Monte-Mor and Cunha Journal of the Brazilian Computer Society
(2015) 21:3
DOI10.1186/513173-015-0022-3

® Journal of
the Brazilian Computer Society

a SpringerOpen Journal

ApproxMap - a method for mapping blank

nodes in RDF datasets

Juliano de Almeida Monte-Mor'2" and Adilson Marques da Cunha?

Abstract

worst-case time complexity of O(n?).

Background: Versioning has proven to be essential in areas like software development or data and knowledge
management. For systems or applications making use of documents formatted according to the Resource Description
Framework (RDF) standard, it is difficult to calculate the difference between two versions, owing to the presence of
blank nodes, also known as bnodes in RDF graphs. These are anonymous nodes that can assume different identifiers
between versions. In this case, the challenge lies in finding a mapping between the sets of blank nodes in the two
versions while minimizing the operations needed to convert one version into another.

Methods: Within this context, we propose an algorithm, named ApproxMap, for mapping bnodes based on
extended concepts of rough set theory, which provides a way to measure the proximity of bnodes and map them
with closer approximations. Our heuristic method considers various strategies for reducing both the number of
comparisons between blank nodes and the delta between the compared versions. The proposed algorithm has a

Results: ApproxMap showed satisfactory performance in our groups of experiments, as the algorithm that obtained
solutions closest to the optimal values. This algorithm succeeded in finding the optimal delta size in 59% of the tests
involving optimal values. ApproxMap achieved a delta size smaller than or equal to those of existing algorithms in at

least 95% of the tested cases.

connected bnodes.

Conclusions: The results show that the proposed algorithm can be successfully applied to versioning RDF
documents, such as that produced by software processes with iterative and incremental development. We
recommend applying ApproxMap in various situations, particularly those involving similar versions and directly

Keywords: Blank nodes; Resource Description Framework (RDF); Mapping; Rough set theory

Background
In areas such as software engineering, databases, and
Web publishing, methods for versioning have already been
developed and successfully applied. These methods must
be able to calculate the differences (i.e., deltas) between
versions to provide efficient storage of subsequent ver-
sions.

Particularly in software engineering, versioning algo-
rithms are usually based on a comparison of text lines.
However, these methods are not suitable to control

*Correspondence: jmontemor@unifei.edu.br
Trederal University of Itajuba - UNIFEI, Campus of Itabira, Rua Irma Ivone
Drumond, 200, Distrito Industrial Il, Itabira, MG 35903-087, Brazil

Brazilian Aeronautics Institute of Technology - ITA, Praca Marechal Eduardo
Gomes, 50, Vila das Acacias, Sao Jose dos Campos, SP 12228-900, Brazil

@ Springer

versions of structured or semi-structured documents. In
this article, we focus specifically on the version con-
trol of documents following a Semantic Web standard,
the Resource Description Framework (RDF) [1]. We have
applied Semantic Web technologies in the software con-
figuration management (SCM) domain [2].

RDF defines a basic data model for writing simple
statements about Web objects or resources. It allows the
definition of sentences through ‘subject-predicate-object’
triples; that is, a resource, a property, and a value (which
can be a literal or a resource). An RDF triple, like a
graph’s edge, provides a binary relationship (predicate)
that relates a subject to an object. Thus, an RDF document
or dataset can be represented by a directed graph [3].

© 2015 Monte-Mor and Cunha; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

mailto: jmontemor@unifei.edu.br
http://creativecommons.org/licenses/by/4.0

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

The conventional line-oriented mechanisms in software
engineering are insufficient in the Semantic Web context
because their deltas are based on unique serializations,
which do not occur naturally in RDF datasets [4]. These
bases usually consist of unordered collections of affirma-
tions about resources; however, even when a standard
serialization order is imposed (e.g., by sorting), existing
comparison tools fail to consider knowledge inferred from
schemas associated with RDF datasets [5].

Thus, to obtain the delta between two versions of an
RDF dataset, we need to map the nodes in the graphs
representing these versions. However, the main prob-
lem encountered during calculation of the delta concerns
the existence of anonymous nodes (i.e., blank nodes or
bnodes) in the RDF graphs. Bnodes represent resources
that are not identified by a uniform resource identifier
(URI) or literals. In this case, the mapping between bnodes
contained in different graph versions directly influences
the size of the deltas.

As the scope of identifying bnodes is only local, it is a
challenge to find a mapping between bnodes in two ver-
sions resulting in the smallest possible delta. Tzitzikas
et al. [6] showed that the problem of finding the optimal
mapping is NP-hard in the general case and polynomial
in the case where bnodes are not directly connected. To
illustrate this problem, consider two versions of a dataset
as shown in the example proposed by Tzitzikas et al. in
Figure 1.

First, we can easily map bnodes ‘_:3; ‘_:4; and ‘_:5" to
bnodes ‘_:8; * :10; and ‘_:9; respectively. Then, by map-
ping bnode pairs ‘_:1" and ‘_:6" and ‘_:2’ and ‘_:7, which
seems to be a natural choice, we obtain a delta con-
sisting of four triples. In other words, transforming the
first graph into the second requires removing triples
‘<_:1,friend, _:4>" and ‘<_:2,friend, _:5>" and adding
triples ‘<_:1, friend, _:5>" and ‘<_:2,friend, _:4>’ How-
ever, if we were to map bnode ‘_:1’ to ‘_:7’ and ‘_:2’ to

Page 2 of 28

‘_:6, we would have a delta consisting of two triples; that
is, triple ‘<_:1, brother, _:3>" must be removed and triple
‘<_:2,brother, _:3>" added. The latter mapping is bet-
ter, owing to the smaller delta size. In the case of directly
connected bnodes, we believe that a mapping based on a
bottom-up strategy, where nodes in the lower levels are
mapped before those in the upper levels, can help reduce
the delta size.

During bnode mapping, we need to address inaccuracies
between the modified bnodes. To facilitate the handling
of this imprecision, we chose to extend some concepts of
rough set theory (RST) [7]. RST has already been success-
fully applied in several areas like artificial intelligence and
cognitive sciences. Nicoletti et al. [8] presented the fol-
lowing application examples: creation of machine learning
methods, knowledge representation, inductive reasoning,
data mining, processing of imperfect or incomplete infor-
mation, pattern recognition, and discovery of knowledge
in databases.

In this context, our approach proposes a heuristic
method for mapping blank nodes based on RST. This the-
ory serves as the conceptual basis for the definition of
metrics to assist in the choice of bnode pairs, providing the
necessary support to map a bnode to the candidate with
the closest approximation. Our main objective is to create
an algorithm that can be successfully applied in software
project versioning.

The remainder of this article is organized as follows:
‘Related work’ subsection gives an overview of exist-
ing work on calculating deltas and mapping bnodes. In
‘Problem description’ subsection, we formally describe
the problem addressed in this work, while ‘Rough set
theory’ discusses some basic concepts of RST. In ‘Blank
nodes as rough sets, we define a bnode representation
model using rough sets, which is necessary for specify-
ing the proposed mapping algorithm in “The ApproxMap
method’ section. ‘Results and discussion’ discusses some

K1 Jim
hasAgenda hasAgenda
s ;.
1 2
brother friend
friend
' a4 4
3 4 5
name sname name name
» | k4 4
Chris)(Zeginis Tom John

(@)

Figure 1 Versions K; (a) and K (b) of the same dataset [6].

K2 Jim
hasAgenda hasAgenda
&« -
6 7
brother, friend
friend
13 'Y v
8 9 10
ke sname name name
E 4 v ¥
Chris)(Zeginis John Tom

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

experimental results, while ‘Conclusions’ presents our
conclusions and recommendations.

Related work

Particularly in the software engineering domain, relatively
little effort has been made to develop methods for obtain-
ing a better blank node mapping between two versions, by
reducing their delta size. Next, we briefly describe some
studies on RDF dataset versioning, explaining how they
handle blank nodes.

Berners-Lee and Connolly [4] discussed comparing RDF
graphs and updating a graph from a calculated set of
differences. They emphasized that the order and identifi-
cation of bnodes can differ arbitrarily with serializations
of the same graph. Hence, calculating deltas based on
line-oriented approaches is a problem. Computing the
differences between two graphs is simple and straight-
forward if all nodes are named. However, when not all
bnodes are named, finding the largest common subgraph
becomes an instance of the graph isomorphism problem.
The authors further suggested that available solutions for
the general isomorphism problem do not appear to be
good matches for practical cases. Thus, they proposed an
algorithm that produces an RDF difference only for graphs
named directly with URIs or indirectly with functional or
inverse functional properties. We extend their approach
by performing the mapping considering unnamed nodes
as well.

Carroll [9] showed that standard algorithms for graph
isomorphism can be used to compare RDF graphs. He
developed an algorithm considering an iterative vertex
classification, used in his RDF toolkit Jena, where each
anonymous resource is identified based on the statements
in which it appears. Thus, bnodes receive identifiers con-
sidering their local contexts, which can change between
different versions. In our approach, although we do not
produce identifiers for bnodes, we also consider the triples
in which they appear to classify approximations between
bnode pairs.

Noy et al. [10-12] presented an algorithm, called
PromptDiff, which combines different heuristic match-
ers to map RDF graphs by comparing structural prop-
erties of the ontology versions. New matchers, which
may be needed to compare anonymous classes, can eas-
ily be added. The authors considered two observations
when comparing versions from the same ontology: a large
proportion of the frames remain unchanged between ver-
sions; and if two frames have the same type and name (or
a very similar name), they are almost certainly copies of
one another. We follow the first observation, by first map-
ping equivalent bnodes. We also include some heuristic
strategies in the design of our method.

Auer and Herre [13] suggested a framework to support
versioning and the evolution of RDF knowledge bases.

Page 3 of 28

Their framework is based on atomic changes, including
the addition or removal of RDF graphs statements. Atomic
changes encompass all statements containing bnodes in
a delta, where the graph is atomic if it cannot be split
into two nonempty graphs with disjoint blank nodes. In
contrast to our approach, because Auer and Herre did
not aim to find a mapping between bnodes, there was no
commitment to obtain the smallest delta.

Voelkel and Groza [14] showed a versioning approach,
called Sem Version, which provides structural and seman-
tic versioning for models in RDF/S and OWL. In their
approach, bnodes were given unique identifiers in all ver-
sions. To identify equal blank nodes across models, they
proposed a method for blank node enrichment, where
URIs are attached as inverse functional properties to blank
nodes. However, this means that blank nodes with differ-
ent identifiers cannot be mapped, even if they represent
the same element in different versions. Moreover, in our
approach, we do not add any information to the datasets
and do not consider unique identifiers for bnodes in
different versions.

Cassidy and Ballantine [15] and Im et al. [16] presented
versioning models for RDF repositories. They provided
a collaborative annotation facility to develop and share
annotations over the Web. Im et al. proposed a version
framework for an RDF data model based on relational
databases. None of these authors, however, considered
blank nodes in their research or defined any method
for mapping bnodes, as we do in our approach. These
researchers addressed only procedures enabling version-
ing in RDF repositories.

By considering deltas as sets of change operations,
Zeginis et al. [5,17] described various comparison func-
tions, together with the semantics of primitive change
operations, and formally analyzed their possible com-
binations in terms of correctness, minimality, semantic
identity, and redundancy properties. Assuming Add(¢)
and Del(t) are, respectively, the straightforward addition
and deletion of triple ¢ from set Triples(K), then, in our
approach, we adopt the differential function A, (where
e stands for explicit) for two dataset versions K and K,
defined by Zeginis et al. as:

Ae(K,K') = {Add(®)|t € K' — K} U {Del(®)|t € K — K'}.
(1)

Tzitzikas et al. [6] proposed two polynomial time algo-
rithms for mapping bnodes between two knowledge
bases. Seeking to reduce the size of the resulting delta,
the authors modeled the problem of bnode mapping as an
assignment problem and used a Hungarian [18] method,
AlgHung, to solve it. This method seeks to find the optimal
solution with time complexity O(#%).

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

AlgHyune obtains the optimal delta if the considered
knowledge bases do not have interconnected bnodes.
In the case where the datasets have directly connected
bnodes, the authors assume that all neighboring bnodes
are equal during mapping. This method cannot be applied
to larger knowledge bases owing to its quadratic space
requirement in terms of RAM [6].

These authors also proposed a faster signature-based
method, called Algs;u, for comparing large knowledge
bases with time complexity O(# - logn). For each bnode,
Algsign produces a string based on its direct neighborhood
as the bnode’s signature. Thereafter, the mapping phase
compares the generated strings, sorted lexicographically
to allow a binary search. The cost of reducing the mapping
time is a probable increase in the delta size [6].

Through experiments, Tzitzikas et al. verified that their
algorithms obtain deltas with large sizes if the number of
directly connected bnodes is high. In this case, once the
direct neighborhoods lose their discrimination ability, the
delta reduction potential becomes more unstable [6].

Because the number of directly connected bnodes
affects the results of both Algy,ne and Algs;g, we proposed
a greedy method with a different strategy: neighboring
bnodes are treated as different nodes, until they have been
mapped in a previous iteration. Our proposal aims to
develop a method with lower memory overhead than the
AlgHung algorithm, while reducing the probable increase
in delta size when compared with Algg;g.

Research performed before that of Tzitzikas et al. [6]
did not seek a mapping that reduces the delta between
versions. Tzitzikas et al. were the first to address the
bnode mapping problem as an optimization problem, as
described in the next section. Accordingly, their work
served as the basis for implementing our approach,
enabling a comparison between our method and their
proposed algorithms.

Problem description

In this section, we describe the problem addressed in this
article as defined by Tzitzikas et al. [6]. An RDF knowl-
edge base, i.e., an RDF graph, consists of a finite set of RDF
triples. Each RDF triple refers to (s,p,0) € (W U B) x
W x (W U BU L), where W is an infinite set of URIs, B
is an infinite set of blank nodes, and L is an infinite set of
literals. Assuming Wy, By, and Ly are sets of URIs, blank
nodes, and literals of an RDF Gj graph, respectively, the
equivalence between two RDF graphs can be defined as
follows:

Definition 1. (from [1]) Two RDF graphs G; and G, are
equivalent if there is a bijection M between the sets of
nodes of the two graphs (N and Ny) such that:

o M(uri) = uri, for each uri € W1 N Ny;

Page 4 of 28

e M(lit) = lit, for each lit € Ly;

e M maps bnodes to bnodes (i.e., for each b € By it
holds that M(b) € By); and

e triple (s, p,0) is in G if, and only if, triple
(M(s), p, M(0)) is in Ga.

Tzitzikas et al. denoted this equivalence between two
graphs G; and Gy as G1 = Ga. Moreover, they also
defined the edit distance between two nodes as given
in Definition 2. From these two definitions, the equiva-
lence between graphs G; and Gy can be defined as in
Theorem 1.

Definition 2. (from [6]) Let 0; and 0, be nodes in G;
and G, respectively. Suppose a bijection exists between
the nodes of these graphs, i.e., function M : Nj — N
(obviously [N1| = |Nz]). Then, the edit distance between
o1 and o over M, denoted by distyr(01,02), is the num-
ber of additions or deletions of triples required to make
the ‘direct neighborhoods’ of 0; and o0, the same (that is,
where M-mapped nodes are the same). Formally:

distyr(01,02) = |{(01,p,a) € G1](02,p, M(a)) ¢ G2 }|
+ [{(ap,01) € G1|(M(a), p, 02) & G2}
+ |{(02,p, @) € Gal(01,p. M~ (a)) ¢ G1}]
+ {(@p,02) € Go| (M), p,01) ¢ G1}|.
(2)

Theorem 1. (from [6])
G1 =pm Gy & dista(o,M(0)) = 0 for eacho € N1 (3)

In the case of versioning, current interest lies in non-
equivalent knowledge bases. In this case, it is necessary
to find a mapping between bnodes in the two knowledge
bases, B and B, that reduces the delta resulting from a
comparison thereof.

In this regard, Tzitzikas et al. formulated finding this
mapping as an optimization problem: given n; = |By|,
ny = |By], and n = min(ny,ny), the goal is to find
the unknown part of bijection M. First, M contains the
mapping of all URIs and literals of the knowledge bases
(according to Definition 1). Assuming that n = n; < ny,
3 denotes the set of all possible bijections between B; and
the subset of By comprising 7 elements. Consequently, the
set of candidate solutions (i.e., |J]) is exponential in size.
Given the objective of finding a bijection M € 3 that
reduces the size of the delta, they defined the cost of bijec-
tion M by Equation 4. From Definition 3, Tzitzikas et al.
described the equivalence between two graphs G; and Gy
according to the mapping cost presented in Theorem 2.

Cost(M) = Z disty(by, M(b1)) (4)
b1631

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Definition 3. (from [6]) The best solution (or solutions)
is the bijection with the minimal cost. Considering that
argy returns the set M € J with the minimum cost, we
have:

Msol = argy jr\r/llg(Cost(M)). (5)

Theorem 2. (from [6])
G1 =m,, G2, then Cost(Mo1) = 0. (6)

Therefore, considering the context of this problem
described by Tzitzikas et al., we propose a greedy method
that seeks to reduce the delta size between two RDF
graphs, obtaining an approximate solution to the bijection
between the bnodes of these RDF graphs. For this pur-
pose, we define some metrics extending various concepts
of RST. In the next section, we present some basic con-
cepts of this theory, which are considered in the design of
our algorithm.

Rough set theory
RST is an extension of set theory, consisting of a mathe-
matical model for uncertainty and imprecision handling,
knowledge representation, and rough classification. The
main advantage of using RST is that it does not require
any preliminary or additional information about the data,
such as a probability distribution or membership degree.
In our approach, we adopt RST as the formalism for
dealing with imprecision resulting from the comparison of
bnode pairs. RST also forms the conceptual basis of defin-
ing metrics for measuring the closeness between bnode
pairs. Our method aims to map the closest bnode pairs in
an attempt to reduce the delta size. Next, we present the
main concepts of this theory, extracted from [7,19].

Basic concepts
Let U be a finite, nonempty, universe set of objects. In set
U, we can define subsets using the equivalence relation
R, called the indiscernibility relation. Relation R induces a
partition (and consequently, classification) of the objects
in U. Thus, an approximation space consists of an ordered
pair A = (U, R), where given x,y € U, if xRy then x and y
are indiscernible in A. The equivalence class defined by x
is the same as that defined by y, i.e., [x]r =[y]r.
Elementary sets correspond to equivalence classes
induced by R in U. A partition of U by R, denoted by
U/R, can be viewed as the set R = U/R = Ey,Es,...,E,,
where each E;, with 1 < i < 5, is an elementary set of
A. It is assumed that the empty set ¥ is an elementary set
of all approximation spaces A. Given an approximation
space A = (U,R), let X C U be any subset of U; then,
using the following concepts, we can check how well X is
represented by the elementary sets of A:

Page 5 of 28

e Lower approximation of X in A - formed by the
union of all elementary sets of A fully contained in X,
i.e., the largest definable set in A contained in X:

Ainf(X) = {x € U|[x]r € X}. 7)

e Upper approximation of X in A - formed by the
union of all elementary sets of A having a nonempty
intersection with X, i.e., the smallest definable set in
A containing X:

Asup(X) = {x € U|[x]rNX # 0} (8)

Thus, the lower approximation of X in A contains those
elements in U that can definitely be affirmed as belong-
ing to X. Furthermore, the upper approximation of X in
A covers both those elements that definitely belong to X
and those that cannot definitely be excluded from X. In
many cases, set X may be a finite union of elementary sets,
which characterizes X as a definable set in A. This implies
that Agup(X) = Ainf(X) = X. Besides, based on a rough
classification of set X C U, we can identify the following
regions in approximation space A = (U, R):

e Dositive region of X in A - formed by the union of all
elementary sets of U fully contained in X:

pos (X) = Ajnf (X)) .)

e Negative region of X in A - formed by the elementary
sets of U that have no elements in X:

neg (X) = U — Agyp(X). (10)

e Doubtful region of X in A - also called the boundary
of X, formed by the elementary sets of U that belong
to the upper approximation, but do not belong to the
lower approximation. The membership of an element
of this region to set X is uncertain, based only on the
equivalence classes of A:

duv (X) = Asup(X) — Ainf (X). (11)

The positive region has all elements of U that definitely
belong to X. The negative region comprises all elements
that definitely do not belong to X. Finally, the doubtful
region includes those elements of U/ whose membership
of X cannot definitely be determined. Figure 2 illustrates
the main concepts of RST.

Some RST measures

RST provides several measures (e.g., accuracy and a
discriminant index) for checking how well a set X €
U can be represented in approximation space A =
(U, R) [7,8,19,20]. In the design of the proposed mapping
method, we consider the following RST metrics:

e [nternal measure of X in A

@ Ainf (X) = |Ainf (X))

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

os(x) = Ainf(x
pos \inf(x) \- (LR _
I [
» X
L | v [-)
- P mdiscernible
g | clements
1
I l‘/_f equivalence
X)
| class
= |
[x]
| R
neg(x) = U= Agup(x) duv(x) = Asup(x) - Ajnf(x)
Figure 2 Regions of X in A.

e [External measure of X in A

W Asup X) = |Asup(X)| (13)
e Quality of the lower approximation of X in A
DAinf(X) _ |Ainf(X)]
(X)) = = 14
Yainf(X) U] U] ()
® Quality of the upper approximation of X in A
@asup(X) |Asup(X)
VAsup X)) = =P = | ~P | (15)

Ul

The internal measure is the number of elements in A
that definitely belong to X, while the external measure
indicates the number of elements that could belong to X.
The metrics for quality of the lower and upper approx-
imations present these measures as percentages of the
total number of elements in A. In particular, we extended
Yainf(X) and yasup(X) in the design of our mapping algo-
rithm. As a future work, we intend evaluating the adoption
of other RST metrics. In the next section, we describe
how bnodes can be modeled as approximate sets in an
approximation space.

Methods

We adopted RST in our approach as the basis on which
to build a heuristic method to reduce the size of the delta
found in the mapping between RDF graphs. To achieve
this goal, we must first model the bnodes as sets in an
approximation space. The steps required for this transfor-
mation are explained below.

Blank nodes as rough sets

Considering set B containing the bnodes of an RDF graph
G, Equation 16 defines a subgraph G; C G that contains
only triples involving a given bnode b; € B. The negative
sign (—) is used to indicate a reverse link in graph G, i.e., if
b is in object ‘0’ of triple (s, p, 0). Thus, — W is the set con-
sisting of all elements of W, preceded by a negative sign.

Page 6 of 28

Gi={(sp0)ls,p0) € GA(s=b;Vo=1b)} (16)

In addition, outgoing links of b; refer to the links repre-
sented by triples in the format (b;, p, 0) € G;, where o # b;.
Similarly, we adopt the expression inbound links of b; to
refer to triples in the format (s, p, b;) € G;, where s # b;.
Last, we use the symbol ‘o’ to denote connections with
bnode b; itself, called b; recursive links. Thus, to build a set
X; representing bnode b;, we need to transform the triples
of G; using function S, : G; > (WU -W) x (W UBU
LU{¢')):

(10,0), ifS:bl' 75 0
(_P,S); if s 75 bi =0
(»,‘0’), if s =b; = o.

Sbi (S»P, 0) = (17)

Function Sy, (s, p, 0) returns an ordered pair (/, n), where
n represents the neighboring node b; (s or o) or ‘c’, and [
represents the connection or predicate between b; and #.
Assuming that n = ‘o’, where Sy, (b;,p, b;) = (p,‘0’), the
literal ‘o’ represents a bnode automatically mapped from
the mapping of b; itself.

In the case of directly connected bnodes, unlike
Tzitzikas et al. who considered all bnodes to be the same,
our approach considers all unmapped neighboring bnodes
to be the same for inbound links and different for outgoing
links. Furthermore, we treat ‘already mapped’ neighbors
in the same way as identified nodes (URIs and literals).
We can now construct set X;, representing bnode b;, from
subgraph G;, corresponding to the image set obtained by
applying Sp, to all triples of G;:

Xi = Sp,(Gy). (18)

Assuming that B corresponds to the bnode set of RDF
graph G, our method proposes the construction of an
approximation space A = (U, R) considering blank nodes
b; € B. Thus, U refers to the set universe obtained from
the union of sets Xj, representing all considered bnodes b;:

L[:UXi.

Besides the set universe, for the construction of approx-
imation space A = (U, R), we also need to define an
equivalence relation R, to partition the universe into
equivalence classes. Given both the set universe U = | X;
and set intersection I = (") X;, and also two elements a =
(lyyng) € U and b = (I, np) € U, we define equivalence
relation R as:

(19)

aRb & I, =l, A (@b e D)V (a,b ¢). (20)

Elements of the same class are indiscernible according
to relation R. Having defined the approximation space and
sets representing bnode pairs in this space, in the next
section, we discuss how to extend the RST concepts to
provide a measure of the closeness of bnodes.

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Extending the RST concepts

Given any two approximation sets X; and X; in the approx-
imation space A; = (Uj;,R), we observe the following
properties for the intersection of their approximations [7]:
Ainf(X)NAinf(Xj) = Ainf(XiNXj) and Asup (X)) NAsup (X)) 2
Agup(X; N X;). For a more accurate analysis of the approx-
imation of X; and X; in A;;, we can extend the concepts of
positive, doubtful, and negative regions, considering the
intersections between their approximations:

Definition 4. Change regions for X; and X in A;

e Positive change region - formed by the union of all
elementary sets of L/;; contained entirely in both X;
and X:

pos (X, Xj) = Aint (Xi) N Aing (X;) . (21)

o Negative change region - formed by elementary sets
of Uj; that have no elements in X; or X;:

neg (Xi,X,‘) = U; — (Asup (Xi) N ASUP (XJ)) : (22)

® Doubtful change region - formed by elementary sets
of Uj; partially contained in X; or Xj. In this case, X;
or Xj, but not both, may integrally contain
elementary sets of L/;:

duv (Xh)(]) = (Asup(Xi) mAsup ()(/)) - (Ainf XD NAjnf ()(/))
(23)

The positive change region pos (Xi,Xj) comprises
classes that relate to existing links in both bnodes, with
the same neighboring nodes, i.e., these classes contain ele-
ments representing equivalent links, considering the map-
ping between bnodes. Classes contained in the doubtful
change region duv (X;, X;) contain elements representing
predicates common to the bnodes, but connected to dif-
ferent neighbors, being considered as similar links. They
represent change operations on common predicates of
bnodes: rename, extend, or reduce. Finally, the negative
change region neg (X;, X)) consists of classes that are not
found in both bnodes. These classes refer to the addi-
tion or removal of bnode predicates being considered as
independent links.

The change regions may provide a way of measuring
the approximation between the two sets representing the
bnodes. However, before addressing this issue, we ana-
lyze some extreme situations involving these regions to
improve the understanding thereof. Initially, considering
the case where all elements are in the positive change
region, we can rank the bnodes as equivalent in Ay,
because there are no differences between the bnode predi-
cates, i.e., (b; =4, bj) & (Ainf(X) NAine(X)) = Ujj), where
this relationship is denoted by the symbol =4,. Other-
wise, if this region is empty, the bnodes have no common

Page 7 of 28

connections with the same neighboring nodes (equivalent
links), i.e., Ajnf(X;) N Ainf(Xj) = . In this case, analysis of
other change regions is necessary.

Regarding the doubtful change region, if all elements
meet in this region it means that the bnodes have simi-
lar links with different neighboring nodes, i.e., (Ajns(X;) N
Aint(X)) = 0) A (Asup(Xi) N Agup(X;) = Uy). If this region
is empty, there are no changes in the predicates common
to both bnodes, i.e., (Asup(Xi) N Asup(Xj)) — (Aine(X;) N
Ainf(Xj)) = @. If the positive and/or doubtful regions are
not empty and smaller than the universe, we categorize
bnodes as approximated in Aj, represented by the sym-
bol A because they have predicates in common, i.e.,
(bi %Ai,' b/) < (@ 7 (Asup(Xi) r_]Asup()(j)) i ul})

Finally, if all the elements are in the negative change
region, we classify the bnodes as distinct in A, repre-
sented by #Aii’ because they have independent links, i.e.,
(bi #A,-,- bj) & (AsypXy) N Agyp(Xj) = 0). On the
other hand, if this region is empty, all the connections are
common to both bnodes, i.e., Asup (Xi) N Asyp (X)) = Uj;.

Therefore, we can evaluate the approximation between
bnodes from these change regions. For this purpose, we
need to extend the RST measures presented in ‘Some
RST measures’ subsection to measure the approxima-
tion between sets X; and X; in Ay, by considering the
intersection of the approximation of these sets:

Definition 5. Change measures of X; and X; in A;

e Internal change measure

@pinf (Xi, X)) = |Ain (Xi) 0 Aing (X;)| (24)
e External change measure
W Asup (Xz'; X/) = |Asup (X)) N Agyp (Xj)| (25)
e Quality of the lower change approximation
@ Ainf (X, Xi
yainf (Xi, X)) = m”g'll)
(26)
A (X)) N A (X))
|
e Quality of the upper change approximation
@ Asup (Xir Xj
Vasup (Xin Xj) = SUTL(”L])
(27)
_ |Asup(Xi) mAsup(Xj)|
||

Based on the measures given in Definition 5, we rede-
fine the approximation between two bnodes b; and b; in
Definition 6. yaint(X;, X;) provides a way of measuring the
percentage of identical predicates considering the map-
ping between X; and X, while yasp (X;, X;) provides a way

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

of measuring the approximation between the predicates of
X; and X;.

Definition 6. Approximation between b; and b; in A;;

(b =4 bj) = (J/Ainf(Xi’Xj) = 1);
(bi 2 by) € (0 < yasup (X6 X)) < 1);
(bs #a; by) € (Vasup (X0 X)) = 0).

Exemplifying the modeling
To illustrate the construction of sets in an approxima-
tion space representing bnodes of RDF graphs, suppose
we need to map a blank node modified in two subsequent
versions G; and G; of a dataset. Figure 3 presents graphs
representing the first pair of candidates. Figure 4 shows
the positive, negative, and doubtful regions of sets X; and
X» in the approximation space A1z, while Figure 5 presents
the positive, doubtful, and negative change regions in Ajs.
Now consider another bnode candidate b3 € G, (labeled
as ‘_:ProductB’), represented by X3, as shown in Figure 6a;
then, Figure 6b presents the change regions for X; and X3
in A13. For this example, we obtain the following values for
sets X1, X», and X3:

@Ainf (X1, X2) = 5;

WAinf (X1,X3) = 35

W Asup (X1,X2) = 8;

zD-Asup (XL XS) = 10;

YAinf (X1, X2) = 5/10 = 0.5;
Yainf (X1, X3) = 3/12 = 0.25;
Yasup (X1, X2) = 8/10 = 0.8;
YAsup (X1, X3) = 10/12 =~ 0.83.

Thus, we have by =~4,, by and by ~4,; b3, but as
Yainf(X1, X2) > yainf(X1,X3), we prefer the mapping
between b1 and by. We applied metric yainf(X;, X;) in the
mapping between bnode pairs b; and bj, with the aim of
reducing the delta between the versions. The greater is the
value of the lower approximation quality, the higher is the
equivalence between the bnode connections. In cases with

Page 8 of 28

equal values for yainf(X;, X)), we prioritize the pairs pro-
viding the greatest value for yasup(X;, X;), because these
are the bnodes with the closest approximations in terms
of connections representing the same predicates.

We assume that mapping bnode pairs with higher equiv-
alence or greater approximation between their predicates
can reduce the delta size. In the next section, we use the
approximation metrics yainf(X;, Xj) and yasup (X, X)) to
design the proposed mapping algorithm.

The ApproxMap method

In this section, we describe the strategies, data struc-
tures, and procedures designed to map bnodes in two
RDF graphs. We call our mapping algorithm ApproxMap,
because the project involves an analysis of the approxima-
tion between the sets representing the bnodes.

Heuristic strategies

Our heuristic method considers various strategies for
reducing both the number of comparisons between blank
nodes and the delta between the compared versions. We
adopted the following strategies in the design of our
method:

e Two approximation metrics - we use metric
Yasup (Xi, Xj) if the candidate pairs have the same
Yainf(Xi, Xj). A pair with a greater yasup(X;, X;) hasa
higher similarity owing to the greater number of
common predicates. We consider that mapping pairs
with more similar predicates can help in reducing the
delta size.

e Two levels for bnode partitioning - the first level
considers the existing hierarchy between directly
connected bnodes, classifying the bnodes into four
disjoint sets: roots, leaves, intermediates, and no
interconnections. Then, in the second partitioning
level, we organize the bnodes according to the
number of connections with other nodes, allowing
quick access to sets of bnodes with a particular
number of links.

Mouse M1098 :List1
I
= : -0d
label code tem
. &
feature color
Plug & < Product1 » Red
Play -)
feature feature
' 5 b4
Optical USBE

(@)

Figure 3 Simplified graphs of the two versions (a, b).

Mouse m1098 Listt
7
-
label code ftem
Pl feature : £ weight /0.2
ug & — _:Producta welg -
Play) - Ib
feature feature feature
¥ v A
Optical Wireless Ergonomic

(b)

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3 Page 9 of 28

(label, Mouse) (code, M1098)

1
1
1
: (feature, Plug & Play),
]
}
1
1

-it :List1
(feature, Optical) (citem, _:List1)
(feature, USB), (color, Red)
P —— 4
(feature, Wireless),
(feature, Ergonomic) (weight, 0.2 Ib)
pos(X) | duv(X) [TIneg(X) I ix

(@)

Ap=(U, R)
e |
: (label, Mouse) (code, M1098)
h | :
| (feature, Plug & Play), ; - [

-item, _:List1

: (feature, Optical) (citem, _:List1) :
}

I (feature, Wireless), . :
} (feature, Ergonomic), (weight, 0.2 1b)
(feature, USB) (color, Red)

pos(X) [|duv(X) [Ineg(X) I X,

(b)

Figure 4 Regions of the approximation space for X1 C Ay, (@) and X, C Aq (b).

e Unmapped neighboring bnodes are the same for
incoming links but differ for outbound links - while
neighboring bnodes are unmapped, URIs and literals
play an important role in distinguishing blank nodes.
The strategy adopted by Tzitzikas et al. [6], whereby
all neighbors as considered the same, can increase the
delta size, if the mapped neighbors differ in the final
mapping. Therefore, we aim to mitigate this effect by
adopting the strategy described above, which
considers the possible impact of different neighbors
when computing the delta. With prior mapping of
neighboring bnodes, we can find a greater
approximation between candidate pairs.

® Bottom-up approach to map directly connected
bnodes - bnodes in the higher levels are mapped

A2=(U, R)

(label, Mouse) (code, M1098)

(feature, Plug & Play),

(-item, _:List1) (feature, Optical)

(feature, USB), (feature, Wireless),
(feature, Ergonomic)

(color, Red) (weight, 0.2 Ib)

| pos(Xy, Xo) || duv(Xs, Xp) || neg(X, X))

Figure 5 Change regions in As;.

based on prior mappings in the lower levels. We
compare each bnode mainly with those in the same
hierarchical level, thereby reducing the number of
comparisons. Relaxation of the same neighborhood
for incoming links is due to this approach.

e Top-down approximation during bnode mapping -
bnodes are mapped iteratively considering a
decreasing approximation in the interval (0.0, 1.0].
We start the mapping of bnodes with the maximum
approximation and, in each iteration, we reduce the
lower limit for the desired approximation. Using this
approach, we are able to reduce the number of
comparisons between bnodes if the datasets contain
vastly differing numbers of bnode links. This is
because we do not need to compare bnode pairs that
differ greatly in their numbers of links, thereby
preventing an approximation greater than or equal to
the desired value.

e Initial equivalent bnode mapping - we can reduce the
number of comparisons between the remaining
bnodes that have not yet been mapped. Moreover,
during the mapping of equivalent bnodes, we can also
reduce the comparisons by applying filters to select
only those bnodes in the same hierarchical level and
with the same number of links as the other nodes.

Our heuristic combines all these strategies in an attempt
to produce a solution with a reduced delta size during the
mapping of blank nodes of two RDF graphs. For this pur-
pose, we use specific data structures, as described in the
next section.

Data structures

In the first adopted partitioning level, we store the
unmapped bnodes of each graph Gy in the data struc-
ture, TabGy, which is partitioned into four disjoint sets:

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Page 10 of 28

(@)

Mouse M1100 _:List1
label code item
feat : < wei
Plug &7, feature _:ProductB weight 0.2
Play - . Ib
feature feature feature
Optical Wireless Ergonomic

AI3=(u] a R}

(label, Mouse)
| (feature, Plug & Play)
(-item, _:List1)
(feature, USB), (feature, Wireless),

(feature, Optical), (feature, Laser),
(feature, Ergonomic)

(code, M1098),(code, M1100)

(color, Red) (weight, 0.2 Ib)

pos(Xy, Xa) duv(Xq, X,) |

(b)

neg(X;, Xq)

Figure 6 Simplified graph of the other candidate and the respective change regions in A3 (a, b).

roots, leaves, intermediates, or no interconnections. We
use the operator ‘[] to index the partitions of TabGy,
where TaubGy[i] denotes partition i of TabGy.

Bnodes without links to other bnodes are placed in
TabGg[1]. In the case of directly connected bnodes, the
division thereof occurs according to a hierarchical model
as shown in Figure 7. TubGy[4] contains bnodes that are
roots in this model; TabGy[2] stores leaf bnodes; and
TabGy[3] contains bnodes that belong to intermediate
layers of this hierarchy, connected to other bnodes by both
incoming and outbound links. For simplicity, in Figure 7,
we omit the labels of the elements. Moreover, despite the
presence of URIs and literals in the figure, the partitioning
covers only blank nodes.

Each partition of TabGy is further partitioned in a sec-
ond level and indexed by the number of bnode links. This
allows us to find bnodes with the same number of predi-
cates quickly, where TabGg[i] [j] returns a reference to the
set of bnodes from partition i of TubGy, with j connections
with neighboring nodes.

The ApproxMap algorithm also makes use of four
arrays, with size equal to |By|, for each graph Gy: alias,
approxInfy, approxSupy, and My. Considering that b; €
By, aliasi[i] stores the bnode currently mapped to b;;
approxInfy [i] and approxSupy| i] refer, respectively, to the
values of the lower and upper approximations, calculated
for b; and aliasy[i]. Similarly, My[i] stores the bnode
definitely mapped to b;.

TabG 1[4]

TabG 1[3]

/II.{\\\

TabG 1[2] \‘
ﬁttJ iﬁt

TabG 1[1]

Figure 7 Example of an RDF graph partitioning.

oy
LEGEND:
] URI or Literal

(O Blank Node

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Before describing the ApproxMap method, we need
to explain the process of finding bnode pairs with the
greatest approximation during the mapping. In the next
section, we discuss this process, which uses the data
structures mentioned above.

Mapping bnode pairs
We implemented the mapping of bnodes in two RDF
graphs in two phases. In the first phase, as shown in the
pseudocode in Figure 8, we look for pairs of unmapped
bnodes with the closest approximation. The FindApprox-
imations algorithm takes as parameters, indexes m and n
referring, respectively, to the desired partitions of TabG;
and TabGy, with 1 < m,n < 4, and parameter approx,
where 0.0 < approx < 1.0, which denotes the lower
boundary of the current desired approximation.

The algorithm looks for pairs with a value for the qual-
ity of lower approximation yainf(X;, X;) greater than or

Page 11 of 28

equal to the desired value indicated by approx; values
below this limit are discarded. Variable b,,, stores the cur-
rent bnode with the closest approximation to b;, while
api,, and aps,, store, respectively, their lower and upper
approximations, calculated by metrics yainf(X;, X;) and
YAsup (Xis Xj).

Considering subgraph G; < Gy, as defined in
Equation 16, |G;| is the cardinality of G;, i.e., the number
of triples or connections of b;. In addition, ®; is the set of
possible p values for triples in the form (s, p, b;) € G;, and
O, is the set of p values for triples (b;, p,0) € G;.

In lines 5 and 6 of the algorithm, we use the values
of variables /iyf and yp to reduce the comparison space
using the top-down approximation approach discussed
in the ‘Heuristic strategies’ subsection. We can only find
an approximation greater than or equal to approx in the
interval [/inf, lsup], considering our second partitioning
level. In line 10, a further filtering takes place, whereby

For each b; € TabG1[m], do:
apim < approxInfili];
apsm < approxSupi [i];
bm < aliasi[i;
ling < |Gs] x approx;
|Gil
approx’
For each | <= l;,, 7 to lsup, do:
Q «+ TabG2[n][l];
For each b; € €2, do:

lsup —

1

2

3

4

5

6

7

8

9
10
11
12 api < Yainyg(Xi, X;);
13 aps <— 'YAsup(Xiv X)v
14 apiz < approzIn fa[jl;
15 apsa <+ approxSup2[j;
16
17
18
19
20

b bj;
apim < api;
apsSm < aps;

28 EndFor.
29 If (aliasi[i] # bm), then:

30 aliasi[i] < bm;

31 approxInfi[i] +— apim;
32 approzSupi [i] < apsm;
33 aliasa[m] + b;

34 approxInfa[m] < apim;
35 approxSupa[m] < apsm;
36 EndIf.

37 EndFor.

Figure 8 Pseudocode for FindApproximations algorithm.

Algorithm FindApprozimations(m,n, approx)

If (|®; N®;| 4+ |©; N O] > 0), then:
Build X;, X; and A;;(U;j, R);

If (api > apim A api > apiz), then:

Else:
21 If (api = apim A api = apiz) A (aps > apsm A aps > apsz), then:
22 bm bj;
23 apsm 4 aps;
24 EndIf.
25 EndIf.
26 EndIf.
27 EndFor.

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

only bnodes with at least one predicate in common are
compared.

After obtaining the lower approximation between b; and
the candidate b;, in line 16, we check whether this new
approximation is greater than that previously found. If
so, the respective bnodes are marked as candidates for
mapping, and any previous pairs are discarded. However,
if the new value for yainf(X;, X;) is equal to that previ-
ously found, we compare the new value of yasup(X;, X)), as
shown in line 22. If this value is greater than the current
value, the respective bnodes are also marked as candidates
for mapping.

After the first phase, we have pairs of candidates
with the greatest approximation for mapping,
which is finalized in the second phase. Procedure
MapApproximations(m, approx), with 1 < m < 4, is used
to carry out the mapping. Bnodes in TabG;[m] with an
approximation greater than or equal to parameter approx
are permanently mapped.

Procedures FindApproximations and MapApproxima-
tions are executed to map similar bnodes. However, we
can refine these procedures to filter unmapped bnodes,
when looking for equivalent pairs to reduce the search
space. Thus, we designed procedure MapEquivalents(m)
to map equivalent bnodes in TabG;[m] and TabG;| m],
where 1 < m < 4. This procedure compares only bnodes
with exactly the same incoming and outbound predicates.
Thus, we permanently map only those bnode pairs with
approximations equal to 1.0.

We also developed a procedure to map the remain-
ing bnodes, after termination of the iterations for the
adopted top-down approximation strategy. Procedure
MapByOrder() compares bnodes in the same way as Find-
Approximations. However, the mapping is carried out
directly between pairs with the greatest approximation
according to the order defined by the partitioning of
TabG,, thereby ignoring the possibility of a closer rela-
tionship with another bnode pair.

Proposed method

Finally, we present method ApproxMap illustrated in
Figure 9, which aims to map the bnodes of two graphs
G1 and Gy, considering a decreasing approximation in the
interval (0.0,1.0). The mapping occurs between pairs in
the same hierarchical level TabG1 [m] and TabGy[m] con-
sidering a fixed step defined by parameter n;. To map
bnodes of TabGi[m] and TabGsy[n], with m # n, we
adopted the step defined by 19, where 0 < n; < 13 < 1.
Variable min stores the current desired value (or the lower
boundary) for the approximation between bnodes.

The ApproxMap starts by mapping equivalent bnodes in
TabGy[1] and TabGy[2], as shown in lines 1 and 2. Dur-
ing the mapping of TabGy[2], we consider relaxing the
neighboring bnodes for inbound links. This mapping is

Page 12 of 28

Algorithm ApproxzMap(ni,n2)
1 MapEquivalents(1);
2 MapEquivalents(2);
3 approx < 1;
4 While (approx > 0), do:
5 min <— approxr — nz;
6 FindApproximations(1,4, min);
7 FindApproximations(1, 3, min);
8 FindApproximations(1, 2, min);
9 aux <— approx;
10 While (auz > min), do:
11 auxT < aur — n1;
12 FindApproximations(1, 1, approz);
13 MapApprozimations(1, approx);
14 EndWhile.
15 FindApproximations(2,4, min);
16 FindApproxzimations(2, 3, min);
17 FindApproximations(2,1, min);
18 aux <— approx;
19 While (auz > min), do:
20 aux — auxr — N1;
21 FindApproxzimations(2, 2, approz);
22 MapApprozimations(2, approx);
23 EndWhile.
24 MapEquivalents(3);
25 FindApproximations(3, 4, min);
26 FindApproximations(3, 2, min);
27 FindApproxzimations(3,1, min);
28 aux <— approx;
29 While (auz > min), do:
30 aux < auxr — N1;
31 FindApproxzimations(3, 3, approz);
32 MapApprozimations(3, approx);
33 EndWhile.
34 MapFEquivalents(4);
35 FindApproximations(4, 3, min);
36 FindApproximations(4, 2, min);
37 FindApproximations(4, 1, min);
38 aur <— approx;
39 While (auz > min), do:
40 aux < auxr — N1i;
41 FindApproximations(4,4, approz);
42 MapApprozimations(4, approx);
43 EndWhile.
44 approx <— min;
45 EndWhile;
46 MapByOrder().
Figure 9 Pseudocode for ApproxMap algorithm.

performed only once, because these bnodes are leaves in
the hierarchy and do not depend on previous mappings of
other bnodes.

The rest of the algorithm includes a loop, defined
between lines 4 and 45, that maps the bnodes using the
bottom-up approach discussed in ‘Heuristic strategies’
subsection, where the mapping of bnodes contained in
tables TabGy[3] and TabGy[4] depends on previous map-
pings of bnodes in lower levels of the hierarchy. The

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

algorithm aims to map TabG [1] (lines 6 to 14), TabG [2]
(lines 15 to 23), TabG1[3] (lines 24 to 33), and TabG [4]
(lines 34 to 43) in order.

Thus, for each iteration of the outer loop, the value of
min is decremented according to step 1, as expressed
in line 5. This value defines the minimum approximation
required to map the bnodes in each partition of TabG; to
the other different partitions in TabG;. In the case of the
same partitions, the mapping occurs in the inner loops,
taking into account step 71, so that the current approxima-
tion is decremented in each iteration (lines 11, 20, 30, and
40), until it reaches the limit set in min. Just prior to termi-
nation of the algorithm, in line 46, the remaining bnodes
are mapped after 1/, iterations.

We compared the bnodes of TubG;[m] 1/1; times with
the ones in TabGy[m], and a minor number of 1/n;
times with those in TabG;[n], where m # n. Therefore,
during the search for bnode pairs with greater approxima-
tions, the outer loop provides the mapping of bnodes that
change partitions between versions, while the inner loop
provides the mapping of bnodes that remain in the same
hierarchical partition for all versions.

Method analysis

The proposed method models bnodes as approximate
sets, based on their classification as equivalent, similar,
or distinct predicates in terms of their connections with
other nodes. This organization by approximation classes
allows the definition of metrics to measure the approxi-
mation between bnodes.

Page 13 of 28

Considering the introductory example in Figure 1, algo-
rithms Algp,,; and Algs;g, obtain a mapping resulting in a
delta with size 4. Tzitzikas et al. focused on the mapping
between pairs (_:1, _:6) and (_:2, _:7) because they consid-
ered connected bnodes to be the same, where disty,(1,6) =
0 and dist;(1,7) = 1. We emphasize the adoption of both
bottom-up and different neighbor strategies in Approx-
Map while mapping directly connected bnodes. The first
iteration of ApproxMap results in the mapping of bnode
pairs (_:3, _:8), (_:4, _:10), and (_:5, _:9), which have an
approximation equal to 1.0. From this initial mapping, our
method can map pairs (_:1, _:7) and (_:2, _:6), because
YAinf(X1, X6) = 0.50, YAinf(X1,X7) = 0.67, Yaint(X2, Xe) =
0.67, and yainf(X2, X7) = 0.34. The mapping obtained by
our method results in a smaller delta size of two triples.

On the other hand, during the ApproxMap method
design, we assume that reducing the delta for individual
bnode pairs also results in a reduction in the global delta
size. However, this assumption does not produce the opti-
mal delta in some situations, as illustrated in Figure 10.
In this example, we assume that sets Xj, Xp, X3, and
X4 represent, respectively, bnodes ‘_:Productl;, ‘_:Prod-
uct2, ‘ :Product3, and ‘_:Product4. Thus, we obtain the
following approximation measurement: yainf(X1,X3) =
0.50; yainf(X1,X4) = 0.33; Yaint(X2,X3) = 0.40; and
YAinf(X2, X4) = 0.14.

First, ApproxMap maps bnodes * :Productl’ and
‘_:Product3, corresponding to the pair with the clos-
est approximation. The closest approximations of both
* :Productl’ and ‘_:Product2 are to bnode ‘ :Product3.

Figure 10 Sample datasets with small diversity between bnodes (a,b).

D1
TN 7 Pria & ., feature
~ _:Product1 | (Plug & < feature {_ _:Product2) > Red)
feature - feature feature fggture
v P v A
USB _ Optical) USB _ Ergonomic |
(a)
D2
(_:Product3) (_-Products
featurfa_. _féature - “feature feature _l..eature
USB Plug & - Laser ~ use) Blue
~__Play ~ - - _.-

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

However, this mapping represents the lowest cost of
transforming some bnode in the first version into
‘ :Product3. We can change ‘_:Productl’ to ‘_:Product3’
by including only a single triple. However, we would
need to include an additional three triples to transform
‘ :Product?’ into ‘_:Product3.

Therefore, ApproxMap also maps the remaining bnodes
‘ :Product2 and ‘_:Product4, resulting in a global delta
containing seven triples. However, if we had initially
mapped ‘_:Productl’ to ‘_:Product4, the resulting delta
would have size 5, as is the case using the Hungarian algo-
rithm. This occurs because our hypothesis considers only
a reduction in delta between individual pairs and not an
assessment of the impact of this reduction in terms of
the global delta size. Owing to the mapping of remain-
ing bnodes, considering only unmapped bnodes pairs, the
ApproxMap does not test all mapping possibilities, which
can result in obtaining a local optimum.

Moreover, in ApproxMap, the mapping occurs in the
order defined by the adopted partitioning. We also used
some ordered structures during algorithm implementa-
tion, optimizing the comparisons between bnodes. The
additional cost of insertion is already known for these
structures, although this is beyond the scope of this arti-
cle. This adopted order can affect the delta size, mainly,
considering procedure MapByOrder. As before, this may
occur because our method does not test all mapping
possibilities.

Page 14 of 28

We emphasize that great diversity among the bnode
predicates in the same version is beneficial for method
ApproxMap. For a better analysis, let us consider the
approximation space Aj_y4, illustrated in Figure 11, and
which we constructed from the union of all sets represent-
ing bnodes in the two versions in Figure 10. For simplicity,
we omit the negative regions of the bnodes in Figure 11.

According to Figure 11, there are few differences
between sets of the same version. In particular, X; is a
subset of all other sets, hindering the choice of its best
mapping option. The inclusion of different values can con-
tribute to a better choice of bnode pairs, as illustrated in
Figure 12.

Figure 13 illustrates the approximation space A/1_4, con-
sidering all bnodes in the datasets in Figure 12. Now,
the bnodes within the same version have greater diver-
sity, allowing a better approximation measure between
bnodes if we consider the different versions. In this
case, the new values of predicate ‘type’ leads to a better
choice of the candidates, where we have yajnf(X1,X3) =
0.25; Yainf(X1,X4) = 0.5; yainf(X2,X3) = 0.5; and
Yainf(X2, X4) = 0.11. Thus, the new delta obtained from
ApproxMap contains five triples.

In particular, it may be difficult for ApproxMap to
choose the best mapping option if there are multiple
candidates representing approximately equal sets in an
approximation space, i.e., sets with the same lower and
upper approximations [7], as exemplified in Figure 14a.

(feature, Ergonomic)
(feature, Red)
(feature, Optical)

(feature, Plug & Play)
— — — — q

Ais=(U14,R)

Xon

w

Legend: |_] pos(X)

I (feature, Laser)
(feature, Blue)

—————J

duv(X)

Figure 11 Approximation space A;_4 for bnodes in Figure 10.

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Page 15 of 28

— — [PwE
\ (w3321) ()
— Mouse) / —_ Play _~
D3 N / — — y
. |coﬁe / feature
N_type i
v . — feat / ™~
A Y /-f-"‘ e C Product2 \ eau_re)\ ed /}
[M2537) [\/ USB /\‘ r\ Printer /‘.' T \ —
— — E— //'/fealure lieature ‘\{\33“-”?
P I T Sy
'i\ Oplical) r(USB j\ I'\/___Ergonomfc_/)
(a)
-~ - ™~ T //'-__ -.-\\
D4 (m3321) (M253? (_ Printer)
code codei /// type
// . -
L TN
Plug & \ fealure ~ . ~, feature \
p . _:Productd »———> ue
____F'Ia_g_, —(roduct3 P, e __< Bl
e l;pe feature feature eature
- —Ji’ v A \——)
B TN -~ ~N
Figure 12 Sample datasets with greater diversity between bnodes (a,b).

The adopted metrics may be insufficient to distinguish
these sets.

Furthermore, in cases involving completely different
datasets, ApproxMap compares all bnodes in the two
datasets during the mapping, resulting in the maximum

delta equal to the sum of the triples in the two datasets.
We included some optimizations in ApproxMap, reduc-
ing the cost of comparing distinct pairs, by first checking
for the presence of common predicates. The worst-case
execution corresponds to a particular case of distinct

Aia =(Ui4,R)
i}-e.anli;Jnl:e-.--E.I:g.;I:l.c;;{-lalgc.) ------------------------------------- 1 ------------------------- -X.Z-E
(feature, Red) X3 i
: (feature, Optical) (feature, Plug & Play) | (type, Mouse) :
S OO RTSOOTSY RO 2 I
P : Xt
P o
Pl : (feature, USB) |
P : :
R —— T T L L T LT T T T !..:
| : |
I (feature, Laser): (type, Printer)
(feature, Blue) : I
Legend: I:l pos(X) duv(X)
Figure 13 Approximation space A/1 _, for the bnodes in Figure 12.

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Page 16 of 28

Xi

X2

(@)

Figure 14 Approximately equal sets and a dispersed set (a,b).

(b)

datasets, where all bnodes have the same predicates. In
this case, we obtain dispersed approximate sets represent-
ing the bnodes, i.e., sets with an empty lower approxima-
tion ()/Ainf(xl‘,)(j) = 0) and an upper approximation equal
to the set universe (yasup(Xi, Xj) = |U]) [7], as shown in
Figure 14b.

We use step 71 to control the number of comparisons
between bnodes, where the total number is given by
1/m1 x O®12). Thus, when ; is considerably smaller than
1/n, where n gives the smallest number of bnodes in the
datasets, in the worst case, the time complexity of the
algorithm is O(n?). Conversely, the best case execution
of ApproMap occurs with equivalent datasets containing
bnodes with varying numbers of connections and without
any directly connected bnodes. In this case, we need to
compare each bnode with exactly one bnode in the other
version. Thus, the complexity of the best case is Q(n).

Finally, we intend to apply ApproxMap to configuration
management of software engineering projects, specifically
to version control of RDF datasets. These projects are
characterized by the manipulation of data, information,
and knowledge in various types and formats, manually
constructed based on the modularity principle, where
complex elements are divided into smaller parts. There-
fore, we expect great diversity between bnodes in the same
version, justifying the application of ApproxMap in this
context.

Because the datasets involved are usually constructed
using an incremental development approach, we expect
satisfactory performance of ApproxMap on similar ver-
sions, containing several approximately equivalent bnode
pairs, as generally occurs in successive versions of soft-
ware engineering artifacts. A recommended configuration
management practice is to perform version control con-
sidering the low percentage of changes between versions.
If this does not occur, larger deltas prevent the recovery of
intermediate states between successive versions.

Table 1 Information about real datasets

Dataset |B| |Gl D, bdensity bien
Swedish 522 3,670 547 0.00 0.00
Italian 6,390 49,897 342 0.00 0.00

As future work, we propose a meticulous analysis of the
impact of the adopted metrics and strategies on the map-
ping. We also intend verifying the applicability of other
RST metrics that could provide better approximation
measures between bnodes. As a further future work, we
propose improving the performance of the algorithm, tak-
ing into account execution of some operations in parallel,
such as comparison of approximate sets.

Results and discussion

In analyzing the performance of the ApproxMap algo-
rithm, we considered both the delta size calculated from
mapping pairs of RDF datasets and the time spent on this
task. This allowed comparison of the results and values
obtained for the Algsy,,e and Algs;g, algorithms, presented
by Tzitzikas et al. [6]. All experiments discussed in this
section were executed on an Intel Core i7-3537U, 2.0 GHz
processor, with 8 GB RAM and running Ubuntu 13.10. To
correct any formatting or encoding issues, preprocessing
was carried out on certain pairs of datasets.

Three metrics defined by Tzitzikas et al. [6] were used
in the analysis of the experiments: bgensity blen, and D,.
Let N and B denote, respectively, the sets of nodes and
blank nodes of graph G, where B C N. Further, let conn(b)
denote the set of nodes in G directly attached to b € N.
Then, we have bgensity = avgpep(Iconn(b) N B|/|conn(b)|);
blen refers to the average maximum path length, with

Table 2 Results of the algorithms applied to real datasets

Dataset Swedish Italian
ApproxMap 1/10% 297 6
ApproxMap 5/12% 297 6
ApproxMap 5/25% 297 6
Delta (triples) PP p5/25%
AlgHung 297 6
Algsign 423 6
ApproxMap 1/10% 113 170
ApproxMap 5/12% 36 158
. ApproxMap 5/25% 34 153
Time (ms)
Algrung 4,789 456,173

Algsign 37 59

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Table 3 Crawled datasets using the load-balancing
strategy

Instance number |B| |G| D, Ddensity blen

1 19 1,048 9.00 0.01 0.11
2 83 11,555 7.31 0.00 0.00
3 361 28,208 593 0.00 0.00
4 362 28,219 5.96 0.00 0.00
5 893 15,337 440 0.00 0.02

vertexes consisting only of bnodes; and D, corresponds to
the average number of bnode triples.

Except for the last experiment, we tested the Approx-
Map algorithm with three different sets of parameters:
n1 = 0.01 and 3 = 0.1; n; = 0.05 and 1y = 0.125; and
n1 = 0.05 and 7y = 0.25 where these tests are denoted,
respectively, as ApproxMap 1/10%, ApproxMap 5/12%,
and ApproxMap 5/25%. We chose these steps empirically,
considering the desired number of iterations. As future
work, we propose further analysis of the choice of step
values and calibration of ApproxMap.

We used the ApproxMap 5/12% tests as the baseline
for comparison when evaluating the impact of changes
in 71 and 1y on the results. The ApproxMap 5/12%
test includes 20 iterations (1/n;) of the inner loop of
the method, comparing each bnode with those in the
same hierarchical partition in the second version. In addi-
tion, there are eight iterations (1/13) of the outer loop,
comparing the bnodes with those in the remaining par-
titions. The ApproxMap 5/25% test was used to verify
the impact of an increase in 79, reducing the compar-
isons between distinct partitions for 4 iterations. Finally,
we used the ApproxMap 1/10% tests to analyze the impact
of a reduction in 7, increasing the comparisons between
the same partitions for 100 iterations. In these tests, we

Page 17 of 28

also adjusted 73 to better fit 1, resulting in ten iterations
of the outer loop.

We organized the experiments in three groups based
on the type of dataset used in each: real, extracted from
the Web (i.e., crawled), or synthetic datasets, as discussed
in the following sections. The standard units for delta
size and mapping time are, respectively, triples and mil-
liseconds. We used a logarithmic scale for charts showing
mapping times of the algorithms, thereby providing better
visualization and comparison of the results.

Real datasets

In the first group of experiments, we used the same real
datasets tested by Tzitzikas et al. [6]. Table 1 describes the
main features of these datasets, where columns |B| and |G|
denote, respectively, the average numbers of bnodes and
triples in the version pairs. Measurements for the dataset
Italian are the same for both files. In the Swedish dataset,
the coefficient of variation (cv) is equal to 2.42%, 2.98%,
and 0.19%, for |G|, |B|, and D,, respectively.

Table 2 gives the results obtained by the algorithms in
the first experiment, considering the time to map blank
nodes and the delta size calculated from this mapping.
In terms of the delta, we obtained the same values for
both datasets in all algorithm tests, with the exception of
Algsign. With respect to the execution time, considering
the ratio between the time of the algorithms Algp,,, and
ApproxMap 5/25%, we obtained 141 and 2,982, respec-
tively, for the Swedish and Italian datasets. Thus, Algpyug
required considerable additional time, particularly for
dataset Italian.

Crawled datasets

Owing to the difficulty in finding appropriate real ver-
sioned datasets for the experiments, in the second group
of experiments, we used an RDF crawler, LDSpider [21],

Delta (%)
g

m ApproxMap 1/10%

Figure 15 Delta reduction for load-balancing crawled datasets.

m ApproxMap 5/12%

DELTA REDUCTION POTENTIAL

3.50
3.00
2.50
1.50
1.00
0.50
0.00 [===] ==} [S
1 2 3

Instance

c
2

AlgHung m AlgSign

4

ApproxMap 5/25%

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Page 18 of 28

100,000

10,000

1,000

100

Time (ms)

1

o

B ApproxMap 1/10%

Figure 16 Execution of load-balancing crawled datasets.

ALGORITHMS' MAPPING TIME

i..l.l.l.l
 § 2 3 4 5

W ApproxMap 5/12%

Instance
ApproxMap 5/25%

to construct pairs of RDF dataset versions. We extracted
some versions from randomly chosen links to common
datasets in the linked open data (LOD) cloud [22], such as
Dbpedia and DBPL, as well as FOAF Profiles.

We used LDSpider because of its dual crawling strate-
gies [21]: breadth-first and load-balancing. Thus, we exe-
cuted two experiments based on these strategies, where
the maximum number of URIs was limited to generate
reasonably sized files for the tests, considering the com-
putational costs of the algorithms. In the first experiment
using LDSpider, we adopted the load-balancing strategy,
with the aim of obtaining pairs of files with approximately
the same size. Table 3 gives information about the crawled
datasets used. The first column denotes the instance num-
ber. All values in Table 3 were identical for both produced
versions, with the exception of metric |G| in the second
instance, where cv = 0.73%.

Figures 15 and 16 illustrate the results for the datasets
described in Table 3. To further analyze the delta reduc-
tion potential of the algorithms, the deltas are pre-
sented as a percentage of the average number of triples,
i.e, A(G1,G2)/|G|. As seen in Figure 15, all algorithms
achieved the same delta reduction on all datasets, except

for Algsign, which showed an increase of 0.08 in the delta
reduction potential, in the last instance, compared with
the potential of the other algorithms.

For bnode mapping, algorithm Algp,,, was the slow-
est. Considering the differences between the mapping
times of the algorithms presented in Figure 16, compared
with ApproxMap 5/25%, Algrung showed an increase in
mapping time between 0.50 and 3.16, on the adopted loga-
rithmic scale. ApproxMap 5/25% was faster than Alg;q, in
two instances, with the maximum time increase for Algs;g,
equal to 0.78. Algs;s, was faster in the remaining instances,
with an increase in time for ApproxMap 5/25% less than
1.03. Finally, considering the differences between steps 1;
and 77, compared with ApproxMap 5/12%, the mapping
time for ApproxMap 1/10% increased by between 0.38
and 0.60, while ApproxMap 5/25% showed a maximum
reduction in mapping time of 0.06.

In the second experiment using LDSpider, we extracted
the first version using the breadth-first strategy and the
second using the load-balancing strategy. Once again, we
aimed to create files with approximately the same size
but with major differences due to the change in strategy.
Table 4 shows features of the instances considered in this

Table 4 Crawled datasets with breadth-first/load-balancing strategy

|B| |Gl D, bdensity bjen

Instance number

File 1 File 2 File 1 File 2 File 1 File 2 File 1 File 2 File 1 File 2
1 169 19 4,355 1,048 573 9.00 0.21 0.01 16.26 0.11
2 190 83 11,892 11,470 5.82 7.31 0.07 0.00 1.67 0.00
3 1,246 893 24,364 15,337 5.13 440 0.10 0.00 10.88 0.02
4 1,963 361 27,650 28,208 6.75 593 0.00 0.00 0.00 0.00
5 1,967 362 28,031 28,219 6.74 5.96 0.00 0.00 0.01 0.00

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Page 19 of 28

180
160
140
1
1

Delta (%)
£§ 8888

]
o

® ApproxMap 1/10% ® ApproxMap 5/12%

DELTA REDUCTION POTENTIAL

1 2 3 4 5

Instance
m ApproxMap 5/25%

Figure 17 Delta reduction for breadth-first/load-balancing crawled datasets.

AlgHung ® AlgSign

experiment. Detailed information is given in this table,
because there are considerable differences between some
versions.

Figure 17 shows the delta reduction potential of the
algorithms in these tests. Algpyne showed an increase in
its delta reduction percentage of 1.26, while the increase
in potential of Algg;s, was less than 1.42, when compared
with all tests using ApproxMap.

Figure 18 compares the mapping times on a loga-
rithmic scale. Algyy,g once again performed the worst.
Compared with ApproxMap 5/25%, the mapping times
of Algyune increased by between 0.11 and 1.92. Com-
pared with Algs;,, the increase in mapping times of
ApproxMap 5/25% varied between 0.46 and 1.59. Besides,
we also verified a time increase for the ApproxMap tests;
the mapping time of ApproxMap 1/10% increased by
between 0.42 and 0.60, while that of ApproxMap 5/25%
decreased by 0.12, compared with ApproxMap 5/12%.

Synthetic datasets

In this final group of experiments, to evaluate the algo-
rithms in the mapping of datasets with some specific
features, e.g., directly connected bnodes or equivalent
datasets, we generated pairs of synthetic datasets for use
in the tests.

Datasets from adapted Univ-Bench artificial generator
Initially, we considered the datasets used by Tzitzikas et al.
[6], the generator of which was based on the Univ-Bench
artificial (UBA) data generator [23]. Table 5 lists the
features of the dataset pairs tested in this experiment,
where all datasets have 240 bnodes. In this table, column
Aopt/|G| displays the ratio between the optimal values,
represented by Ao, (G1, G2), and |G|. For the average val-
ues shown in this table, we have ¢cv = 16.17% and cv =
1.3% to bjen, respectively, for instances 4 and 9, and ¢v <
0.22% in the other cases.

ALGORITHMS'

100,000
10,000
1,000

100

Time (ms)

1

(=]

B ApproxMap 1/10%

Figure 18 Execution for breadth-first/load-balancing crawled datasets.

1 2 3

B ApproxMap 5/12%

MAPPING TIME

4 5

m ApproxMap 5/25%

Instance

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Table 5 Synthetic datasets generated by Tzitzikas et al. [6]

Instance number 1G| D, bdensity Dlen Aopt/|G| (%)
1 5846 134 0 0 1
2 5025 105 0.1 1 0.5
3 2,381 7 0.15 1 1.5
4 1,628 5 0.2 1 15
5 1,636 5 0.2 1.15 1
6 1,399 4 025 1.15 1.7
7 919 3 032 1.15 32
8 909 325 04 1.35 27
9 1,001 3.94 0.5 215 2.5

Figure 19 shows the delta sizes obtained for the nine
version pairs. ApproxMap and Algyy,,, found the opti-
mal delta in five instances. Algy,,; found a smaller delta
than ApproxMap 5/25% in instances 4 and 7, with
the maximum decrease in delta equal to 0.65. More-
over, in the latter instance, Algp,,, was only surpassed
by ApproxMap 5/25%. We confirmed the smallest delta
reduction potential in instance 8, where ApproxMap,
AlgHung, and Algs;e, showed increases of 5.34, 7.98, and
8.86, respectively, when compared with the optimal reduc-
tion potential.

Figure 20 shows the results for the same nine pairs but
considering the second version in reverse order. Contrary
to the results of the algorithms proposed by Tzitzikas et al.
[6], the bnode order did not affect the results of Approx-
Map. For the final four instances, compared with the
optimal reduction potential, Algy;,; showed an increase
varying from 6.72 to 19.64. Similarly, for these instances,
the increase in the reduction potential of Algg;s, varied
from 8.86 to 20.75, compared with the optimal values.

Figure 21 shows the results for the mapping times
of the algorithms on a logarithmic scale. Algpung

Page 20 of 28

achieved the worst performance, with increased map-
ping time varying between 1.53 and 2.45, compared with
ApproxMap 5/25%. In the final three instances, Algsign
achieved better performance than ApproxMap 5/25%,
with decreased mapping time of between 0.12 and 0.65.
ApproxMap 5/25% performed better in the first instance,
executing faster than Algg;,, with a decrease in time
of 0.98. Finally, compared with ApproxMap 5/12%, the
mapping time of ApproxMap 1/10% showed a maxi-
mum increase of 0.52, while that of ApproxMap 5/25%
decreased by 0.16.

Datasets with directly connected bnodes

In the final three instances of the nine pairs of synthetic
datasets used above, all algorithms obtained higher deltas
than the optimal values, when applied to datasets with
a marked increase in the number of directly connected
bnodes. To assess the influence of byensity on delta size, we
conducted a new experiment with identical versions of the
datasets. All algorithms found an empty delta for the orig-
inal order of the datasets. However, considering a reverse
order in the second version, Figure 22 shows the results
in terms of the deviation from the optimal delta, i.e.,
dx = A(G1,G2)—Aopt(G1,G2)
Aopt(G1,G2)+1
value. With an increase in bgensity, the reverse ordering
once again influenced the results of Algp;,; and Algsign.
These algorithms achieved the same increase in dx in the
final three instances, whereas ApproxMap produced an
empty delta.

To analyze the performance of the algorithms, consid-
ering datasets with a higher number of directly connected
bnodes, we developed an RDF dataset generator, based on
that included in the Berlin SPARQL Benchmark (BSBM)
[24]. We used this generator to produce pairs of file ver-
sions with an average bgensity of 0.34%, and cv = 7.25%. We
discuss the experiments using this generator in the next
section.

, where A denotes the optimal

Delta (%)
[++]

g

1

M Optimal M ApproxMap 1/10%

Figure 19 Delta reduction for nine pairs of synthetic datasets.

ApproxMap 5/12%

DELTA REDUCTION POTENTIAL

DIJ-.II'I lJlJI I I
2 3 4 5 6 7 3 9

Instance

ApproxMap 5/25% M AlgHung M AlgSign

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Page 21 of 28

25

20

15

Delta (%)

10

®m Optimal ™ ApproxMap 1/10%

DELTA REDUCTION POTENTIAL

5
1 2 3 4 5 6

ApproxMap 5/12%

Figure 20 Delta reduction for the nine pairs with the second version in reverse order.

7 8 9
Instance

ApproxMap 5/25% ™ AlgHung ™ AlgSign

Datasets from adapted BSBM generator

Our adapted generator is capable of producing two
versions of an e-commerce portal, which is used by
vendors to offer various products and consumers to sub-
mit reviews about these products. The versions contain
descriptions for five different types of resources, as well
as three different types of blank nodes. We determined
these quantities empirically to obtain the desired value for
bdensity- Thus, we defined the elements corresponding to
products, their types, and characteristics as blank nodes,
although the portal also included a hierarchy of product
types.

In all experiments, 74.73% of the triples contained
bnodes, with the coefficient of variation, cv = 1.28%. The
high percentage of bnodes was acceptable because triples
without bnodes could be mapped directly and this was not
our concern. Moreover, except for the last experiment in
which we tested large datasets, we limited the maximum
number of bnodes to 2,000, so that the datasets could
be tested with all algorithms. We constructed the version
pairs in such a way that ensured that changes occurred in
isolation. The intersections of sets of equivalent, added,

or removed triples between versions were empty, con-
sidering all possible bnode mappings. Based on this, we
obtained by construction the optimal delta size for the
tested pairs.

The adapted generator accepts as input the number of
products sold on the e-commerce portal and then, deter-
mines the number of other bnodes (product types and
characteristics) in terms of this input number. As a result,
the values of some metrics were affected by the num-
bers of bnodes, such as the average maximum path length
(Dlen), due to variations in the product type hierarchy.
However, this metric does not affect the computational
cost of ApproxMap. We dealt with bnode hierarchies
using the adopted bottom-up strategy. Similarly, the
absence of bnode interconnections (bgensity = 0) did not
affect ApproxMap because, in this case, it merely grouped
the bnodes in the same hierarchical partition. A meticu-
lous analysis of the impact of these metrics on delta size is
suggested as a future work.

In the next sections, we describe the five experiments
performed using datasets produced by our adapted gener-
ator. These experiments consider increases in the version

10,000

1,000

100

Time (ms)

=
o

W ApproxMap 1/10%

Figure 21 Results of mapping the synthetic datasets.

ALGORITHMS' MAPPING TIME

1 2 3 4 5 6 7 8 9

W ApproxMap 5/12%

Instance

ApproxMap 5/25% AlgHung ® AlgSign

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Page 22 of 28

Desviation dx

0.00 0.10 0.15

W ApproxMap 1/10% = ApproxMap 5/12%

Figure 22 Deviation from optimal delta for equivalent synthetic datasets.

DEVIATION FROM OPTIMAL

Instance

0.32 0.40

W AlgSign

0.20 0.25

ApproxMap 5/25% AlgHung

and delta sizes, identical or different versions, as well as
large datasets.

Changing the size of the datasets The first experiment
using our adapted generator aimed to analyze the impact
of an increase in the number of bnodes. For the genera-
tion of datasets, we set a fixed ratio of 50% of equivalent
elements among pairs, to assess the impact of an increase
in version size assuming a moderate delta size.

Table 6 gives the practical information about this exper-
iment involving five version pairs. Considering all the
averages shown in this table, we obtained a cv smaller than
0.98%, except for values bjen, which yields a maximum
value of cv = 4.67%. In this table, column Agpt/|G] dis-
plays the ratio between the optimal values, represented by
Aopt(Gl: GZ)) and |G|

Figures 23 and 24 show the results obtained for these
datasets, in terms of delta sizes and mapping times of
the algorithms, respectively. Algs;s, achieved the worst
performance in terms of delta size, with an increase
in delta size varying between 33.6 and 36.11. Algyyug
showed an increase in the reduction percentage ranging
from 2.6 to 8.88. Finally, the increase in the reduction
potential of ApproxMap 1/10%, ApproxMap 5/12%, and
ApproxMap 5/25% was, respectively, less than 4.28, 4.53,
and 4.7 compared with the optimal reduction potential.

Regarding bnode mapping times, Algpy,, was slower
than ApproxMap 5/25%, with an increase in time vary-
ing between 0.97 and 1.44 on the logarithmic scale.

Table 6 Datasets with varying version sizes

Instance |Bl 1Gl Du bdensity bien Aopt/IGI (%)
number

1 400 3390 729 0.29 60.42 53.39

2 800 7,000 778 033 127.34 53.02

3 1,200 10806 830 037 212.71 52.74

4 1,600 14061 7.88 0.34 200.95 5249

5 2,000 17541 786 0.34 270.09 52.71

Compared with the Algg, algorithm, the increase in
time for ApproxMap 5/25% varied between 0.65 and
1.70. Finally, the maximum increase in the execu-
tion time of ApproxMap 1/10% compared with that
of ApproxMap 5/12% was equal to 0.45. Similarly,
ApproxMap 5/12% showed an increase smaller than 0.12,
compared with ApproxMap 5/25%.

Changing delta size While the first experiment using
our generator considered varying numbers of bnodes,
the second experiment investigated variations in the dif-
ferences between version pairs. In this experiment, we
adopted datasets with a fixed number of 2,000 bnodes,
varying the percentage of different elements between 15%
and 90% in fixed steps of 15%. With the choice of these
percentages, the six pairs generated in this experiment
were grouped in doubles to represent the following change
levels between versions: low, medium, and high. Table 7
gives information about these pairs. Considering all the
averages shown in this table, we obtained a cv of less than
2.22%.

To facilitate impact analysis of increasing delta sizes,
Figure 25 shows the results of the algorithms, in terms of
the percentage difference between the deltas found and
the optimal values in terms of these optimal values, i.e.,
(A(G1,G2) — Aopt(G1, G2))/ Aopt(G1, G).

As before, Algsis, performed the worst in terms of
delta size, with the distance to the optimal delta vary-
ing between 51.61 and 88.3. Algyyun, showed a dis-
tance to the optimal ranging from 11.45 to 21.28, while
ApproxMap 1/10% showed one varying between 1.36 and
7.87. For ApproxMap 5/12% and ApproxMap 5/25%, the
distances to the optimal varied from 0.85 to 8.84 and from
5 to 9.39, respectively.

Moreover, Figure 26 shows the results for the map-
ping times of the algorithms. The time increase for
AlgHyng varied between 1.32 and 1.47, compared with
ApproxMap 5/25%. But, when compared with Algg;e,

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Page 23 of 28

Delta (%)
v
o

Figure 23 Results for datasets with varying version sizes.

DELTA REDUCTION POTENTIAL

80
70
60
40
30
20
10

0

1,200
BNodes
m Optimal = ApproxMap 1/10% m ApproxMap 5/12%

1,600 2,000

ApproxMap 5/25% ™ AlgHung ™ AlgSign

ApproxMap 5/25% required an increased time ranging
from 1.54 to 1.92, on the logarithmic scale. Finally, con-
sidering ApproxMap 5/12%, we observed a time increase
less than 0.5 for ApproxMap 1/10%, and a time decrease
less than 0.13 for ApproxMap 5/25%.

Identical datasets For a better analysis of the algorithms
behavior, the next two experiments considered extreme
cases, with the datasets either identical or completely dif-
ferent. In the first case, we compared the second version of
the datasets from the first experiment using our adapted
generator, with a version created by application of the
delta in the first version, i.e., dz = G1 + A. With this,
we validated the deltas previously found by ApproxMap.
No differences were found by any of the algorithms for
the identical datasets, even when considering the second
version in reverse order.

Figure 27 shows the time spent comparing the dataset
pairs. Compared with ApproxMap 5/25%, Alghung

required an increased time ranging from 1.24 to 1.51,
while Algs;,, required decreased time varying between
0.97 and 1.76. Compared with ApproxMap 5/12%, the
increase in execution time of ApproxMap 1/10% was less
than 0.1, while that for ApproxMap 5/25% time was less
than 0.04, on the adopted logarithmic scale.

Different datasets In this experiment, we also based the
generation of different datasets on the second versions
of the datasets produced in the first experiment using
our generator. In this case, we changed all the elements
included in the triples and obtained deltas equal to |G;| +
|Go|. Figure 28 shows the results for these pairs, with
mapping times expressed on a logarithmic scale.
Compared with ApproxMap 5/25%, Algrung required
increased time varying between 1.4 and 2.21, while
the reduced time requirement of Alggg, varied from
0.94 to 1.92. Compared with the time requirement of
ApproxMap 5/12%, ApproxMap 1/10% showed an

1,000,000
100,000
10,000
1,000

Time (ms)

10

(=]

1

o

®m ApproxMap 1/10%

Figure 24 Execution times for datasets with varying version sizes.

ALGORITHMS' MAPPING TIME

® ApproxMap 5/12% m ApproxMap 5/25%

1,200
BNodes

1,600 2,000

AlgHung ® AlgSign

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Table 7 Datasets with varying delta sizes

Instance number |G| D; bgensity Dien Aopt/1Gl (%)

1 17,895 847 0.38 231.60 15.86
2 17,639 7.99 0.35 304.20 31.73
3 17,868 8.19 0.37 326.40 47.34
4 17,841 813 0.36 265.72 6291
5 18014 828 037 34061 7835
6 17,695 795 0.34 328.19 94.06

increase ranging from 0.4 to 0.44, while the time reduc-
tion for ApproxMap 5/25% varied between 0.11 and 0.15,
on the logarithmic scale.

Large datasets Finally, the last experiment considered
the behavior of ApproMap and Algs;,, when mapping
large datasets. We could not test Algpyye in this experi-
ment, owing to its high computational cost. With the aim
of reducing the number of comparisons between bnodes,
we adopted steps 11 = 0.2 and 12 = 0.5 for ApproxMap,
which is referred to as ApproxMap 20/50%. Thus, with
this choice of steps, there are five iterations comparing
bnodes in the same hierarchical partitions and only two
iterations comparing bnodes in different partitions.

In the construction of the dataset pairs, the number
of bnodes varied between 20,000 and 100,000, in fixed
steps of 20,000. We created these five pairs with an aver-
age number of triples (|G|) of 183,732; 356,176; 562,828;
754,524; and 958,038 assuming a maximum value of cv =
0.37%. We created these datasets with 25% different ele-
ments, with the average size of the optimal delta equal to
26.41% of the triples with ¢cv = 0.11%. The adopted val-
ues in this experiment were chosen empirically with the
aim of reducing the mapping times of the algorithms. We
did not test the algorithms with datasets larger than those
generated in this experiment, owing to the computational

Page 24 of 28

cost of ApproxMap. However, the considered instances
were sufficient to evaluate the behavior of the algorithm
with large datasets. Moreover, the construction of a large
dataset is not common practice in the application con-
text of our method, that is, software development projects,
with stimulated techniques such as modularization.

Figures 29 and 30 show, respectively, the distance
between the results found and the optimal delta size and
the algorithms’ mapping times. As observed previously,
Algsign underperformed in terms of delta size, achieving a
distance to the optimal delta ranging from 81.87 to 110.87.
Furthermore, for ApproxMap 20/50%, the distance to
the optimal delta varied from 16.76 to 27.33. Regarding
time cost, the increased time required by ApproxMap rel-
ative to that of Algs;,, varied from 2.86 to 3.12 on the
logarithmic scale.

Analysis of results
Satisfactory results of ApproxMap in the experiments
confirm our hypothesis that mapping bnode pairs with
the highest approximation can assist in reducing the delta
size. Considering the tests where optimal delta values are
known, ApproxMap obtained the optimal delta size in 59%
of the tests. Algpyn; and Algs;y, found optimal solutions,
respectively, in 50% and 30% of the test cases.
Considering all experiments, except the final one with
large datasets, ApproxMap found a delta size equal to that
of Alghung in 55% of the tests and smaller than that of
AlgHung in 40% of the cases, except in the tests with steps
5/25%, where the delta found by ApproxMap was smaller
in 41% of the test cases. Compared with Algse,, Approx-
Map obtained a smaller delta in 67% of the cases and the
same delta in 33% of the cases. In the experiment with
large datasets, ApproxMap performed better than Algsign
in all cases. Moreover, when compared to Algsien, Algrung
found the same delta in 38% of the tests and a smaller delta
in 60% of the tested cases.

Delta (%)

® ApproxMap 1/10%

Figure 25 Results for datasets with varying delta sizes.

DISTANCE TO THE OPTIMAL DELTA

70
60
50
40
30
20
10 -
jml St = =
15 30 45

Different Elements (%)
® ApproxMap 5/12%

I [I I = I
75

60 90

ApproxMap 5/25% AlgHung m AlgSign

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Page 25 of 28

1,000,000
100,000
10,000
1,000

10

Time (ms)
o

1

(=]

W ApproxMap 1/10% m ApproxMap 5/12%

Figure 26 Execution times for datasets with varying delta sizes.

ALGORITHMS' MAPPING TIME

15 30 as 60 75 90

Different Elements (%)

® ApproxMap 5/25% m AlgHung m AlgSign

Regarding mapping time, ApproxMap was faster than
AlgHung in 84% of the tests and slower in the remaining
16%, except in the tests with steps 1/10%, where it was
outperformed in 21% of the tested instances. ApproxMap
was faster than Algg;e, in 14%, 21%, and 24% of the tests
with steps 1/10%, 5/12%, and 5/25%, respectively, and
outperformed in the other cases. In the experiment with
large datasets, Algsi;, was faster than ApproxMap in all
tests. Algsin was also faster than Algy,,, in all the tests
conducted with these algorithms.

Based on the experimental results, the empirically
defined values for parameters n; and 7, are considered
to be satisfactory. Considering the tests with steps 5/12%
as our reference, the decrease in 7; from 5% to 1% (steps
1/10%) caused a reduction in the delta size in 12% of
the tests, while we obtained the same delta in 81% of
the cases. However, the consequent increase in mapping
time was confirmed in 98% of the cases, while it remained
the same in the other 2% of cases. On the other hand,

with the increase in 7y from 12.5% to 25% (steps 5/25%),
a delta increase occurred in 17% of the tests, while we
obtained the same delta in 78% of cases. However, a con-
sequent reduction in mapping time occurred in 64% of the
instances, while the time remained the same in 28% of the
tested cases.

Furthermore, considering the impact of interconnected
bnodes in the experiments, in cases without directly con-
nected bnodes (with bgensiy = 0), ApproxMap had the
same delta size as Algyyyg in all the tests. But, in cases
where bgensity > 0, ApproxMap had the same delta size in
47% of the cases, and a smaller size than that in Algyy,e
in 47% of the tests, with the exception of tests with steps
5/25%, where the size was smaller in 49% of the tested
instances.

On the other hand, analyzing the algorithms’ perfor-
mance in the experiments with equivalent pairs, Approx-
Map was faster than Algp,,g in all tests. When considering
the ratio between the time spent by these algorithms, the

100,000.00
10,000.00
1,000.00

100.00

Time (ms)

10.00
1.00

400 800

® ApproxMap 1/10% ® ApproxMap 5/12%

Figure 27 Execution times for identical datasets.

ALGORITHMS' MAPPING TIME

1,200 1,600 2,000
BNodes
® ApproxMap 5/25% ® AlgHung ™ AlgSign

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Page 26 of 28

ALGORITHMS'

10,000,000
1,000,000
100,000
10,000

1,000
10
- Il
1
400 800

® ApproxMap 1/10% = ApproxMap 5/12%

Figure 28 Execution times for different datasets.

Time (ms)
[=R =

MAPPING TIME

1,200 1,600 2,000
BNodes

m ApproxMap 5/25% AlgHung m AlgSign

mapping time of Algy,,; was up to 283 times greater than
that of ApproxMap 5/25%. We also emphasize the results
for the real dataset [talian, whose delta contained no
triples with bnodes. In this case, Algyg required a greater
mapping time than ApproxMap 5/25% with a ratio of
2,982. However, Algpyy, yielded a nonempty delta in 25%
of the tests with equivalent datasets but with the datasets
in reverse order. The bnode order did not affect Approx-
Map in the experiments, because it imposes an internal
ordering.

Based on these results, we can state that the ApproxMap
method obtained satisfactory performance in the experi-
ments, and its application is recommended in the version-
ing of RDF datasets. We intend to apply this algorithm in
the design of an SCM method, as part of an integrated
environment of tools for software engineering projects,
based on the Semantic Web standards. Moreover, we
emphasize the satisfactory performance of ApproxMap
in mapping datasets with large numbers of equivalent

elements. Thus, we recommend its application for ver-
sion control following the recommended practices for
SCM, considering a low percentage of changes between
versions.

Conclusions
This paper aimed to develop a heuristic method for map-
ping blank nodes. The proposed method, called Approx-
Map, applied extended concepts of RST, presented by
Pawlak [7], in the handling of imprecision in bnode map-
ping. RST provided the necessary support to obtain a
mapping between bnodes, seeking closer approximations
between bnodes of the considered versions. The proposed
modeling of blank nodes as approximate sets in an approx-
imation space is an important contribution of this article.
This modeling can be reused in other research domains
involving blank node mapping.

In our method, we determined the number of com-
parisons between bnodes as parameter 7;. Considering

120

100

Delta (%)

20,000 40,000

Figure 29 Results for large datasets.

DISTANCE TO THE OPTIMAL DELTA

1111

m ApproxMap 20/50%

60,000
BNodes

80,000 100,000

M AlgSign

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

Page 27 of 28

100,000,000
10,000,000

1,000,000
100,000
10,000
1,000

100

10

1

20,000 40,000

Time (ms)

Figure 30 Execution times for large datasets.

B ApproxMap 20/50%

ALGORITHMS' MAPPING TIME

60,000 80,000
BNodes

100,000

| AlgSign

small values for the ratio 1/, the proposed algorithm has
worst-case time complexity of O(#?), involving two com-
pletely different datasets, whose bnodes have the same
predicates.

ApproxMap showed satisfactory performance in our
groups of experiments, as the algorithm that obtained
solutions closest to the optimal values. This algorithm
succeeded in finding the optimal delta size in 59% of the
tests involving optimal values. Considering all tests with
different values for parameters n; and 13, ApproxMap
achieved a delta size smaller than or equal to those of
AlgHung and Algs;y,, respectively, in at least 95% and 100%
of the tested cases. Regarding mapping time, ApproxMap
was faster than Algp,,e in at least 79% of the instances and
slower than Algs;e, in at least 76% of the tests.

Despite its mapping time being greater than that of
Algsign, which has a time cost of # - logn, we recommend
applying ApproxMap in various situations, particularly
those involving similar versions and directly connected
bnodes. Great diversity between the bnodes in the same
version is beneficial for ApproxMap. Thus, our algorithm
can be successfully applied in RDF dataset versioning,
such as that produced by software processes with iterative
and incremental development.

As future work, we propose the creation of a paral-
lel version of the ApproxMap algorithm to reduce the
time required to compare bnodes of the two RDF bases.
Furthermore, we propose a meticulous analysis of the
appropriate choice of input steps 11 and 77, and of the
impact of the adopted metrics and strategies on delta size.
Besides, we also intend investigating other RST metrics.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

JAM developed algorithms, performed experiments, and drafted the
manuscript. AMC participated in design and coordination of the study. Both
authors read and approved the final manuscript.

Acknowledgements

Many thanks to Christina Lantzaki and Yannis Tzitzikas for their help in the
execution of tests using the Algyung and Algsign algorithms and also for making
their synthetic datasets available. We also thank the reviewers for their help in
improving the article.

Received: 21 October 2013 Accepted: 16 October 2014
Published online: 28 April 2015

References

1. Klyne G, Carroll JJ, McBride B (2014) RDF 1.1 concepts and abstract syntax.
World Wide Web Consortium, Recommendation. http://www.w3.0rg/TR/
rdf11-concepts

2. Monte-Mor JA, Cunha AM (2014) Galo: a semantic method for software
configuration management. In: Information Technology: New
Generations (ITNG), 2014 11th International Conference On. pp 33-39

3. Antoniou G, van Hatrmelen F (2004) A Semantic Web prime. The MIT
Press, London, England. p. 238

4. Lee TB, Connolly D (2001) Delta: an ontology for the distribution of
differences between RDF graphs. Technical report, W3C. http://www.w3.
org/Designlssues/Diff

5. Zeginis D, Tzitzikas Y, Christophides V (2011) On computing deltas of
RDF/s knowledge bases. ACM Trans Web 5(3):14-11436

6. Tztzikas Y, Lantzaki C, Zeginis D (2012) Blank node matching and RDF/s
comparison functions. In: Proceedings of the 11th International
Conference on The Semantic Web - Volume Part I. ISWC'12. Springer,
Berlin, Heidelberg. pp 591-607

7. Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11:341-356

8. do Carmo Nicoletti M, Uchda JQ, Baptistini MTZ (2001) Rough relation
properties. Int J Appl Math Comput Sci 11(3):621-635

9. Carroll JJ (2002) Matching RDF graphs. In: Proceedings of the First
International Semantic Web Conference on The Semantic Web. ISWC '02.
Springer, London, UK. pp 5-15

10. Noy NF, Kunnatur H, Klein M, Musen MA (2004) Tracking changes during

ontology evolution. In: ISWC2004, Proceeding of the 3rd International

Semantic Web Conference, Hiroshima, Japan, November 7-11, 2004.

Springer, Berlin, Heidelberg. pp 259-273

Noy NF, Musen MA (2002) Promptdiff: a fixed-point algorithm for

comparing ontology versions. In: Eighteenth National Conference on

Artificial Intelligence. American Association for Artificial Intelligence,

Menlo Park, CA, USA. pp 744-750

12. Noy NF, Musen MA (2004) Ontology versioning in an ontology
management framework. [EEE Intell Syst 19(4):6-13

13. Auer S, Herre H (2006) A versioning and evolution framework for RDF
knowledge bases. In: Proceedings of the 6th International Andrei Ershov
Memorial Conference on Perspectives of Systems Informatics. PSI'06.
Springer, Berlin, Heidelberg. pp 55-69

1.

http://www.w3.org/TR/rdf11-concepts
http://www.w3.org/TR/rdf11-concepts
http://www.w3.org/DesignIssues/Diff
http://www.w3.org/DesignIssues/Diff

Monte-Mor and Cunha Journal of the Brazilian Computer Society (2015) 21:3

20.

21.

22.

23.

24.

Vélkel M, Groza T (2006) SemVersion: An RDF-based ontology versioning
system. In: Nunes MB (ed). Proceedings of IADIS International Conference
on WWW/Internet (IADIS 2006), Murcia, Spain. pp 195-202

Cassidy S, Ballantine J (2007) Version control for RDF triple stores. In: Filipe
J, Shishkov B, Helfert M (eds). ICSOFT 2007, Proceedings of the Second
International Conference on Software and Data Technologies, Volume
ISDM/EHST/DC, Barcelona, Spain, July 22-25, 2007. INSTICC Press, Setubal,
Portugal. pp 5-12

Im D-H, Lee S-W, Kim H-J (2012) A version management framework for
RDF triple stores. Int J Softw Eng Knowl Eng 22(1):85-106

Zeginis D, Tzitzikas Y, Christophides V (2007) On the foundations of
computing deltas between RDF models. In: Proceedings of the 6th
International The Semantic Web and 2nd Asian Conference on Asian
Semantic Web Conference. ISWC'07/ASWC'07. Springer, Berlin,
Heidelberg. pp 637-651

Kuhn HW (1955) The Hungarian method for the assignment problem.
Naval Res. Logist. Quart 2:83-97

Uchda JQ (1998) Representacao e indugéo de conhecimento usando
teoria de conjuntos aproximados. Master's thesis, Universidade Federal
de Séo Carlos, Sao Carlos, Brasil

Pawlak Z, Skowron A (2007) Rough sets: some extensions. Inform Sci
177(1):28-40

Isele R, Umbrich J, Bizer C, Harth A (2010) Ldspider: An open-source
crawling framework for the web of linked data. In: Polleres A, Chen H
(eds). ISWC Posters & Demos. CEUR Workshop Proceedings. CEUR-WS.org
Vol. 658

Bizer C, Heath T, Berners-Lee T (2009) Linked data - the story so far. Int J
Semantic Web Inf Syst 5(3):1-22

Guo'Y, Pan Z, Heflin J (2005) LUBM: a benchmark for owl knowledge base
systems. Web Semant 3(2-3):158-182

Bizer C, Schultz A (2009) The Berlin SPARQL benchmark. Int J Semantic
Web Inform Syst 5(2):1-24

Page 28 of 28

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Related work
	Problem description
	Rough set theory
	Basic concepts
	Some RST measures

	Methods
	Blank nodes as rough sets
	Extending the RST concepts
	Exemplifying the modeling

	The ApproxMap method
	Heuristic strategies
	Data structures
	Mapping bnode pairs
	Proposed method
	Method analysis

	Results and discussion
	Real datasets
	Crawled datasets
	Synthetic datasets
	Datasets from adapted Univ-Bench artificial generator
	Datasets with directly connected bnodes
	Datasets from adapted BSBM generator
	Changing the size of the datasets
	Changing delta size
	Identical datasets
	Different datasets
	Large datasets

	Analysis of results

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

