, such as chemical predictive modelling 
[3] or quantitative structure–activity relationships mod-
elling [4]. To retrieve information about a compound, 
researchers can query these chemical databases using 

one of many available compound identifiers. Informa-
tion retrieval based on automatic extraction of chemical 
identifiers from scientific literature or patents, is becom-
ing increasingly important as the large amount of such 
unstructured texts makes manual extraction and analy-
sis cumbersome [5–7]. Text mining methods that extract 
compound-target or drug-disease relationships from 
text, can provide valuable new insights [8] or support 
database curation [9, 10]. The correctness of the chemi-
cal identifiers that link to the chemical structures in the 
databases can greatly affect the results of cheminformat-
ics analyses [11, 12].
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Chemical identifiers fall into two main classes. The 
first class consists of systematic identifiers, which are 
algorithmically defined based on the chemical structure 
of the compound [13]. Among the systematic identifiers 
are IUPAC names [14], SMILES [15], and International 
Chemical Identifiers (InChIs) [16, 17]. We have previ-
ously investigated the correctness or consistency of sys-
tematic identifiers (i.e., whether an identifier matches the 
associated structure) within and across small-molecule 
databases, and found many inconsistencies [13]. We also 
checked whether the inconsistencies could be reduced 
by different chemical structure standardizations (e.g., 
removal of fragments, or ignoring isotopes), but this was 
only the case to a limited extent [13].

The second class of chemical identifiers consists of 
non-systematic identifiers. These are source-dependent 
identifiers which are usually assigned to the compound 
at the point of registration in a chemical database [13]. 
Brand names, generic names, research codes, chemical 
abstracts service (CAS) registry numbers, and database 
identifiers are examples of such non-systematic identi-
fiers. Since there is no algorithmic relationship between 
non-systematic identifiers and structures, the correctness 
of these identifiers can only be assessed manually, which 
has proven cumbersome [1]. However, it is possible to 
automatically check the ambiguity of non-systematic 
identifiers (i.e., whether an identifier matches more than 
one structure). The extent of this ambiguity problem is 
unknown and not yet quantified.

Here, we investigate the ambiguity of non-system-
atic identifiers within and between small-molecu-
lar databases, before and after chemical structure 
standardisation.

Methods
Databases
We selected eight well-known chemical databases cover-
ing a wide range of bioactive compounds: Chemical Enti-
ties of Biological Interest (ChEBI) [18], ChEMBL [19], 
ChemSpider [20], DrugBank [21], the Human Metabo-
lome Database (HMDB) [9, 22], the NCGC Pharma-
ceutical Collection (NPC) [23], PubChem [24], and the 
Therapeutic Target Database (TTD) [25, 26]. We focused 
on compound records that had associated chemical 
structures in the form of MOL files [27]. For each record, 
we extracted the structure file and gathered all chemi-
cal identifiers (available from possibly different record 
fields), except for identifiers explicitly tagged as IUPAC 
names, SMILES, or InChIs. For example, identifiers for 
the antibiotic “ampicillin” included “ampicilina”, “ampi-
cillin acid”, “AMP”, “AP”, “ABPC”, “ay-6108”, “DB00415”, 
“penbritin”, “totacillin”, “PEN A/N”, “Prestwick3_000114”, 
“Ampi-bol”, “Aminobenzylpenicillin” and, “brl 1341”. Note 

that extracted identifiers may include database identi-
fiers (such as “DB00415”) that appear in the name fields 
of the chemical records. Typically, for a given chemi-
cal database, database identifiers in its name fields come 
from other databases, and local database identifiers are 
only used as record identifiers (and not extracted). All 
data were downloaded in February 2013. The identifiers 
extracted from all databases, except ChemSpider which 
is a commercial database, are made available through 
http://www.biosemantics.org. In the following, we briefly 
describe the databases, indicating the version that was 
used (if versioning was available) and the fields from 
which identifiers were extracted.
ChEBI is a database of molecular entities, focusing 

on small chemical compounds [18]. ChEBI provides an 
ontological classification with parent and child relation-
ships. We extracted data for all three-star (i.e., manu-
ally annotated) compounds from ChEBI SD files. This 
included synonyms, ChEBI names, brand names, and 
International Non-proprietary Names (INN).
ChEMBL is a large-scale bioactivity database contain-

ing information for drug-like bioactive compounds [19]. 
In addition to literature-derived data ChEMBL also con-
tains Food and Drug Administration (FDA) approved 
drugs. The data available through ChEMBL have been 
manually extracted and standardized [19]. We used a 
local installation of ChEMBL version 14. Extracted fields 
include preferred name, synonyms, FDA alternative 
names, trade names, INN, United States Adopted Names 
(USAN), and United States Pharmacopoeia names (USP).
ChemSpider is a chemical database containing infor-

mation of compounds gathered from over 500 differ-
ent data sources [20]. ChemSpider structures and their 
corresponding identifiers were made available from the 
Royal Society of Chemistry (RSC)[28]. We focused on 
compounds that have structure–activity relationships 
or other biological annotations. Similar selection cri-
teria as defined by Muresan et al. [29] were provided to 
the ChemSpider team to extract the ChemSpider data. 
Subsets of chemicals such as “make on demand” chemi-
cals from screening library vendors without names other 
than computationally generated systematic names were 
excluded, as were the datasets that have been deprecated 
from ChemSpider during curation. We also considered a 
subset of the ChemSpider data that only contained infor-
mation that was validated with the use of crowdsourc-
ing, including curation work performed by members of 
the ChemSpider technical support team (ChemSpider-V) 
[20, 30]. For each compound, we were provided with all 
preferred terms and synonyms.
DrugBank provides information regarding drugs, 

including chemical, pharmacological and pharmaceutical 
drugs and their targets [21]. DrugBank data are curated 

http://www.biosemantics.org
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by a curation team based on primary literature sources. 
During production and maintenance all synonyms and 
brand names within DrugBank are extensively reviewed 
and only the most common synonyms are kept [31]. We 
used DrugBank version 3.0, and extracted generic names, 
synonyms, CAS numbers, and brand names from the 
DrugBank SD files and DrugCards.
HMDB contains small-molecule metabolites found 

in the human body. The database links chemical, clini-
cal, molecular-biology, and biochemistry data. HMDB 
is both automatically and manually curated [9, 22]. We 
used HMDB version 3. All generic names, CAS numbers, 
and synonyms were extracted from HMDB SD files and 
MetaboCards.
NPC provides clinically-approved drugs from USA, 

Europe, Canada, and Japan for high-throughput screen-
ing [23]. In addition NPC provides chemical-related 
information gathered from different sources, such as the 
KEGG database. Using NPC browser 1.1.0, we extracted 
preferred names and synonyms.
PubChem is a database that provides information 

on the biological activities of small molecules [24]. 
PubChem consists of three different databases: a com-
pound database (with currently about 61 million entries), 
a substance database (about 157 million entries), and 
a bioassay database (more than 1 million entries). The 
compound database was used to extract structures for 
a subset of compounds that had structure–activity rela-
tionships or other biological annotations. This subset of 
compounds was introduced by Muresan et al. [29] and is 
the same subset of PubChem compounds that we used in 
our previous study on the consistency of systematic iden-
tifiers [13]. The PubChem compound database does not 
contain non-systematic identifiers. This information is 
available through the PubChem substance database. The 
relations between PubChem substance identifiers (SIDs) 
and compound identifiers (CIDs), which have been cre-
ated by PubChem through in-house chemical structure 
standardization [24], are specified in the “PubChem_
CID_associations” tag available in the downloadable SD 
files [32]. We used the relations between SIDs and CIDs 
to extract the non-systematic identifiers (synonyms and 
identifiers) from the substance database and assign them 
to the corresponding compounds [24].
TTD provides therapeutic protein and nucleic acid tar-

gets and drug information including targeted disease and 
pathway [25, 26]. We used TTD version 4.3.02. All syno-
nyms, trade names, and drug names were extracted.

Filtering
The fields with non-systematic identifiers that were 
extracted from the databases may also contain sys-
tematic identifiers (e.g., a field with synonyms may not 

distinguish between the two types of identifiers). Sys-
tematic identifiers were automatically filtered out from 
the extracted identifiers with the use of two name-to-
structure converters, ChemAxon’s MolConverter [33] 
and the open source tool OPSIN (Open Parser for Sys-
tematic IUPAC Nomenclature) [34]. Both tools are freely 
available for academic research. We used two different 
name converters since the algorithms that they imple-
ment to recognize systematic identifiers may differ 
slightly (mostly when considering IUPAC names). Each 
extracted identifier was fed into the converters and only 
considered non-systematic if neither tool recognized it as 
systematic. For example, the term “(2S, 5R, 6R)-6-{[(2R)-
2-amino-2-phenylacetyl]amino}-3,3-dimethyl-7-oxo-
4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid” was 
not labelled as a IUPAC name in DrugBank “DB00415” 
but it was filtered out through this step.

Ambiguity within and across databases
A non-systematic identifier was considered ambiguous 
within a database if it appeared in multiple records in the 
database, i.e., if multiple structures were provided for the 
same identifier. Ambiguity was measured as the percentage 
of unique identifiers within a database that are ambiguous.

An identifier was considered ambiguous across two 
databases if the structures (as defined by their MOL 
files) of the compounds associated with the identifier 
in the two databases were different. If an identifier was 
ambiguous in one or both of the databases (i.e., the iden-
tifier was associated with multiple compounds within the 
database(s)), the identifier was also considered ambigu-
ous across databases. Ambiguity was calculated as the 
percentage of unique shared identifiers between data-
bases that are ambiguous.

To compare two MOL files, we used the same approach 
as in our previous study [13]. Briefly, each MOL file was 
converted into a Standard InChI with ChemAxon’s Mol-
Converter [33], providing a unique textual representation 
of the MOL file. The two InChI strings were then com-
pared to determine whether the corresponding struc-
tures were the same. No comparison was made if an 
InChI could not be generated.

Standardization
In the process of creating MOL files for compounds, 
databases can apply different sensitivity settings [2]. 
These settings pertain to including or ignoring frag-
ments, isotopic labels, charges, canonical tautomers, or 
stereochemical information. Different sensitivity set-
tings can result in different Standard InChI strings for 
the same compound, and thus are a potential source of 
ambiguity. Standardization of the MOL files can help to 
reduce such ambiguities.
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The Computer-Aided Drug Design group of the National 
Cancer Institute defined a set of rules called FICTS to 
standardize the structural representation of compounds 
[2, 35]. FICTS rules correspond to five standardisation 
levels that affect structural information. The rules remove 
small fragments (F), disregard isotopes (I) and charges (C), 
generate canonical tautomers (T), or ignore stereochemi-
cal information (S). Any combination of the five rules can 
be applied and is expressed by converting the correspond-
ing upper-case letter of the term “FICTS” into a “u” (for 
“un-sensitive”). ChemAxon’s Standardizer [36] was used to 
execute these standardization rules.

Results
Databases
For each database, Table  1 shows the number of com-
pounds with at least one non-systematic identifier, 
and the total number of non-systematic identifiers 
(not unique). The databases vary greatly in size and in 
the average number of non-systematic identifiers per 

compound, ranging from 1.3 for ChemSpider-V and 
ChEMBL to 35.4 for TTD. The large average for TTD can 
be attributed to the presence of a large number of data-
base identifiers for many of the compounds.

Ambiguity of non‑systematic identifiers within databases
Table 2 shows the ambiguity of non-systematic identifiers 
and the average number of compounds per ambiguous 
identifier within the databases. HMDB has 15.2 % ambi-
guity, much larger than for any of the other databases. 
On average, an ambiguous identifier in HMDB is associ-
ated with 6.1 compounds, but the distribution is highly 
skewed. For example, the two most ambiguous identi-
fiers in HMDB, “Triglyceride” and “Triacylglycerol”, are 
each associated with about 14,000 compounds. Moreo-
ver, HMDB contains 176 non-systematic identifiers with 
more than 100 structures (100 being an arbitrary number 
chosen for the purpose of comparison). The only other 
databases that contain identifiers that are associated with 
more than 100 structures, are ChemSpider (39 identifi-
ers) and PubChem (16 identifiers). Some of these identi-
fiers are unspecific, e.g., “ester” is linked to 228 structures 
in ChemSpider.

TTD is the database with the second-largest ambigu-
ity (4.6 %), but none of the ambiguous identifiers in TTD 
are associated with more than three compounds. This is 
also reflected in the low average number of compounds 
per ambiguous identifier (2.1), close to the minimum of 
2 that would be reached if all ambiguous identifiers were 
associated with exactly two compounds. The ambiguity 
of ChemSpider-V (0.6 %) is much lower than the ambigu-
ity of ChemSpider (2.5 %), suggesting a positive effect of 
curation. However, when we recalculated the ambiguity 
of the ChemSpider-V records prior to curation, we found 
an ambiguity of 0.7  %. Therefore, the curation effort 
only slightly reduced ambiguity within ChemSpider-
V, possibly because it focused more on establishing the 

Table 1 Number of compounds and non-systematic identi-
fiers in different chemical databases

Database Compounds Identifiers Identifiers/
compound

PubChem 4,232,875 15,211,133 3.6

ChemSpider 6,646,902 10,063,709 1.5

ChemSpider-V 654,052 850,601 1.3

HMDB 37,761 308,733 8.2

NPC 14,814 131,290 8.9

TTD 2977 105,407 35.4

ChEBI 15,633 41,956 2.7

ChEMBL 21,398 28,011 1.3

DrugBank 3769 26,780 7.1

Table 2 Ambiguity of  non-systematic identifiers and  the average number of  compounds per  ambiguous identifier, 
within databases

Database Unique  
identifiers

Ambiguous  
identifiers

Ambiguity (%) Compounds/ 
ambiguous identifier

HMDB 173,455 26,430 15.2 6.1

TTD 100,570 4607 4.6 2.1

ChEMBL 26,910 1050 3.9 2.1

NPC 112,717 3455 3.1 2.1

ChemSpider 9,691,277 245,541 2.5 2.5

ChEBI 41,023 827 2.0 2.1

PubChem 14,937,728 201,621 1.3 2.4

ChemSpider-V 842,128 5401 0.6 2.3

DrugBank 26,759 20 0.1 2.1
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correctness of compound structures. DrugBank has the 
lowest ambiguity of non-systematic identifiers (0.1 %).

Ambiguity of non‑systematic identifiers 
between databases
Table  3 presents for each pair of databases the num-
ber of unique non-systematic identifiers that are shared 
between the databases. The first figure in the parentheses 
indicates the ambiguity of these shared identifiers, i.e., 
the percentage of shared identifiers for which the corre-
sponding structures in the two databases are different. 
For example, the identifier “floxuridine” occurs in ChEBI 
and in ChEBML, but the corresponding structures in 
these two databases do not match, and thus the identifier 
is ambiguous. The second figure in the parentheses shows 
the percentage of the shared identifiers that are ambigu-
ous within one or both of the databases, and thus are 
ambiguous across databases by definition. For example, 
“ofloxacin” is shared between ChEMBL and HMDB, but 
is also ambiguous within HMDB because it is associated 
with two different structures (in records HMDB01929 
and HMDB15296). Therefore, the identifier is considered 
ambiguous, even though one of the structures in HMDB 
(HMDB15296) matches the one in ChEMBL.

Ambiguity between two databases varies widely, from 
17.7  % (for PubChem and ChemSpider) to 60.2  % (for 
NPC and ChemSpider). Overall, the lowest ambiguity 
values between a given database and the other databases 
are seen for TTD (median ambiguity over all databases 
30.0  %), while highest values occur for NPC (median 
45.4 %), and HMDB (median 44.2 %).

The percentage of shared identifiers that are ambiguous 
within either or both of the databases (i.e., are ambigu-
ous across databases by definition) also varies greatly. 
For instance, 39.4  % of the shared identifiers between 
DrugBank and PubChem are also ambiguous within the 
databases, largely accounting for the overall ambiguity of 
46.8 %. (This means that only 7.4 % of the shared identi-
fiers are ambiguous across but not within the databases.) 
Similar values are seen for ChEMBL and PubChem 
(33.1  % overall ambiguity and 28.9  % ambiguity due to 
identifiers that are ambiguous within the databases) and 
PubChem and TTD (25.4 and 23.0  %, respectively). On 
the other hand, for DrugBank and NPC only 2.0 % ambi-
guity is due to ambiguous identifiers within the databases 
(overall ambiguity 21.9 %), and for DrugBank and ChEBI 
only 3.4 % (overall 28.7 %).

Effect of standardisation
Table  4 shows the effect of different types of standardi-
zation on reducing the ambiguity of non-systematic 
identifiers within databases. For most databases, stand-
ardization has little effect on ambiguity (median change 

for each setting less than 0.5 percentage point). The larg-
est changes are seen for TTD and ChEMBL, in particular 
for removing fragments (uICTS). Overall, removing frag-
ments and disregarding stereochemistry (FICTu) gives 
the largest changes, while disregarding isotopes (FuCTS) 
has the lowest effect. Notably, standardization does not 
affect HMDB, the most ambiguous database.

We also computed the effect of different standardiza-
tion settings on the ambiguity of non-systematic iden-
tifiers across databases. Table  5 shows the results for 
removing fragments (uICTS) and disregarding stereo-
chemistry (FICTu), which gave the largest reductions in 
ambiguity. Results for the other standardization settings 
(FuCTS, FIuTS, and FICuS) are available as Additional 
file 1.

Overall, ignoring stereochemistry information gave 
the largest ambiguity reduction (median decrease of 13.7 
percentage points), but the remaining ambiguity between 
databases was still considerable (median 25.4  %). The 
largest improvements were seen for HMDB and NPC 
(23.2 percentage points) and for HMDB and ChemSpi-
der (21.9 percentage points). Removal of small fragments 
resulted in a median reduction in ambiguity of 4.9 per-
centage points. The highest reduction was obtained for 
ChEBI and ChEMBL (17.5 percentage points).

Discussion
We quantified the ambiguity of non-systematic identi-
fiers within and between eight widely used chemical 
databases. Our results show an ambiguity between 0.1 
and 15.2  % (median 2.5  %) within databases, whereas 
ambiguity between databases ranged from 17.7 to 60.2 % 
(median 40.3  %). Standardization reduced the ambigu-
ity to some extent. Removal of small fragments gave the 
largest reduction (to a median  of 1.8 percentage point) 
in ambiguity within databases, while removing ste-
reochemistry information provided the best improve-
ment in reducing ambiguity (median 13.7 percentage 
point) across databases. Possibly, the addition of three-
dimensional information to structures either by hand or 
through automated processes introduces an extra com-
plexity that is responsible for the ambiguity. These results 
complement our findings in a previous study, where we 
investigated the consistency of systematic identifiers (i.e., 
whether a systematic identifier was consistent with the 
associated MOL file) and showed that this consistency 
varied greatly within and across databases [13].

Ambiguity of non-systematic identifiers within data-
bases is generally low, with on average few compounds 
associated with an ambiguous identifier. HMDB was an 
outlier with 15.2 % ambiguity and an average of 6.1 com-
pounds per ambiguous identifier. Among the most com-
mon ambiguous identifiers in HMDB are different classes 
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of Triglyceride (TG, triacylglycerol, TAG, tracylglycerol), 
which is an ester derived from glycerol and three fatty 
acids, and Phosphatidylcholine (PC), a class of phos-
pholipids. The IUPAC-IUB Commission on biochemi-
cal nomenclature discourages the use of “triglyceride” 
as the ambiguity of this identifier will result in inconsist-
encies [37]. Chemical compound records representing 
drugs, metabolites, and biochemicals of other types are 
usually records with a higher number of non-systematic 

identifiers, which might lead to a higher ambiguity. How-
ever, our results suggest that there is no clear association 
between number of non-systematic identifiers per com-
pound and ambiguity within the different databases. 
Drugbank, for example, has a fairly large average num-
ber of identifiers per compound (7.1) but showed lowest 
ambiguity (0.1 %), whereas ChEMBL has a low number of 
identifiers per compound (1.3) but relatively high ambi-
guity (3.9 %).

Table 4 Effect of standardization on the ambiguity of non-systematic identifiers (in  %) within databases

Database FICTS uICTS FuCTS FIuTS FICuS FICTu

HMDB 15.2 15.2 15.2 15.2 15.2 15.2

TTD 4.6 1.8 2.1 2.0 2.1 2.1

ChEMBL 3.9 2.0 3.8 3.9 3.9 3.4

NPC 3.1 2.7 2.7 2.7 2.7 2.7

ChemSpider 2.5 2.3 2.5 2.5 2.2 1.9

ChEBI 2.0 1.8 1.9 1.4 1.8 1.6

PubChem 1.4 1.2 1.3 1.3 0.6 0.6

ChemSpider-V 0.6 0.6 0.6 0.6 0.6 0.3

DrugBank 0.1 0.1 0.1 0.1 0.1 0.1

Table 5 Effect of standardization on the ambiguity of non-systematic identifiers (in  %) across databases

Database Standardization ChEBI ChEMBL ChemSpider ChemSpider‑V DrugBank HMDB NPC PubChem

ChEMBL FICTS 39.5

uICTS 22.0

FICTu 32.6

ChemSpider FICTS 30.9 29.9

uICTS 28.4 25.0

FICTu 19.5 17.8

ChemSpider-V FICTS 39.9 43.6

uICTS 36.5 34.1

FICTu 26.1 27.3

DrugBank FICTS 28.7 39.6 50.7 45.2

uICTS 15.5 22.6 41.4 37.2

FICTu 23.3 32.6 35.9 33.4

HMDB FICTS 49.6 48.4 57.3 43.9 30.7

uICTS 47.4 36.1 54.4 42.4 30.4

FICTu 32.3 33.0 34.4 23.3 16.1

NPC FICTS 40.7 46.4 60.2 48.6 21.9 44.4

uICTS 31.2 31.1 45.9 37.3 21.3 43.5

FICTu 26.8 36.2 45.1 31.6 13.5 21.2

PubChem FICTS 36.9 33.1 17.7 41.6 46.8 43.3 49.8

uICTS 32.9 25.2 16.1 37.1 37.6 40.9 38.4

FICTu 24.1 24.0 9.0 25.4 34.6 26.7 35.1

TTD FICTS 27.7 36.9 32.3 40.3 18.2 43.0 22.4 25.4

uICTS 20.9 24.6 27.8 32.7 16.8 41.1 20.6 21.6

FICTu 15.2 26.0 17.8 23.0 10.1 22.0 9.2 13.8
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Another reason for ambiguity is that many databases 
massively integrate information from other databases, 
but may use different standardization procedures. This 
can result in different compound structures that have the 
same, but now ambiguous, non-systematic identifiers.

The ambiguity within databases is much lower than the 
ambiguity across databases, which varies between 17.7 % 
(for PubChem and ChemSpider) and 60.2  % (ChemSpi-
der and NPC). Factors that may affect the ambiguity 
between databases are the ambiguity within the sepa-
rate databases, the level of (manual) database curation, 
and standardization procedures. The ambiguity between 
databases that could be attributed to identifiers that are 
already ambiguous within one or both of the databases, 
varied between 2.0  % (DrugBank and NPC) and 39.4  % 
(DrugBank and PubChem), but generally was consid-
erably lower than the overall ambiguity between data-
bases. This suggests that reducing the ambiguity within 
databases will only partly resolve the ambiguity across 
databases. It should also be noted that the ambiguity 
between two databases is based on the number of identi-
fiers that the databases share, which may be much lower 
than the number of identifiers in either database. This 
explains why the ambiguity between databases for identi-
fiers that are already ambiguous in one of the databases 
can be much higher than the ambiguity within data-
bases. For example, the ambiguity between DrugBank 
and PubChem is 39.8 %, whereas it is only 0.1 % within 
DrugBank and 1.4  % within PubChem. This shows that 
identifiers that are ambiguous within these databases are 
relatively frequently shared between the databases.

Database curation does not appear to affect the level of 
ambiguity of shared non-systematic identifiers between 
databases. For instance, DrugBank and ChemSpider-
V, which are both considered highly curated databases 
[20, 38], show that 45.2  % of the shared identifiers are 
ambiguous (while only 6.7  % of the ambiguity between 
these databases could be attributed to identifiers that 
were already ambiguous in the separate databases). This 
ambiguity ranks among the highest ambiguities between 
databases.

The effect of chemical structure standardization on 
reducing the ambiguity of non-systematic identifiers is 
limited. The largest reductions were seen for disregarding 
stereochemistry and small fragments (median ambiguity 
reduction of 13.7 and 4.9 percentage points, respectively), 
but the remaining ambiguity was still considerable. The 
other standardization settings that we tested hardly 
reduced the ambiguity.

Our study may have several implications for database 
curation and integration efforts. First, our findings indi-
cate that some non-systematic identifiers are very ambig-
uous within databases (e.g., TG, triacylglycerol, ester). 

These identifiers are more likely to represent classes of 
chemicals than individual compounds, and may be con-
sidered for removal from the databases.

Second, our study suggests that efforts to disambiguate 
non-systematic identifiers should not only pay attention 
to ambiguity within databases, which is generally low, 
but also consider identifiers that are ambiguous across 
databases. This will reveal many ambiguous and potential 
problematic identifiers that will not be apparent if only 
single databases are considered. Our method to detect 
these ambiguous identifiers can provide helpful infor-
mation to database curators to direct their disambigua-
tion efforts. Crowdsourcing approaches that involve the 
chemical community to improve database quality [20, 
29, 39], may also benefit from this information to resolve 
ambiguity issues. All ambiguous identifiers in this study, 
within and between databases, are available through 
http://www.biosemantics.org.

Third, our findings are relevant for database integration 
and maintenance. Many chemical databases are increas-
ing their coverage by regularly integrating data from 
other sources [40], or existing databases are merged and 
made available as a new resource [41]. As mentioned in 
our previous study [13], integration of databases should 
focus on a unique representation of compounds (e.g., 
MOL files) as their base of integration. InChI strings 
derived from the MOL files have been shown to facili-
tate the process as they are unique and can encode mul-
tiple types of information [42], although limitations also 
exist [43]. Ambiguity of systematic identifiers can be 
reduced by regenerating them from the structures [13], 
but such an approach is not possible for non-systematic 
identifiers, which are generated at the point of registra-
tion. Our results show that there is a large ambiguity of 
non-systematic identifiers across databases, and suggest 
that the integration of these identifiers from different 
databases without proper manual curation can greatly 
increase their ambiguity. It has previously been proposed 
to use a voting approach to disambiguate non-systematic 
identifiers when integrating multiple databases, assign-
ing the identifier to the compound to which it was most 
frequently associated in the databases [29], but this 
approach may be biased by error propagation when one 
database includes an erroneous identifier from another 
database.

Our study has several limitations. First, although we 
included a variety of commonly used chemical data-
bases, the number of databases is not very large and our 
results may not apply to databases that were not consid-
ered. Moreover, as the content of the databases evolves 
over time, the ambiguity within and between databases 
is likely to have changed since we downloaded the data. 
For example, recently an effort has been made to reduce 

http://www.biosemantics.org
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ambiguity within the ChemSpider database by using a 
subset of records with non-systematic identifiers that 
had manually been validated, and automatically remov-
ing these identifiers from any record that had not been 
validated. A second limitation is that we quantified the 
ambiguity of non-systematic identifiers within and across 
databases, but did not determine which of the associa-
tions between non-systematic identifiers and compounds 
were correct, and thus could not rank the databases on 
their performance in this respect. A reference set of cor-
rectly assigned non-systematic identifiers would allow 
such an analysis, but may be cumbersome to establish. 
Finally, to assess whether two structures were the same, 
we used one tool to convert MOL files into InChI strings. 
Other tools might occasionally produce different conver-
sions, because of differences in MOL file processing, but 
in our previous study [13] such differences were negligi-
ble and did not significantly influence the results.

Conclusions
Ambiguity of non-systematic identifiers within chemical 
databases is generally low. A much higher ambiguity was 
observed for non-systematic identifiers that are shared 
across databases. Chemical structure standardization 
reduces the ambiguity to a limited extent. The largest 
reductions are obtained when disregarding stereochem-
istry information or removing small fragments. The 
results of our study can help to improve database integra-
tion, curation and maintenance.
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