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Abstract

Background: The brain's dynamic spontaneous neural activity and dynamic functional connectivity (dFC) are both
important in supporting cognition, but how these two types of brain dynamics evolve and co-evolve in subjective
cognitive decline (SCD) and mild cognitive impairment (MCl) remain unclear. The aim of the present study was to
investigate recurrent and concurrent patterns of two types of dynamic brain states correlated with cognitive decline.

Methods: The present study analyzed resting-state functional magnetic resonance imaging data from 62 SCD patients,
75 MCI patients, and 70 healthy controls (HCs). We used the sliding-window and clustering method to identify two
types of recurrent brain states from both dFC and dynamic regional spontaneous activity, as measured by dynamic
fractional amplitude of low-frequency fluctuations (dfALFF). Then, the occurrence frequency of a dFC or dfALFF state
and the co-occurrence frequency of a pair of dFC and dfALFF states among all time points are extracted for each
participant to describe their dynamics brain patterns.

Results: We identified a few recurrent states of dfALFF and dFC and further ascertained the co-occurrent patterns of
these two types of dynamic brain states (ie, dfALFF and dFC states). Importantly, the occurrence frequency of a
default-mode network (DMN)-dominated dFC state was significantly different between HCs and SCD patients, and the
co-occurrence frequencies of a DMN-dominated dFC state and a DMN-dominated dfALFF state were also significantly
different between SCD and MCI patients. These two dynamic features were both significantly positively correlated with
Mini-Mental State Examination scores.
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Conclusion: Our findings revealed novel fMRI-based neural signatures of cognitive decline from recurrent and
concurrent patterns of dfALFF and dFC, providing strong evidence supporting SCD as the transition phase between
normal aging and MCI. This finding holds potential to differentiate SCD patients from HCs via both dFC and dfALFF as
objective neuroimaging biomarkers, which may aid in the early diagnosis and intervention of Alzheimer's disease.

Keywords: Mild cognitive impairment, Subjective cognitive decline, Dynamic functional connectivity, Default mode
network, Fractional amplitude of low-frequency fluctuations

Background

Recent studies have focused on the early diagnosis of
Alzheimer’s disease (AD) due to a lack of effective treat-
ments. Subjective cognitive decline (SCD), which is con-
sidered as a risk state for AD [1, 2], has received
increased attention. Neuroimaging techniques have been
developed for identifying non-invasive biomarkers at
early stages of AD. Because disruption of functional con-
nectivity (FC) emerges at the earliest stage of AD, FC
has been considered as a potential neural biomarker for
early identification of functional alterations related to
AD pathophysiology [3]. However, previous studies have
mainly focused on static FC (sFC), which is supposed to
be stable at rest, despite FC being highly variable during
imaging [4-7]. Dynamic FC (dFC) contains information
of the brain’s dynamic functional organization and has
attracted increased interest over the past several years
[8]. Furthermore, dFC correlates closely with cognition
and may be a biomarker for dementia. Progressively al-
tered dFC patterns can effectively track cognitive impair-
ment in AD [9], and disruptions in dFC are detected in
both mild cognitive impairment (MCI) and AD [10].
Additionally, a previous study has demonstrated that
dFC biomarkers may represent useful surrogate out-
comes for the development of preclinical targeted thera-
peutic interventions [11].

Although the important role of dFC in dementia has
been gradually recognized, dynamic regional spontan-
eous activity has not been well explored. Several studies
have indicated that low-frequency resting-state func-
tional magnetic resonance imaging (fMRI) activity, as
quantified by the amplitude of low-frequency fluctua-
tions (ALFF) or fractional ALFF (fALFF), is well-suited
to measure cognitive capabilities [12, 13], but it remains
unclear whether the dynamic patterns of ALFF or fALFF
are relevant to cognitive decline. Although evidence has
shown that regional spontaneous neural activity is
closely related to FC [14, 15], little is known in regard to
the relationship between dynamic patterns of ALFF/
fALFF and FC and whether this relationship is linked to
cognitive decline.

In the present study, we investigated recurrent dy-
namic fALFF (dfALFF) and dFC patterns (i.e., states), as
well as the percentage of the time point of each state

and the co-occurrence of each pair of these two types
of states at all time points from resting-state fMRI re-
corded in SCD patients, MCI patients, and healthy
controls (HCs). We hypothesized that dfALFF and
dFC would exhibit a few recurrent and concurrent
patterns and that these patterns would be different
among HC, SCD, and MCI groups. Thus, these recur-
rent and concurrent patterns identified from dynamic
regional activity and FC may potentially serve as neu-
roimaging biomarkers for the diagnosis of SCD and
the conversion from SCD to MCL

Methods

Subjects

The present sample included 62 SCD patients and 75
MCI patients, as well as 70 HCs matched with SCD and
MCI patients by age, gender, and years of education.
Table 1 summarizes their demographic data and other
relevant characteristics. These individuals were recruited
from the First Affiliated Hospital of Guangxi University
of Chinese Medicine and from the community and eld-
erly activity centers in Nanning from April 2016 to Janu-
ary 2018. The inclusion criteria for patients were as
follows: (1) age between 55 and 75years, (2) right-
handed, and (3) daily-life abilities and social occupations
were not affected. The exclusion criteria for patients
were as follows: (1) other diseases that were terminal, se-
vere, or unstable; (2) severe hearing or visual impair-
ment; (3) dementia, cerebral infarction, or physical/
neurological disorders that could cause brain dysfunc-
tion; (4) drugs that may cause cognitive changes or
organ failure were administered before inclusion; or (5)
fMRI-examination contraindications. To assess the gen-
eral cognitive and functional status of the included indi-
viduals, the following set of screening questionnaires
were used: Mini-Mental State Examination (MMSE)
[16], Montreal Cognitive Assessment (MoCA) [17], Clin-
ical Dementia Rating (CDR) [18], Geriatric Depression
Scale (GDepS) [19], and Global Deterioration Scale
(GDS). MCI patients were diagnosed according to the
criteria established by a previous study [20] as follows.
First, the main complaint was memory impairment and
another informed individual confirmed this symptom.
Second, other cognitive functions were relatively intact
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Table 1 Demographic and neuropsychological data of each group
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HC (n =66) SCD (n =55) MCI (n =65) p value

Age (years) 64.68+ 5.78 6447 + 541 64.92 + 668 0650
Gender (males/females) 66 (24/42) 55 (18/37) 65 (18/47) 0.567
Education (years) 11.76 £3.02 12.05+3.08 1066 + 2.55 0.242
MMSE 29.11+075° 2885 +0.85° 2592 +1.05°¢ 10733+
MOCA 2612 +206" 2493+226° © 2162+ 273°¢ 107"
GDepS 417 +2.27° 460 +261° 557 +2.10°¢ 0.005*
CDR 0 05 -

Age, education, MMSE scores, MOCA scores, and GDepS scores were tested via analysis of variance (ANOVA), Kruskal-Wallis tests, two-sample t tests, or Mann-

Whitney tests. Gender was tested via a chi-squared test
*Significantly different among the three groups (p < 0.05, ANOVA)

Significantly different between the HC and SCD groups (p < 0.05, two-sample t test)
bSignificantly different between the SCD and MCI groups (p < 0.05, two-sample t test)
“Significantly different between the HC and MCI groups (p < 0.05, two-sample t test)

or only slightly impaired. Third, the ability of daily living
was not affected. Fourth, the diagnostic criteria of de-
mentia were not met. Fifth, other systemic diseases that
could cause a decline in brain function were excluded.
Finally, the MMSE score was 24—27, the CDR score was
0.5, and the GDS score was 2—3. SCD and HC groups
are determined as follows. First, the MMSE score was >
27, the CDR score was 0, and the GDS score was 1. Sec-
ond, the following six tests in three cognitive domains
(memory, language, and attentive/executive functions):
Auditory Verbal Learning Test (AVLT delayed recall
and AVLT-recognized) [21], Animal Fluency Test (AFT)
[22], 30-item Boston Naming Test (BNT) [23], and Trail
Making Test (STT-A and STT-B) [24] were applied.
Third, subjects were excluded if any of the following oc-
curred: abnormalities on two measures in the same cog-
nitive domain, defined as > 1 standard deviation (SD); or
if each of the three cognitive domains had an impaired
score (defined as >1 SD) [25]. Fourth, individuals who
had complained of a declining memory were regarded as
the SCD group [26], whereas individuals with no com-
plaints and whose cognitive functions passed neuro-
psychological tests were included in the HC group. All
neuropsychological assessments were completed by two
neurologists with more than 5 years of clinical experi-
ence. A flowchart of the diagnostic steps in our present
study is shown in Fig. S1 of the Supplementary
Materials.

MRI acquisition

The imaging data were scanned using a 3.0-T MRI scan-
ner (Magnetom Verio, Siemens Medical, Erlangen,
Germany). The structural MRI data were collected in a
sagittal orientation using magnetization-prepared rapid-
gradient echo sequences with the following imaging pa-
rameters: TR/TE =1900 ms/2.22 ms, FOV =250 mm x
250 mm, slice thickness =1 mm, matrix size = 256 x 256,
flip angle=9°, and number of slices 174=176. The

resting-state functional MRI data were collected in an
axial orientation using multi-slice-gradient echo-planar
imaging sequences with the following imaging parame-
ters: TR/TE = 2000 ms/30 ms, FOV =240 mm x 240 mm,
slice thickness = 5 mm, matrix size = 64 x 64, flip angle =
90°, number of slices =31, and number of volumes =
180. The day before scanning, subjects were asked to en-
sure sufficient sleep quality and to not drink alcohol or
take drugs that might affect the nervous system. During
scanning, subjects were instructed to not engage in any
particular cognitive or motor activities, keep their eyes
closed, relax, and not fall asleep. Foam padding and
headphones were used to limit head movement and re-
duce scanner noise.

MRI preprocessing

In this study, we used a popularly-used fMRI prepro-
cessing routine, as developed in the Data Processing As-
sistant for Resting-State fMRI (DPABI, http://rfmri.org/
dpabi) [27, 28] and based on some functions in Statis-
tical Parametric Mapping (SPMS8, https://www.fil.ion.ucl.
ac.uk/spm) [29]. All the preprocessing steps of T1-
weighted and resting-state fMRI data were conducted by
DPABI. The preprocessing pipeline was as follows. The
first five volumes were removed to avoid a T1-
equilibration effect, after which 175 volumes remained.
The fMRI data consisted of images acquired one slice at
a time; thus, each slice was acquired at a slightly differ-
ent time point. Additionally, motion correction was used
to adjust the time series of images so that the brain was
in the same position in every image. Hence, we used
DPABI to correct for differences in image acquisition
time and head position from different slices by calling
functions in the SPM. The timings of all slices were
matched against the middle slice to ensure timing
synchronization. The position of the head in each slice
was adjusted to that in the first slice to ensure a fixed
position across slices. Additionally, head motion
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parameters were obtained. The brain size, shape, orien-
tation, and gyral anatomy varied largely across the par-
ticipants. To enable inter-subject comparisons, MRI
slices from each brain were transformed or spatially nor-
malized into a standardized template [30]. The
Diffeomorphic Anatomical Registration Through Expo-
nentiated Lie algebra (DARTEL) function [31] in DAPBI
was used to transform the functional data from the indi-
vidual native space to the Montreal Neurological Insti-
tute space, and the functional data were resliced (3 x 3 x
3 mm?> voxels) and smoothed with a 4-mm FWHM. We
further reduced the effects of physiological artifacts of
whole-brain signals via a regression analysis in DPABI.
In addition to the global mean signal, six motion param-
eters, cerebrospinal-fluid signals, and white-matter sig-
nals were removed as nuisance variables to reduce the
effects of head motion and non-neuronal BOLD fluctua-
tions. Before estimating dFC, temporal band-pass filter-
ing (0.01-0.10 Hz) was performed to remove the effects
of low-frequency drift and high-frequency noise in
DPABI. The choice of ROIs determines the tradeoff be-
tween spatial coverage and resolution and should be
carefully made. We chose Dosenbach’s ROIs, which are
functionally representative to sample the whole brain
[32]. Dosenbach’s ROIs have a clear coordinate defin-
ition for the location of structural partitions of the whole
cerebral cortex and groups the ROIs into six types of
networks, namely, the cerebellar, opercular, default, par-
ietal, occipital, and sensorimotor networks. We also
added four subcortical ROIs located in the bilateral
amygdala and para-hippocampi according to previous
studies [33], and these four ROIs were used as additional
networks. Hence, we defined a total of 164 ROIs
(spheres with a radius of 8 mm each), consisting of seven
networks for subsequent whole-brain analysis. Then, we
extracted the time series of each ROI by averaging the
time courses of all voxels within the ROI Finally, we di-
vided the whole brain into seven networks: cerebellar,
opercular, default, parietal, occipital, sensorimotor, and
additional networks.

Estimation of dynamic fMRI states

Low-frequency (0.01-0.08 Hz) fluctuations (LFFs) of the
resting-state fMRI signals have been reported to be of
physiological importance [34] and have been suggested
to reflect spontaneous neuronal activity [35]. Further-
more, ALFF and its improved version, fALFF [36, 37] are
now widely used for characterizing regional patterns of
resting-state fMRI. Hence, we calculated the fALFF
based on the protocol [38]. More specifically, ALFF was
defined as the sum of amplitudes within a specific low-
frequency range (0.01-0.10 Hz), while fALFF was de-
fined as the ratio of the ALFF of a given low-frequency
band (0.01-0.10 Hz) to the sum of amplitudes across the
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entire frequency range detectable in a given signal. In
the present study, we used the parameter settings (fre-
quency ranges) in the original paper that introduced
fALFF [38].

The dynamic patterns in fALFF were characterized by
using the sliding-window approach [10], which sliced
ROI time courses into several short data segments with
a 50-s rectangular window and estimated a dfALFF
matrix for each segment. Next, k-means clustering was
used to group the dfALFF matrices into a limited num-
ber of clusters, which are referred to as “states.” After
the dfALFF states were identified, the occurrence fre-
quency of each state for each participant was obtained
by calculating the percentage of the corresponding state
among all time points. The dynamic patterns in FC were
also characterized by using the sliding-window approach
with the same parameters as those used for estimating
dfALFF. The occurrence frequency of each dFC state for
each participant was also obtained by calculating the
percentage of the corresponding state among all time
points. Since there were 164 ROIs, one dFC matrix at
one time point had the dimensionality of 164 x 164 and
the number of elements was 26,896. Because of the sym-
metry of a dFC matrix, we converted the upper triangle
of the dFC matrix into a one-dimensional vector with a
dimensionality of 13,366 x 1. A total of 151 vectors (i.e.,
the number of windows or time points was 151) were
obtained for each subject and, for all subjects (N =66 +
55 + 65 =186), there were in total (151 x 186) = 28,086
dFC vectors. The vectors of all subjects were then
concatenated, forming a 13,366 x 28,086 dFC matrix for
clustering. Similarly, the clustering algorithm was ap-
plied to concatenate the dfALFF vectors of all subjects
(164 x 28,086).

After identifying recurrent states of dALFF and dFC,
the co-occurrence frequency between each pair of
dfALFF state and dFC state was obtained by calculating
the percentage of the co-occurrence of this pair of states
among all time points for each participant. The occur-
rence frequency of a state represents the percentage of a
certain dynamic state occurring in the whole timeline,
which can be calculated by the ratio of time points with
one type of cluster label out of the total time points. The
co-occurrence frequency was used to extract regularity
of information that occurred simultaneously between
two types of dynamic states after identifying their corre-
sponding occurrence frequencies. The co-occurrence
frequency of two types of states (e.g., one dFC state and
one dfALFF state) represents the percentage of these
states occurring simultaneously in the whole timeline,
which can be calculated by the ratio of time points with
two kinds of cluster labels at the same time point out of
the total time points. This entire framework is illustrated
in Fig. 1. More details on the estimation of dfALFF and
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Fig. 1 The flowchart for the estimation of dynamic fMRI states. The whole framework for the estimation of dfALFF and dFC states and the
calculation of the occurrence/co-occurrence frequency of dfALFF and dFC states
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dFC states and their co-occurrence can be found in Ap-
pendix A of the Supplementary Materials.

Statistical analyses

Sociodemographic, clinical, and behavioral variables
were tested for normality using the Shapiro-Wilk test.
Differences in age, education, MMSE scores, and
MOCAscores among the three groups were deter-
mined via analysis of variance (ANOVA) or Kruskal-
Wallis tests. AVLT, BNT, AFT, and STT differences
between the two groups were tested with two-sample
t tests or Mann-Whitney tests. Gender differences
among groups were tested via the chi-squared test.
Furthermore, to determine group differences in the
functional networks of HCs, SCD patients, and MCI
patients, we performed ANOVAs and two-sample ¢
tests among the three groups in terms of the occur-
rence frequencies of dFC states. We used the
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occurrence frequencies of dFC states 1-4 and dfALFF
states 1-4 to perform a one-way ANOVA among the
HC, SCD, and MCI groups. The p values of eight re-
sults (4 dFC states and 4 dALFF states) were cor-
rected for multiple comparisons by using the false
discovery rate (FDR) [39]. Based on the significant
difference in the occurrence frequency of dFC state 3
among the three groups, we compared the co-
occurrence frequency of dFC 3 and dfALFF states 1—
4 among HC, SCD, and MCI groups by using one-
way ANOVA. The p values of four results (4 dfALFF
states) were corrected for multiple comparisons by
using the FDR. Finally, we conducted Pearson’s cor-
relation analysis to characterize the relationship be-
tween dynamic features (the occurrence frequency of
dFC states and the co-occurrence frequency between
dfALFF states and dFC states) and cognitive scores
(MMSE).

A State 1

State 4

B State 1
19%

State 2

cerebellum
opercular ©

25% 26% 0% 29%
cerebellum E | B i 0.6
E— @&
opercular V= E = 0.55
T, 00— = e e e =
default ——— : i _ 05
parietal - - ::::: E ; 0.45
ocoipital ==mm T B .,
sensorimotor = - § e e
addition —_——— P f————— 0.35

23%

State 4
37%

default =~
parietal

occipital

sensorimotor

addition

subjects were 19%, 23%, 21%, and 37%, respectively

Fig. 2 The identified 4 dfALFF states and 4 dFC states. a Four dfALFF states were identified and their occurrence frequencies in all time points of
all subjects were 25%, 26%, 20%, and 29%, respectively. b Four dFC states were identified and their occurrence frequencies in all time points of all
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Results

Sociodemographic and cognitive characteristics

The resting-state fMRI data from 22 participants were
excluded due to head motion with more than 2.0-mm
maximum displacement in any direction of «x, y, and z,
or more than 2° of any angular motion throughout the
scan. Following these exclusions, data from 55 SCD pa-
tients, 65 MCI patients, and 66 HCs remained and were
further analyzed. Sociodemographic, clinical, and disease
characteristics of the remaining participants are shown
in Table 1. Age, education, and the number of partici-
pants were not significantly different among the three
groups. The MMSE scores were significantly different
between SCD and MCI groups, as well as between HC
and MCI groups. The MOCA scores were significantly
different between any two compared groups. The GDepS
scores were significantly different between SCD and
MCI groups, as well as between HC and MCI groups.

Dynamic fMRI states

We identified four dfALFF states and four dFC states
(Fig. 2). The results showed that dFC state 3 had the
strongest positive within-DMN FC and negative
between-DMN FC (Fig. 2b); hence, dFC state 3 was
regarded as a DMN-dominated state. One pair of co-
occurrence states (dfALFF state 2 and dFC state 3) is
shown in Fig. 3. The co-occurrence dfALFF state 2
showed the strongest local activation within the DMN,
which is consistent with its co-occurrence with dFC
state 3 (a DMN-dominated state). More details on the
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main characteristics of dfALFF and dFC states can be
found in Appendix B of the Supplementary Materials.

Group differences in dfALFF and dFC states

The results of an ANOVA showed that there were sig-
nificant differences among the three groups in the
occurrence frequency of dFC state 3, as well as in the
co-occurrence frequencies of dfALFF state 2 and dFC
state 3, as shown in Fig. 4 and Table S1 and S2 of the
Supplementary Materials. There were no significant dif-
ferences among the groups in terms of the occurrence
frequencies of dfALFF states (Fig. S2 of the Supplemen-
tary Materials). Specifically, the SCD and MCI groups
showed significantly lower occurrence frequencies of
dFC state 3 compared to that of HCs (p=0.01 and p
325 =0.0003, respectively); however, there was no sig-
nificant difference in the occurrence frequencies of dFC
state 3 between the SCD and MCI groups (p=0.25).
The MCI group showed significantly reduced co-
occurrence frequencies of dfALFF state 2 and dFC state
3 compared to those of the SCD and HC groups (p =
0.01 and p =0.008, respectively), whereas there were no
significant differences in these co-occurrence frequencies
between the SCD and HC groups (p = 0.42).

Correlations between dynamic fMRI states and cognitive
scores

The correlations between dynamic fMRI states and cog-
nitive scores are shown in Fig. 5. The occurrence fre-
quency of dFC states 3 was significantly positively

dfALFF state 2

Co-occurrent dfALFF state and dFC state

cerebellum cerebellum IR e e e
opercular opercular |
default 1 default £ =ifen aa RN cad| [ os
' 0.6
parietal oS parietal 0.4
occipital | [ O occipital ! 02
g 0

sensorimotor | o sensorimotor : j, 02
(S L : o bt oL -0.4

addition Eesemamsl 1 addition E = : s

NN &

e“e\\o 2(00\ e"'ao\ aﬂ'\e‘%\ 0

Fig. 3 An example of co-occurrent dfALFF state and dFC state. The co-occurrence dfALFF state 2 showed a strongest local activation within
DMN, which is consistent with co-occurrence dFC state 3 (a DMN-dominated state)

_dFC state 3
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Fig. 4 Group difference of dfALFF and dFC states between HC, SCD and MCI. a The occurrence frequency of dFC state 3 is significantly different
among the three groups. SCD showed significantly reduced occurrence frequency compared with HC (p =0.01), and MCl showed significantly
reduced occurrence frequency compared with HC (p = 0.0003). b The co-occurrence frequency of dfALFF state 2 and dFC state 3 is significantly
different among the three groups. MCl showed significantly reduced co-occurrence frequency compared with SCD (p = 0.01), and MCl showed
significantly reduced co-occurrence frequency compared with HC (p = 0.008)
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correlated with MMSE scores (R = 0.25, p = 0.004), while
the co-occurrence frequencies of dfALFF state 2 and
dFC state 3 were significantly positively correlated with
MMSE scores (R =0.28, p = 0.013).

Discussion
The present study proposed a novel resting-state fMRI-
analysis framework to explore dynamic regional neural

activity and FC in SCD and MCI patients. We examined
dynamic patterns of FC and fALFF (ie, dFC and
dfALFF) and estimated a few recurring dFC states and
dfALFF states. A dFC state is one specific recurring pat-
tern of whole-brain FC, while a dfALFF state is one
specific recurring pattern of whole-brain regional spon-
taneous activities. One dFC/dfALFF state may be related
to a specific mental state of subjects at rest. Hence, the
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Fig. 5 The correlation between dynamic fMRI state features and MMSE scores. a The occurrence frequency of dFC state 3 was significantly
positively correlated with MMSE (R =0.25, p = 0.004). b The co-occurrence frequency of dfALFF state 2 and dFC state 3 was significantly positively
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occurrence frequency of one dFC or dfALFF state and
the co-occurrence frequency of one pair of two types of
states are important metrics specific to each subject. We
found that dFC state 3 had the strongest positive within-
DMN EC and negative between-DMN FC and was con-
sequently regarded as DMN-dominated state. Moreover,
the HC, SCD, and MCI groups exhibited different dFC
and dfALFF patterns: the occurrence frequencies of a
DMN-dominated dFC state were different between the
HC and SCD groups, while the co-occurrence frequen-
cies of a DMN-dominated dfALFF state and a DMN-
dominated dFC state were different between the SCD
and MCI groups.

Importance of dynamic state analysis

The human brain is connected by overlapping functional
networks that present interacting and interdependent re-
lationships with each other to maintain cognitive func-
tions [40, 41]. During resting states, there still exists
consistent spontaneous activation and information trans-
mission in the brain [42]. Hence, investigating dynamic
brain states can more accurately reflect the resting-state
activity and connectivity of the human brain and can
provide a more comprehensive understanding of the
brain [43]. Dynamic state analysis of the brain has been
gradually used to study preclinical stages of AD. It has
been suggested that functional dynamic neuroimaging
biomarkers are well-suited to detect neural signatures at
the earliest preclinical stages of AD, far before measur-
able changes in neurochemistry, anatomical structure,
and/or cognition [44]. A previous study applied eight
resting-state measures and found that FC dynamics, as
well as ALFF and FC matrices, were most discriminated
for AD classification, and that classification accuracy
was slightly improved by combining all of these mea-
sures [45]. Another study suggested that dFC may repre-
sent a more important biomarker of dementia than sFC
because its progressively altered patterns can better track
cognitive impairment in AD and subcortical ischemic-
vascular disease (SIVD) [9]. Furthermore, disruptions in
dFC that have been extended to sFC results have been
detected in both MCI and AD patients [10]. Homeoplas-
tically, we found a significant decrease in the occurrence
frequency of the DMN-dominated dFC state in the SCD
and MCI groups compared with that in the HC group.
We also found a decrease in the co-occurrence fre-
quency of the DMN-dominated dfALFF state and DMN-
dominated dFC state in the MCI group compared with
that in the SCD and HC groups. Collectively, these find-
ings may help to further elucidate the pathophysiology
of AD and may provide objective neuroimaging bio-
markers for the identification of SCD. Particularly, un-
like previous related dynamic brain studies only focusing
on dFC, this work also investigated the time-varying
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patterns of regional brain activity (i.e., dfALFF) and pro-
posed a new measure (the co-occurrence frequency of
the dfALFF state and dFC state) to characterize the dy-
namic brain. Because regional brain activity is the source
data used to estimate FC, dfALFF and dFC should be re-
lated to each other.

However, it still remains unclear how dfALFF states
and dFC co-exist and co-evolve and how the co-
existence and co-evolutionary patterns are altered in
specific cohorts, such as SCD and MCI patients. Because
the co-occurrence frequency of the DMN-dominated
dfALFF state and DMN-dominated dFC state is corre-
lated with cognitive performance, we speculate that the
co-occurrence or co-existence of these two different
types of dynamic states (states of regional activities and
connectivity) reflects the brain’s capability to maintain
strong  correlation and  synchronization among
cognition-related regions and is important to support
cognition. Therefore, the aberrant patterns of co-
occurring dFC and dfALFF states could be indicative of
the decline in cognitive ability and could be a marker of
the progression of dementia. The proposed new dynamic
brain state analysis method has the capability of reveal-
ing the co-existing and co-evolving patterns of two dif-
ferent but correlated dynamic states (dynamic regional
activity and dynamic functional connections among local
regions), so it is a powerful tool to reveal new and more
complete patterns of the dynamic brain. The new ana-
lysis method can also be potentially used for the investi-
gation of disrupted and abnormal brain functions,
providing new insights into the mechanisms of mental
disorders.

SCD as a transition stage to MCl

Our present results of dynamic-state analyses of fMRI
suggest that there is a two-stage progression from nor-
mal aging to MCI, in which SCD is a transition stage. In
the first stage (from HC to SCD), the brain’s functional
abnormality emerged as a decrease in the occurrence of
a DMN-dominated dFC state; in the second stage (from
SCD to MCI), the brain’s functional abnormality was ex-
hibited as a new pattern, which was represented as a de-
crease in the co-occurrence of a DMN-dominated dFC
state and a DMN-dominated dfALFF state. Therefore, it
is possible that the emergence of SCD is related to a
change in functional brain networks but may not be re-
lated (or is less related) to regional spontaneous activ-
ities. Next, regional spontaneous activities may also play
an important role in the progression from SCD to MCL
More precisely, the progression to MCI is related to co-
occurrent states of regional spontaneous activities and
FC. Cognitive decline in the early stage of AD is mainly
related to aberrant FC, while cognitive decline in the late
stage of AD is related to both aberrant regional activities
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and FC. Because FC and regional activities play different
roles before and after SCD, SCD may represent a transi-
tion phase between normal aging and MCI. However,
further studies are needed to confirm or refute this
hypothesis.

The role of DMN-dominated states

The significantly altered dynamic states across groups in
the present study were dominated by the DMN, both in
terms of dFC states and dfALFF states. We found that
dFC state 3 was a DMN-dominated state because it had
the strongest within-DMN FC. Also, dfALFF state 2, of
which the co-occurrence frequency with dFC state 3 was
different between MCI and SCD patients, was domi-
nated by the DMN because the DMN had the strongest
dfALFF among all networks. The DMN is the core of in-
trinsic- connectivity networks, of which the correspond-
ing FC is positively correlated with cognitive
performance [46] and is also vulnerable to AD [47, 48].
Studies have found variable and complex patterns of al-
tered activity or connectivity of the DMN in MCI [49],
and previous studies of DMN hyper-connectivity have
suggested functional disconnection and compensation
for damage in early AD [47, 50]. As a high-risk state of
AD, SCD shares similar patterns of brain abnormalities
to those of AD, and the disruption of brain connectivity
in SCD is similar to that observed in MCI [51, 52].
Moreover, SCD shows intermediate changes in DMN
connectivity between MCI patients and HCs [51, 53].
Analogously, our present study found that SCD showed
intermediate changes in DMN-dominated FC/fALFF
states. According to the above results, we speculate that
enhanced FC of the DMN may lead to a decreased oc-
currence frequency of the whole-brain DMN-dominated
state in order to maintain normal brain function. It is
noteworthy that the occurrence frequency of the DMN-
dominated dFC state was not significantly different be-
tween SCD and MCI groups, implying that disruption of
whole-brain network tends to remain relatively stable in
the process of conversion from SCD to MCI. Likewise,
we observed intermediately decreased co-occurrence fre-
quencies of the DMN-dominated dFC and dfALFF states
in the SCD group compared to those in the MCI and
HC groups, while there was no significant difference in
this co-occurrence frequency between SCD and HC
groups. In this regard, we speculate that DMN dysfunc-
tion or disconnection occurred in SCD and MCI pa-
tients, resulting in whole-brain dynamic network decline
despite a predominantly active DMN during the resting
state. According to a proposed theoretical framework of
cascading network failure of AD in the DMN, high FC
may result from high-processing burden, which may be
shifted when overloaded and/or during noisy/inefficient
synaptic communication. These changes may then
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spread to downstream regions of highly connected net-
works as a compensatory strategy and may eventually
cause widespread system failure [54]. It has been indi-
cated that dysfunction in one region may result in DMN
hyperconnectivity [54], which has been interpreted as a
compensatory phenomenon [55]. Similarly, it was found
that posterior DMN decline was accompanied by in-
creased connectivity with other brain networks through-
out the course of AD [56]. A longitudinal study
demonstrated that the connectivity within the anterior
and ventral DMN was increased initially but ultimately
deteriorated as the disease progressed [57], suggesting
that dysfunction of the DMN developed gradually across
the AD spectrum and ultimately progressed to become
non-functional [58] and/or with gray-matter atrophy [59].
In the present study, we did not observe a significant dif-
ference in the co-occurrence frequency between the SCD
and HC groups. We speculate that disruption of whole-
brain network dynamics revealed by the DMN in SCD
was relatively mild and that temporal synchronization of
regional neural activity and FC was maintained via com-
pensatory mechanisms. During progression of AD, our
data suggest that whole-brain network dynamics became
progressively disrupted, as indicated by a decreased co-
occurrence frequency of DMN-dominated dfALFF and
dFC states in MCI patients.

Limitations

Our present study had some limitations. Owing to a lack
of ad-hoc technology and equipment, we were unable to
obtain information regarding amyloidosis, which is an
important biomarker of AD. In addition, future longitu-
dinal studies may help to better characterize the pro-
gression of AD and provide additional insights into the
conclusions of our present study.

Conclusions

In summary, our present study introduced a novel
dynamic-fMRI state-analysis framework for dfALFF and
dFC analyses. Our findings provide new insights into the
spatiotemporal functional organization of the brain dur-
ing resting states, as well as a more comprehensive un-
derstanding of the roles of regional spontaneous neural
activity and FC during cognitive decline. From the evi-
dence of dynamic states of FC and regional activity, SCD
may be regarded as a transitional stage between normal
aging and MCI, and DMN-dominated states may play an
important role in cognitive decline.
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