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Abstract 

The aetiology and pathophysiology of complex diseases are driven by the interaction between genetic and envi‑
ronmental factors. The variability in risk and outcomes in these diseases are incompletely explained by genetics or 
environmental risk factors individually. Therefore, researchers are now exploring the epigenome, a biological interface 
at which genetics and the environment can interact. There is a growing body of evidence supporting the role of 
epigenetic mechanisms in complex disease pathophysiology. Epigenome-wide association studies (EWASes) investi‑
gate the association between a phenotype and epigenetic variants, most commonly DNA methylation. The decreas‑
ing cost of measuring epigenome-wide methylation and the increasing accessibility of bioinformatic pipelines have 
contributed to the rise in EWASes published in recent years. Here, we review the current literature on these EWASes 
and provide further recommendations and strategies for successfully conducting them. We have constrained our 
review to studies using methylation data as this is the most studied epigenetic mechanism; microarray-based data as 
whole-genome bisulphite sequencing remains prohibitively expensive for most laboratories; and blood-based studies 
due to the non-invasiveness of peripheral blood collection and availability of archived DNA, as well as the accessibility 
of publicly available blood-cell-based methylation data. Further, we address multiple novel areas of EWAS analysis that 
have not been covered in previous reviews: (1) longitudinal study designs, (2) the chip analysis methylation pipeline 
(ChAMP), (3) differentially methylated region (DMR) identification paradigms, (4) methylation quantitative trait loci 
(methQTL) analysis, (5) methylation age analysis and (6) identifying cell-specific differential methylation from mixed 
cell data using statistical deconvolution.
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Introduction
Epigenetic mechanisms involve modifications to genomic 
DNA (both heritable and/or modifiable) that can affect 
cellular phenotypes and in turn, influence complex dis-
ease aetiology and outcomes. The most widely studied 
epigenetic mechanism is DNA methylation, which can 
regulate gene expression through the presence or absence 
of a methyl group on cytosine-phosphate-guanine (CpG) 

dinucleotides. Over the last decade, the ability to study 
methylation at the genome-wide level has led to the 
application of the epigenome-wide association study 
(EWASes), which has increased our understanding of the 
role of methylation in many diseases [1–4]. As genome-
wide methylation scanning technology has evolved, so 
too have bioinformatic tools to process, analyse and 
interpret methylation data from EWASes.

The aim of this review is to perform an up-to-date 
critical assessment of the tools and strategies available 
for conducting EWASes, specifically focusing on blood-
cell derived methylation data. We focus on blood cells 
because (1) peripheral blood is one of the least-invasive 
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tissues to collect, (2) there are many large-scale DNA 
banks of convenience available for conducting EWASes, 
(3) the most common publicly available methylation 
data is from whole blood or whole blood cell subsets, 
and (4) blood cell pathology is involved in many com-
plex diseases. Furthermore, we review study design and 
methodological features of EWASes that have not been 
addressed in the literature previously: (1) longitudinal 
study designs, (2) the chip analysis methylation pipeline 
(ChAMP), (3) differentially methylated region (DMR) 
identification paradigms, (4) methylation quantitative 
trait loci (methQTL) analysis, (5) methylation age analy-
sis and (6) identifying cell-specific differential methyla-
tion from mixed cell data using statistical deconvolution. 
The goal of this review is to provide researchers with a 
reference workflow and guidelines for conducting blood-
cell-based EWASes.

Epigenome‑wide association studies
The aim of an epigenome-wide association study (EWAS) 
is to examine genome-wide epigenetic variants (predom-
inantly DNA methylation at CpGs), to detect differences 
that are statistical associated with phenotypes of interest.

The most common way to study DNA methylation is 
with bisulphite converted genomic DNA and microar-
rays. Bisulphite conversion deaminates unmethylated 
cytosines, producing uracil, on denatured genomic DNA. 

Methylated cytosines remain unaffected, and therefore, 
bisulphite converted genomic DNA contains methyl-
ated cytosines only. Microarrays are a collection of dif-
ferent oligonucleotides fixed on a solid substrate (usually 
glass) that can hybridise to complementary DNA strands. 
The methylation level is measured at each CpG present 
on the microarray and compared between (or within) 
groups of interest to detect differentially methylated 
positions (DMPs) and regions (DMRs). A DMP is a sin-
gle CpG dinucleotide that is differentially methylated 
between groups, as determined by statistical significance 
and effect size thresholds. The definition of a DMR dif-
fers between studies based on the algorithm used but can 
broadly be defined as a region containing multiple DMPs.

The first commercial high-density microarray measur-
ing genome-wide methylation was the HumanMethyla-
tion27 (27K) released by Illumina in 2009 [5]. The 27K 
microarray allowed researchers to measure methylation 
across more than 27,000 CpG sites spanning over 14,000 
genes and paved the way for mainstream EWASes. The 
HumanMethylation450 (450K) microarray followed in 
2011 and rapidly gained popularity as it measures meth-
ylation at over 450,000 CpG sites [6]. The 450K remains 
the most cited Illumina microarray for DNA methylation 
studies to date (Fig. 1). In 2016, Illumina produced a new 
iteration of the 450K, called the HumanMethylation850 
(EPIC) microarray, which measures methylation at over 

Fig. 1  Popularity of methylation microarrays. The proportion of EWASes deposited on GEO (NCBI) each year, by array type. Abbreviations: 
EWAS = Epigenome-wide association study, GEO = Gene Expression Omnibus, NCBI = National Center for Biotechnology Information
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850,000 CpG sites [7]. Illumina microarrays predomi-
nantly measure methylation in gene promoter regions. 
The coverage of intergenic regulatory regions has 
improved with each iteration of the microarray; however, 
the EPIC microarray still only covers 58% of FANTOM 
enhancers, 27% of proximal regulatory elements and 7% 
of distal regulatory elements [7]. Notably, Agilent now 
produces microarrays that measure methylation at over 
235,000 CpG sites; however, these microarrays are not 
cited as frequently as Illumina microarrays. Nimblegen 
also produced microarrays, but these were discontinued 
in 2012.

The ability to measure methylation in a high-through-
put manner drove the development of bioinformatic 
pipelines. These have streamlined analyses and overcome 
the hurdles that arise from highly dimensional datasets. 
Two main bioinformatics analysis packages for EWAS 
data are Minfi [8] and ChAMP [9], which emerged as 
open-source alternatives to GenomeStudio, the origi-
nal proprietary tool provided by Illumina. Both pack-
ages were released in 2014 and were built to analyse 
450k microarray data. In 2017, they were updated to also 
include EPIC microarray data [10, 11]. Minfi is the most 
cited tool for 450k data analysis, while ChAMP is becom-
ing the most cited tool for EPIC data analysis (Fig.  2). 
Minfi and ChAMP allow users to import data files 
directly produced from methylation microarrays (i.e. raw.

idat files), perform quality control (QC), normalisation 
and detection of both DMPs and DMRs. Different down-
stream analyses are available for each package (Fig. 3).

Study designs
EWASes can be conducted using unrelated case–control 
and longitudinal designs, as well as one sample quantita-
tive trait and family-based study designs. Here, we com-
pare and contrast case–control and longitudinal study 
designs and discuss other important considerations such 
as power and sample size. Quantitative trait and family-
based study designs differ substantially from those of 
non-related individuals and have been reviewed in detail 
previously [12]. The main difference between case–con-
trol and longitudinal study designs is the practicality and 
affordability of case–control studies in comparison with 
longitudinal studies. However, only longitudinal studies 
can assess the relationship between changes in epigenet-
ics and phenotype during the course of disease. Notably, 
case–control studies investigate the relationship between 
dichotomous traits and methylation using contrast 
comparisons.

Case–control designs
Case–control EWASes are the most employed study 
design. The case–control design is a standard design 
in epidemiology and involves grouping unrelated 

Fig. 2  Popularity of EWAS pipelines. The proportion of PubMed citations by year for methylation data analysis using different Illumina arrays. 
Abbreviations: EWAS = Epigenome-wide association study
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participants into a phenotype of interest, such as the 
presence of disease, and compares CpG methylation lev-
els to a group of subjects without the phenotype (i.e. 
a control group) [13–16]. The control group can be 
matched for potential confounding factors such as age, 
sex, ethnicity or genotype at a locus that has previously 
been associated with the phenotype of interest. Subjects 
are usually collected in a cross-sectional manner from 
the population of interest making this design the most 
feasible in terms of logistics and cost (discussed below 
in "Longitudinal designs" section). For blood-based 
EWAS, researchers can utilise existing DNA biobanks 
from past case–control genome-wide association stud-
ies (GWASes) [17]. Thus, the main benefit of this study 
design is the ability to obtain large subject numbers.

The primary limitation of the case–control study 
design is the inability to determine the timing of the rela-
tionship between differential methylation and phenotype. 
That is, whether differential methylation between cases 
and controls results in, or is a result of, disease. For this 
reason, case–control EWASs are typically restricted to 
claims to association rather assigning cause or effect of 

the relationships. Auxiliary approaches such Mendelian 
randomisation (MR) can be used within the case–con-
trol designs to statistically infer cause and effect between 
CpGs associated with the phenotype. MR uses genetic 
variants that are associated with the same CpGs and/
or the phenotype to reveal potential causal associations 
[18]. However, prospective longitudinal study designs are 
required to truly understand the timing and mechanism 
behind phenotype-inducing changes in methylation.

Longitudinal designs
Longitudinal studies allow researchers to determine 
intra-individual trajectories (changes) as well as inter-
individual variability in methylation and/or phenotype 
over time. However, they are more difficult to set up than 
case–control studies. These studies follow groups of indi-
viduals over months, years or decades measuring methyl-
ation, and if possible, phenotype, at multiple timepoints. 
The commonest form of longitudinal studies in the 
EWAS literature are natural history studies, which track 
methylation trajectories from birth in healthy individuals 
[19–24]. However, it is harder to establish longitudinal 

Fig. 3  A standard EWAS workflow using Minfi or ChAMP packages. Analyses are either common to both packages, specific to one package, or 
completed with other unspecified packages. Abbreviations: DMP = differentially methylated position, DMR = differentially methylated region; 
DMB = differentially methylated block; CNV = copy number variation; methQTL = methylation quantitative trait loci; MRS = methylation risk score
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studies following disease states, as pre-disease onset sam-
ples are very difficult to collect. A significant advantage 
of the longitudinal study design is the ability to track 
methylome changes in relation to time and phenotype, 
possibly allowing causal relationships to be established. 
Nevertheless, the time and cost associated with longitu-
dinal studies remain prohibitive for many researchers. 
Consequently, the majority of longitudinal EWASes study 
healthy, natural history cohorts.

Longitudinal studies in natural history cohorts demon-
strate the dynamic nature of DNA methylation through-
out the lifespan, particularly in the early years of life. 
During the first five years of life, the methylome under-
goes drastic remodelling with a tendency towards global 
hypermethylation [19–24]. Methylation changes pre-
dominantly occur on autosomal chromosomes [19–23], 
with hypermethylation in CpG dense regions, including 
gene promoters, intragenic regions and transcription 
start sites [20–23]. Hypermethylated genes are over-
represented in developmental functions such as tissue 
morphogenesis, haematological system development, 
the effector immune response, neuronal-related func-
tions and cell–cell signalling [21–23]. Hypomethylation 
occurs in CpG sparse regions [20, 22, 23], primarily in 
immune response-related genes including antigen bind-
ing and intracellular signalling, cellular components 
related to the major histocompatibility complex (MHC) 
protein complex and cytoskeleton, as well as messenger 
RNA and protein metabolism [21–23]. Notably, leuko-
cytes undergo major epigenome remodelling in the first 
five years of life, potentially indicating an “immunologi-
cal window of opportunity” in childhood [22, 25]. In indi-
viduals over 50  years of age, inter-individual variation 
and intra-individual demethylation tend to increase with 
time [19, 26–28]. Age-related demethylation is particu-
larly pronounced at Alu repetitive elements (conserved 
regulatory regions), which correlate with genome-wide 
methylation levels [27].

Longitudinal study designs have also been used to 
study epigenetic drift in monozygotic (MZ) and dizy-
gotic (DZ) twin pairs. In twins, epigenetic drift refers to 
the diverging epigenomes over time, as they are exposed 
to different environmental factors [15–18], and is more 
pronounced in DZ than MZ twins [28–31]. As MZ twins 
are genetically identical, they are useful for studying the 
impact of environmental factors on the epigenome over 
time. Such studies have shown that genetics explains less 
than 24% of variation in epigenetic drift, demonstrating a 
substantial impact of environmental factors on the epig-
enome [29]. Epigenetic drift also attenuates with age, and 
primarily affects genes enriched for immune and inflam-
mation pathways [29]. In summary, genetics contributes 

to the methylome’s stability over time, while environ-
mental factors contribute to epigenetic drift.

In the current EWAS literature, longitudinal stud-
ies typically examine changes in methylation across two 
time points only. As such, methodological strategies for 
conducting studies with multiple time points are lack-
ing. Furthermore, these studies have used data derived 
from the 450k microarray, which is enriched for CpG-
dense genomic regions (CpG islands). There is growing 
evidence that methylation in CpG-sparse regions, such 
as enhancers and gene bodies, has significant functional 
consequences through altering gene expression [32]. 
Hence, longitudinal studies with multiple time points 
using the EPIC microarray could provide novel insights 
into methylation trajectories in health and disease.

Replication or validation analyses
Replication or validation analyses are critical for EWASes 
to confirm preliminary findings. This is particularly per-
tinent in epigenetic studies as a range of confounding 
environmental exposures—known and unknown—may 
be present. As with GWASes, independently ascertained 
replication cohorts are required to confirm (or refute) 
preliminary results and establish effect sizes, and there-
fore inform pathology or clinical utility (e.g. biomarkers). 
Replication is defined as the reproducibility of prelimi-
nary results in a cohort that is as similar to, but independ-
ent of, the preliminary cohort. For this reason, it is often 
difficult—and sometimes impossible—for researchers 
to obtain a suitable replication cohort. This is especially 
true for rare diseases where patient numbers are difficult 
to build up. In this instance, there are several approaches 
researchers can take to validate preliminary results. Vali-
dation is defined as corroboration of results in a cohort, 
or using a dataset, that does not originate from the dis-
covery phase of the study. In EWASes, validation can be 
achieved by (1) corroborating preliminary findings in a 
similar, although not identical cohort, or general popu-
lation, (2) confirming that preliminary findings are not 
corroborated in a healthy or natural history cohort or 
dataset, indicating disease specificity, (3) utilising EWAS 
databases (see "Epigenome-wide association study data-
bases" section) to access raw.idat files and/or summary 
statistics for validation analyses, (4) using the literature 
to provide biological or pathological support for prelim-
inary results or (5) using animal studies to gain specific 
mechanistic insight. For animal studies, rodents are use-
ful as they age faster than humans and researchers can 
control for environmental exposures and confounders.

Power and sample size considerations
EWASes of complex diseases must be statistically pow-
ered to identify modest, but important, differences in 
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DNA methylation between groups or time points (i.e. 
effect sizes). Statistical power is defined as the probability 
that a statistical test rejects the null hypothesis when the 
alternative hypothesis is correct. Therefore, in adequately 
powered studies, there is a reduced risk of type I (false 
positive) and type II (false negative) errors. Significance 
thresholds, sample size and effect size all affect statistical 
power of EWASes.

In EWASes, Type I error rates (significance thresh-
olds) are impacted by multiple testing as a vast number 
of CpG sites are analysed. Bonferroni corrected signifi-
cance thresholds are sometimes used to overcome the 
multiple testing burden. However, Bonferroni deflation 
for the number of CpG sites tested is widely considered 
to be too stringent in EWASes as methylation is highly 
correlated across the genome. Thus, the actual number of 
independent tests is far fewer than the number of CpGs 
on each microarray [33]. Therefore, a false-discovery 
rate (FDR) threshold is commonly used, which provides 
a balanced compromise between type I and type II error 
rates (i.e. FDR < 0.05). However, the heteroskedasticity 
of methylation data (i.e. non-constant variance of meth-
ylation levels between groups) and non-uniform distribu-
tion of p-values across measured CpG sites can violate 
FDR assumptions. Thus, using an FDR threshold could 
limit the reproducibility of results across studies [33]. To 
overcome the limitations of both Bonferroni corrected 
p-values and FDR thresholds, simulation studies have 
calculated the number of independent tests in EWASes 
using methylation data from the 450k and EPIC microar-
rays. An unadjusted significance threshold of 9.42 × 10−8 
(95% CI = 2.97 × 10−8–1.49 × 10−15) is recommended for 
analyses using EPIC data [33], and 2.4 × 10−7 (95% CI 
not reported) for analyses using 450k data [34, 35]. The 
ChAMP pipeline (outlined below in "The chip analysis 
methylation pipeline (ChAMP)" section) calculates unad-
justed and adjusted p-values (FDR), allowing researchers 
to use the significance threshold that is most suitable for 
their study.

As complex phenotypes rarely have effect sizes larger 
than 5%, the most straightforward way to increase power 
is to increase sample size. EWAS power studies using 
case-control [33–35] or family-based [34, 35] simula-
tions recommend a sample size of 1000 (500 cases and 
500 controls) to detect statistically significant DMPs and 
DMRs. However, in some cases these are not required. 
For example, due to large methylation differences in 
the Human Leukocyte Antigen (HLA) region, several 
EWASes of multiple sclerosis have identified differential 
methylation of > 20% between cases and controls with 
sample sizes of 20–30 per group [13–15]. There are cur-
rently no published sample size recommendations for 
longitudinal EWASes. However, longitudinal studies in 

Parkinson’s disease and Type I diabetes have identified 
differential methylation between groups with sample 
sizes ranging from 85 to 190 per group [36, 37]. Large 
sample sizes may be difficult to obtain in longitudinal 
studies, due to costs and attrition rates.

The chip analysis methylation pipeline (ChAMP)
ChAMP is a Bioconductor package that provides a pow-
erful tool for analysis of DNA methylation data obtained 
with the Illumina 450K or EPIC microarrays [11]. It is 
designed for the R statistical environment [11], and inte-
grates existing pre-processing and analysis tools, such 
as Minfi [8], into a single pipeline. The ChAMP pipeline 
consists of eight main functions, which can be executed 
in full with the command champ.process(). Neverthe-
less, we recommend completing each function separately 
so that researchers can assess the interim results and 
tailor the parameters of each function to best suit their 
analysis [11]. The steps and recommended tools for pri-
mary EWAS analyses discussed below are summarised in 
Fig. 4.

ChAMP is designed for case–control designs, i.e. iden-
tifies differential methylation between two categorical 
groups. This is also adequate for case–control studies 
and longitudinal studies with two time points. However, 
ChAMP is not a suitable package for studies of multiple 
groups including longitudinal studies with more than two 
time points. For such analyses, researchers will need to 
use the individual packages incorporated into ChAMP, 
such as limma for DMP analysis and DMRcate for DMR 
analysis. ChAMP is also unsuitable for studies of continu-
ous phenotypes. There are currently no purpose-built 
tools for this type of analysis; therefore, researchers will 
need to use alternate statistical approaches, such as lin-
ear regression modelling between CpG and phenotype 
within a suitable statistics program (e.g. R environment 
[38]).

Data pre‑processing
Probe filtering
ChAMP offers two functions to load data from.idat files 
and a corresponding sample sheet: champ.import() and 
champ.load(). The former uses Minfi functions to return 
objects (e.g. data matrices) fed directly into downstream 
normalisation functions [8], while the latter imports and 
filters data in one step [11]. Alternatively, researchers 
can use champ.filter() to customise the following param-
eters: (1) detection p-values (p > 0.01), (2) low-quality 
probes (< 3 beads in ≥ 5% of samples per probe), (3) 
probe type (non-CpG probes), (4) chromosomal location 
(non-autosomal), (5) presence of single-nucleotide poly-
morphisms (SNPs) in the probe sequence (population-
specific) [5], (6) cross-hybridisation [39] and (7) multi-hit 
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Fig. 4  Steps and tools for primary EWAS analysis steps. Listed tools include ChAMP (https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​ChAMP.​
html), Minfi (https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​minfi.​html) and missMethyl (http://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​
html/​missM​ethyl.​html). Abbreviations: EWAS = epigenome-wide association study, ChAMP = chip analysis methylation pipeline, HPC = high 
performance computer, RAM = random access memory, SNP = single nucleotide polymorphism, BMIQ = beta mixture quantile, SVD = singular 
value decomposition, QC = quality control, DMR = differentially methylated region, ADB = absolute deta beta 

https://bioconductor.org/packages/release/bioc/html/ChAMP.html
https://bioconductor.org/packages/release/bioc/html/ChAMP.html
https://bioconductor.org/packages/release/bioc/html/minfi.html
http://bioconductor.org/packages/release/bioc/html/missMethyl.html
http://bioconductor.org/packages/release/bioc/html/missMethyl.html
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probes (probes with unspecific genomic alignment) [40]. 
Default filtering thresholds are adequate for most analy-
ses. The dataset used for cross-hybridised probe filtering 
with ChAMP is from an early study which interrogated 
the 450k microarray [40]. More recently, ~15,000 addi-
tional cross-hybridised probes were identified for the 
EPIC microarray [41]. Therefore, it is imperative that 
researchers using the EPIC microarray further filter data 
for the additional cross-hybridised probes prior to data 
normalisation.

Beta‑ and M values
ChAMP accommodates the use of either beta- or M val-
ues representing CpG methylation. Beta-values are an 
index of methylation levels and range from zero (com-
pletely unmethylated) to one (completely methylated). 
Notably, methylation beta-values differ to beta coeffi-
cients produced by regression models. Beta-values are 
the ratio of the methylated probe intensity and overall 
probe intensity (the sum of methylated and unmeth-
ylated probe intensities). Methylation beta-values are 
easy to interpret as they can be converted to a percent-
age of methylation ranging from 0 (unmethylated) to 
100% (methylated). One drawback of beta-values is that 
they follow mixed statistical probability distributions 
(i.e. beta-binomial), which can cause issues for conven-
tional linear regression models whereby CpG beta-values 
are modelled as the dependent variable. For this reason, 
beta-values may be transformed into M values, which are 
the log2 ratio of the methylated probe intensity and the 
unmethylated probe intensity. Negative M values indicate 
lower methylation, whereas positive M values indicate 
higher methylation. Although M values are considered 
statistically more appropriate than beta-values when the 
CpG is modelled as the dependent variable than beta-
values, they lack intuitive interpretation [42]. Detailed 
assessment of the use of beta- or M values has been pub-
lished elsewhere [42].

Probe imputation
Imputation is the process of inferring beta-values for 
missing probes in a beta matrix using statistics and 
machine learning. Missing probes can result from inade-
quate assays or across microarray iterations. For example, 
probes from the 450K microarray compared to the EPIC 
microarray can be imputed for direct comparison. Impu-
tation is particularly useful in longitudinal studies to 
harmonise data collected with different platforms across 
timepoints due to technological development.

champ.impute() imputes missing beta-values in a fil-
tered beta matrix (i.e. after champ.load()) via three meth-
ods: removal of the missing probes, k-nearest neighbours 
or a combination of both [11]. K-nearest neighbour is a 

machine learning method in which a Euclidean metric 
is used to identify neighbouring probes (to the miss-
ing probe), and the beta-value of the missing probe is 
imputed as the average of the beta-values at the neigh-
bouring probes [11]. We recommend the removal of 
missing probes for small sample sizes and a combination 
of removal and k-nearest neighbours for larger sample 
sizes.

Data normalisation
Illumina microarrays use two distinct hybridisation 
chemistries to measure methylation at probes, Type I 
and Type II, which produce different beta-value distribu-
tions. These distributions must be normalised to avoid 
the biased detection of DMPs enriched for Type I probes. 
Beta-mixture quantile normalisation (BMIQ) [43] is 
the default normalisation method in ChAMP, but other 
options are available, including subset-quantile within 
microarray normalisation (SWAN) [44], peak-based 
correction (PBC) [45] or functional normalisation (Fun-
norm) [46]. All of these methods have been previously 
described in detail [47–51]. For analyses where there is a 
strong association between methylation and phenotype, 
each method performs similarly in terms of accuracy [50, 
51]. However, Funnorm produces the most replicable 
results in analyses where global methylation changes are 
expected; for example, in case–control, between-disease 
studies or inter-tissue comparisons. The same method 
also removes a large amount of technical variation in the 
unsupervised normalisation process, improving down-
stream batch effect correction. Nevertheless, BMIQ 
remains the most popular normalisation method to date 
(Fig. 5).

It is not uncommon for researchers to use methyla-
tion data derived from different microarrays. For exam-
ple, in case–control studies, cases may be prospectively 
recruited and analysed using the EPIC microarray, while 
historical 450k microarray data may be used for con-
trols. In longitudinal analyses, the 450k microarray may 
be used at baseline, while the EPIC microarray is used at 
follow-up timepoints. In this scenario, the single-sample 
noob (SSnoob) function in Minfi is the most useful tool 
for normalisation [10]. SSnoob integrates 450K and EPIC 
microarray data for joint normalisation, outperforming 
BMIQ and Funnorm in this process [10].

Addressing technical variation (batch effects)
The default method for batch effect identification in 
ChAMP is singular value decomposition (SVD) [9]. Basi-
cally, SVD correlates principal components with biologi-
cal and technical variation using information from the 
user-provided sample sheet [25].
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The default method for batch effect correction in 
ChAMP is ComBat [9], which uses an empirical Bayes 
method to correct batch effects. ComBat requires two 
inputs: (1) the variables which should not be adjusted 
(i.e., biological variation caused by the variable of inter-
est), and (2) the batch variables to be adjusted for (for 
example, slide, microarray, plate), previously identified 
in SVD analysis. Researchers should be aware that Com-
Bat can introduce false signals if biological and technical 
variation are partially or wholly confounded [52–55]. In 
a case–control study, this may occur if all samples from 
cases run on the same plate and controls on another, thus 
causing systematic technical error via batch effects. The 
analogous error in a longitudinal study is running sam-
ples from each time point on different plates. To reduce 
the risk of false signals, ChAMP checks that technical and 
biological variation is not confounded before adjustment 
[11]. False signals can be minimised a priori by manually 
randomising samples across microarrays and excluding 
biological covariates from batch effect correction [55]. 
In an ideal experiment, all samples would be processed 
in one batch; however, this is impossible for large sample 
sizes. The nature of longitudinal study designs means that 
they are at higher risk of batch effects than case–control 
studies, as samples are collected and processed at differ-
ent time points. Thus assays, microarrays and techniques 
may evolve, leading to technical variation. ComBat 
has been shown to be effective in correcting technical 

variation in longitudinal gene expression studies [56]. 
Biological and clinical covariates likely influence meth-
ylation patterns and should be addressed in downstream 
statistical analyses rather than at the data pre-processing 
stage [55]. Notably, for researchers correlating methyla-
tion data with other clinical datasets, ComBat has utility 
in correcting batch effects in various datasets, includ-
ing gene expression and imaging data [57–59]. Alterna-
tively to ComBat, the missMethyl package uses Remove 
Unwanted Variation (RUV). The RUV uses negative con-
trols on the microarray to identify and remove unwanted 
variation [60, 61]. As a rule of thumb, it is reasonable to 
move onto downstream analyses if the first two principal 
components identified with SVD explain more than 80% 
of the covariance in the data, and if these are adequately 
corrected for prior to progressing [11].

Statistical association testing
The statistical association between methylation lev-
els (beta- or M values) and phenotype are identified at 
the level of individual CpG sites (DMPs) and broader 
genomic regions (DMRs). Typically, DMP analyses are 
straightforward association tests between methylation 
beta-values and phenotype, whereby the specific sta-
tistical test used will depend on the study design and 
cohort characteristics. DMR analysis is more complex 
and as such, multiple algorithms for DMR detection are 
available.

Fig. 5  Popularity of normalisation methods. The proportion of PubMed citations by year for methylation data normalisation algorithms.
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Differentially methylated positions (DMPs)
DMPs are CpG sites with statistically significant dif-
ferences in average (usually mean) methylation levels 
between groups. ChAMP can identify DMPs between 
two categorical groups of interest: case–control studies, 
and longitudinal studies with two time points. For longi-
tudinal studies that collect data for more than two time 
points, there are different ways of approaching analyses, 
to identify intragroup changes between time points and/
or intergroup differences over time. For the former, meth-
ylation data from the same group at two time points can 
be analysed as if it was comparing two separate groups 
using general linear models with repeated measures. For 
longitudinal studies with more than two time points, lin-
ear mixed models (LMMs) including time as a random 
effect term can be used to compare methylation at each 
timepoint simultaneously. LMMs are useful in longitudi-
nal studies where missing data is common, or to address 
differences in the timing of measurements between 
groups. To identify intergroup differences in change over 
time there are multiple statistical approaches available: 
(1) use ChAMP to identify DMPs at baseline and re-ana-
lyse methylation differences at only these sites at subse-
quent time points to identify the methylation trajectory 
(change) at these sites over time, (2) use ChAMP to iden-
tify DMPs at each timepoint independently, and correlate 
results between timepoints, noting which DMPs are vari-
able (significantly different at any time point) or consist-
ent (significantly different at each time point), and their 
direction of effect or (3) use LMM with a group contrast 
term to assess the relationship between change in meth-
ylation over time and phenotype group.

The champ.DMP() function in ChAMP uses the Bio-
conductor package limma [62] to identify DMPs from a 
beta-matrix. This package conducts a pairwise compari-
son of beta-values between groups, by fitting the same 
general linear model to each probe separately and com-
puting a moderated t-statistic and unadjusted p value. A 
moderated t-statistic is the ratio of the beta-value for a 
CpG to a pooled standard error (SE). By pooling infor-
mation from all CpGs limma moderates SE at individual 
probes to improve inference about each CpG. ChAMP 
subsequently corrects unadjusted p values for multiple 
testing using the Benjamini and Hochberg method [63] 
and reports an FDR. The use of unadjusted and adjusted 
significance values by ChAMP allows researchers the 
option of significance thresholds to guide the interpreta-
tion. However, strict adherence to significance thresholds 
may lead researchers to overlook DMPs with significant 
biological effects (i.e. incur Type II error). Therefore, if 
few DMPs surpass default significance thresholds, we 
recommend the use of secondary criteria applied in a 
stepwise manner: (1) identify DMPs with an unadjusted 

p value below 0.05, (2) identify DMPs with effect sizes 
larger than 10%, (i.e. an absolute delta beta-value > 0.1). If 
there are still no, or few, hits researchers may then relax 
the effect size threshold further in the interests of detect-
ing minor effect DMPs. Studies show < 1% variation in 
beta-values across technical replicates using the EPIC 
microarray [6]. This suggests that at least some CpGs 
with effect sizes below this will be affected by technical 
variation, rather than biological variation. As such, we 
recommend a conservative approach of removing DMPs 
with effect sizes below 2%. However, reducing the thresh-
old to 1% may still be adopted if desired and yield some 
important, albeit modest, biological insights. Numerous 
published studies have used these secondary criteria to 
identify methylation differences between cases and con-
trols in various diseases and cell types [13–15, 64].

Covariates (e.g. age and sex) can be included in DMP 
analysis as secondary analyses run outside of ChAMP, 
using packages like limma or base R functions. We rec-
ommend against including covariates in the primary 
DMP analyses to detect unadjusted main effects of CpG 
on phenotype and using this as a benchmark. However, 
if sensitivity tests demonstrate an association between 
covariates and phenotype and/or covariates and methyla-
tion, then subsequent multi-factor models can be applied 
to determine the modification effect of covariates on the 
DMP. If the DMP signal is modified, we further recom-
mend conducting interaction analyses, but warn that 
unnecessary inclusion of covariates can overburden the 
model and lead to reduced statistical power.

Differentially methylated regions (DMRs)
DMRs are genomic regions made of several contiguous 
DMPs. They are often associated with a specific gene 
region, such as CpG islands in promoter regions, but 
can also be in intergenic regions. Compared to DMPs, 
DMRs may be more biologically relevant and are more 
likely to be associated with modified gene expression 
because of the strong correlation among adjacent CpGs 
[65]. Therefore, accurate DMR identification is critical to 
enable a thorough understanding of the extent of local-
ised differential methylation in relation to the phenotype 
of interest. There are multiple definitions, approaches 
and bioinformatic tools available for DMR identification. 
Thus, we recommend a workflow for identifying statisti-
cally and biologically significant DMRs using any of the 
bioinformatic tools reviewed below.

DMR identification paradigm  A preliminary approach 
identifies consecutive (or closely adjacent) DMPs with the 
same direction of effect (i.e. all hypomethylated or hyper-
methylated), that yield some evidence of statistical sig-
nificance based on p values [14, 15, 66]. For this approach 
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we suggest filtering DMPs by an FDR < 0.05 to identify 
statistical evidence of association with the phenotype. 
This threshold is preferred over filtering based on an epi-
genome-wide threshold of 9.8 × 10−8, as it may be overly 
stringent and increase the risk of Type II error (false nega-
tives). For DMR calling using this approach, researchers 
should decide the maximum genomic distance between 
DMPs (i.e. window size) and the minimum number of 
DMPs required for a DMR to be classified. The over-
whelming majority of EWASes use a distance of 1000bp 
between probe to separate DMRs, regardless of the algo-
rithm [67–70]. Some studies have applied more stringent 
(500bp) [71] or lenient (2000bp) windows [72]. We rec-
ommend a window size of 500–2000bp containing and at 
least two DMPs for a DMR to be classified, whereby the 
window is broadened or narrowed accordingly. For exam-
ple, researchers can broaden the window size in genomic 
regions of low probe density. These thresholds are guided 
by the density of 450K and EPIC microarrays (see Fig. 6). 
A window of 500–1000  bp will cover most functional 
domains of genes, including transcription starting site 
(TSS) (known to modulate gene expression), 5′ untrans-
lated region (5′UTR) and first exon. However, a window 
of 1000 to 2000  bp should allow researchers to identify 
DMRs located in region scarcely covered: gene body, 3′ 
untranslated region (3′UTR) and intergenic regions (IGR).

Several tools provide a more programmatic approach 
for identifying DMRs. Most also depend on defining 
the DMP threshold, genomic distance between DMPs 
and minimum number of DMPs per DMR. Bumphunter 
is one of the most widely used tools, created in 2012 
for EWASes using high-density microarrays and large 

sample sizes [65]. DMRs are detected through “bump 
hunting” or “peak detection”. For each CpG site, Bum-
phunter produces a slope (or curve) from a linear model 
based on the phenotype. The smoothed curve is then 
plotted and analysed for “bumps” that surpass a prede-
fined threshold. Bumphunter’s algorithm also incorpo-
rates covariates, and variables contributing to technical 
variation. However, BumpHunter has been shown to lack 
power and precision [73]. Published in 2015, DMRcate 
[74] is the most popular tool for DMR detection (as of 
2021). It performs a regression of methylation level at 
each CpG site based on phenotype, accounting for covar-
iates. This is followed by Gaussian smoothing (effect 
averaging) and grouping nearby CpG sites according to a 
user-defined window. Despite being more computation-
ally intensive than Bumphunter, DMRcate outperforms 
Bumphunter and, therefore, has been the tool of choice 
for DMR identification since 2018 (Fig. 7). While not spe-
cific to methylation data, Comb-p [75] is also a popular 
tool to identify DMRs as its performance is comparable 
to DMRcate. Comb-p analyses and corrects p values in a 
user-defined genomic window based on weighted neigh-
bouring probes, and then assigns a p value to the whole 
genomic region. Lastly, Probe Lasso [76] is a tool pack-
aged with the ChAMP pipeline. This uses a novel vari-
able window approach to identify larger DMRs in regions 
with lower probe density—such as intergenic regions. 
However, it does not allow covariates to be incorporated.

In a recent benchmark study comparing all primary 
DMR tools (Bumphunter, Comb-p, DMRcate and Probe 
Lasso), Comb-p was recommended for DMR identifica-
tion as it has an adequate balance between precision 

Fig. 6  Overall distance separating adjacent probes on the 450K and EPIC microarrays. Probes were clustered based on either gene feature 
(TSS = transcription starting site, UTR = untranslated region, IGR = intergenic region,) or methylation pattern. Data was extracted from the probe.
features.epic (EPIC) and probe.features (450K) objects provided by the ChAMP R package
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and power in large and small effect sizes [73]. However, 
it is common for reviewers to request DMR identifi-
cation with DMRcate if researchers use another tool. 
Therefore, if researchers identify DMRs with a novel 
tool, we recommend also using DMRcate for publica-
tion purposes.

DMR prioritisation paradigm  DMR lists contain a 
range of information, including mean and maximum 
absolute delta beta (ADB). To identify DMRs with the 
largest biological effects, they can be ranked by either 
the mean or maximum ADB. DMPs with opposite direc-
tions of effect within a single DMR can reduce the size 
of the mean ADB and cause important biological effects 
to be missed. Therefore, we recommend ranking by 
maximum ADB. DMRs with an ADB below 2% (0.02) 
should be interpreted with caution as it is difficult to 
discern whether these effects are caused by small, true 
biological effects or technical variation [6]. DMRs with 
an ADB > 5% (0.05) can be classified as major DMRs and 
used for downstream analyses, as shown in past studies 
[13, 14, 66]. Biological processes driving the phenotype 
may be a cumulative effect of several DMRs with small 
ADB (effect). Therefore, we recommend using all DMRs 
with an ADB > 0.02 (2%) for gene ontology analysis, 
which ideally require at least 50 genes to be informative. 
This paradigm is outlined in Fig. 8.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) determines 
whether an a priori list of genes is enriched for specific 
biological terms or pathways, and the association of 
these with the outcome of interest. GSEA can allow bio-
logically relevant insights to be gleaned from DMPs and 
DMRs. While initially developed for gene expression 
studies, GSEA can be applied to gene lists obtained from 
EWASes. Due to widespread use in genomic research, 
many GSEA tools have been developed and comprehen-
sively reviewed elsewhere. Here, we will discuss just some 
of those that are useful for analysis of gene sets identified 
from EWASes.

The ToppGene Suite is an online tool for conducting 
GSEA and candidate gene prioritisation using functional 
annotation and/or protein–protein interaction networks 
[77]. ToppGene is a quick and easy way to perform an ini-
tial exploration of gene sets as it interrogates 14 annota-
tion categories to detect functional enrichment of a gene 
list. These include gene expression, protein functional 
domains, protein–protein interactions, transcription 
factor binding sites, microRNAs, gene ontology terms 
(molecular functions, cellular components and biological 
processes), pathways, human disease phenotypes, mouse 
phenotypes, drug-gene association and literature [77]. 
Statistical associations between genes and annotation 
categories are tested using hypergeometric tests [77]. 

Fig. 7  Popularity of DMR identification tools. The proportion of PubMed publications by year using common DMR identification tools. 
Abbreviations: DMR = differentially methylated regions
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Notably, hypergeometric tests are unable to consider cor-
relations between genes in the same gene set. ToppGene 
provides several significance thresholds for researchers to 
use: an unadjusted p value, Benjamini–Hochberg FDR, 
Benjamini and Yekutieli FDR and Bonferroni FDR. As 
per differential methylation analysis, there is no stand-
ard significance threshold for GSEA. We recommend 
a Benjamini–Hochberg FDR threshold of 0.05 as it bal-
ances statistical stringency with exploration of biological 
results, to generate hypotheses.

For GSEA with ChAMP, a list of genes from DMP and/
or DMR analysis is required [3]. The Fisher exact test is 
the default method used by the function champ.GSEA(), 
but users can also select the ebGSEA or GOmeth [78] 
algorithm. Of these three algorithms, the Fisher exact 
test is the only one that fails to account for gene length 
bias; a phenomenon where longer genes are overrepre-
sented in GSEA results, as they contain more CpGs than 
shorter genes [79]. Similarly, probe-number bias refers 

to the overrepresentation of genes in GSEA that contain 
more probes. The ebGSEA algorithm applies an empirical 
Bayes method to a normalised beta-matrix and outcome 
of interest [80]. It overcomes gene length bias by identi-
fying and ranking differentially methylated genes, rather 
than CpGs, before performing one-tailed Wilcoxon rank-
sum or known population median tests [80, 81]. The 
GOmeth algorithm overcomes gene-length and probe-
number bias by correcting analyses for the number of 
CpGs in a gene using the missMethyl package [78]. It 
also overcomes multi-gene bias, defined as a single CpG 
mapping to more than one gene, leading to false posi-
tive associations. It does this with fractional weighting in 
the Wallenius’ non-central hypergeometric test, whereby 
the two genes that a CpG maps to each contribute a 0.5 
weight to the intersection statistic of the test [78]. Gene-
length and probe-number bias are also present in DMR 
analysis, whereby DMRs are more likely to be called for 
genes that contain more probes. There is currently only 

Fig. 8  DMR identification and prioritisation paradigm. DMRs are defined as consecutive DMPs with the same direction of effect. Available 
bioinformatic algorithms allow researchers to select the threshold, minimum number and distance between DMPs. We recommend an FDR < 0.05, 
at least 2–5 consecutive DMPs, and 500–2000 bp between consecutive DMPs. After DMRs have been identified, researchers can prioritise 
biologically relevant DMRs by ranking them by mean or maximum absolute delta beta (ADB), filtering out DMRs with ADB < 0.02 and identifying 
major DMRs as those with ADB > 0.05. Major DMRs should be used for downstream functional analyses, while all DMRs with ADB > 0.02 should be 
used in gene ontology analysis. Abbreviations: DMR = differentially methylated regions, DMP = differentially methylated position, ADB = absolute 
delta beta
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one DMR GSEA tool that addresses these biases, GOre-
gion. The GOregion function of the missMethyl package 
[78] uses the DMRcate output object to identify the CpGs 
in each DMR, before passing them to GOmeth. GOmeth 
has demonstrated higher accuracy and specificity than 
standard GSEA tools for methylation data, including 
ebGSEA [78].

Protein–protein interaction analysis
Protein–protein interactions (PPIs) are the basis of 
biological function that are affected by several factors 
including disease and therapeutics, and interact with 
molecules such as DNA [82]. PPI networks (PPINs) are 
mathematical representations of PPIs and can be used 
to understand the molecular drivers of disease states or 
identify potential therapeutic targets [82]. As per GSEA, 
a vast number of tools to identify PPINs from a gene list 
have been developed, some of which are discussed below. 
These tools utilise publicly available PPI data for which 
the reliability and level of annotation varies. Databases 
such as STRING [83] have tried to address this issue; 
however, it is recommended that researchers conduct 
PPIN analyses as an exploratory exercise, and interpret 
results with caution [83].

The EpiMod function in ChAMP uses the functional 
supervised algorithm of the FEM package to identify 
functional epigenetic modules (FEMs). FEMs are gene 
modules with synchronised differential methylation and 
expression; integrating both methylation and expression 
data regardless of whether the data is matched [11, 84]. 
Using DMP association statistics, the FEM algorithm 
identifies PPI subnetworks in the protein interactome 
that have a significant number of genes associated with 
the study’s outcome of interest [84].

The ToppGene application TopGeNet uses a list of 
genes to mine the protein interactome and identify genes 
directly or indirectly related to those on the gene list [77]. 
Genes that are identified are then ranked using PPIN 
analysis and functional annotations [77]. In PPIN analy-
sis, genes are prioritised based on topological features 
of the network, quantified using PageRank with Priors, 
HITS with Priors and K-step Markov algorithms.

Downstream analyses
Methylation risk scores
The development and progression of complex diseases 
are polygenic. In recent years, polygenic risk scores 
(PRSs) have become a popular method to quantify cumu-
lative risk of disease caused by changes with small effect 
sizes at multiple genes identified in GWASes. Similarly, 
methylation risk scores (MRSs) combine DMPs identified 
in EWASes into a meaningful indicator of risk at individ-
ual levels.

To construct a simple MRS, first identify DMPs asso-
ciated with the trait of interest. Each DMP effect can be 
weighted based on their effect size. A simple MRS can be 
calculated for each sample as follows:

where wi represents the weight assigned to DMP, while 
βi represents the methylation level (beta- or M values) at 
DMP i for individual j.

As per linkage disequilibrium in genetic studies, meth-
ylation can be highly correlated between probes (e.g. 
CpG islands located in promoter region of genes). Thus, 
removing highly correlated probes prior to MRS calcula-
tion will reduce the risk of the same signal being ascribed 
too much weight in the MRS. We recommend applying 
this filtering step prior to MRS calculation.

Simple MRSs, as well as more complex approaches, 
have been successfully implemented in the context of 
various complex diseases [85–87]. For guidance on con-
structing more complex MRSs, we recommend the 
recently published review by Hüls and Czamara [88].

Methylation quantitative trait loci analysis
Quantitative trait loci (QTL) are genomic loci influencing 
a quantifiable trait or phenotype [89]. The goal of QTL 
studies is to model the effect of genome variations on a 
quantifiable trait(s). QTL analysis can be used to map the 
relationship between methylation levels and genotype at 
a specific locus (methylation quantitative trait loci), and 
in turn determine how this relates to disease outcome 
(Fig.  9). Methylation quantitative trait loci (commonly 
abbreviated to methQTLs, metQTL or mQTLs) have 
been consistently identified across various diseases, pop-
ulations and developmental stages [90]. There are several 
ways to identify methQTLs.

In a case–control cohort, one approach to identify 
mQTLs is to select DMPs associated with the pheno-
type and then select SNPs with minor allele frequency 
(MAF) ≥ 0.05 in the same genomic region [91]. Alter-
natively, researchers can select SNPs associated with 
the phenotype, and then select CpG sites in the same 
genomic region [92]. Either way, we recommend limit-
ing the maximum window between CpG sites and SNPs, 
so only proximal or cis-methQTLs are identified. cis-
methQTLs refer to SNPs that are associated with CpGs 
within the same gene. The median window size for a cis-
methQTL is approximately 18kb [93]; however, common 
thresholds range from 50 [92] to 100 kb [94]. After fea-
ture selection, statistical modelling is commonly used to 
identify how the methQTLs are associated with pheno-
type [90].

MRSj =

∑
wiβi
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Plink [95] software is commonly used to conduct 
GWASes. The --assoc command also allows researchers 
to relate genomic data to quantitative traits, which can 
include methylation levels. Using this command, users 
can obtain statistical model results. Notably, plink will 
compare the linear regressions of sample groups and 
return summary statistics if researchers encode case–
control labels as covariates.

There are packages available for more advanced 
methQTL calculations. For example, the R package GEM 
[96] can model the complex relationship between meth-
ylation levels, genotype, covariates and one environmen-
tal variable, which could be replaced for a phenotype 
variable. Further, it reduces the computational time of 
statistical modelling by using the matrix eQTL imple-
mentation, which involves unique data pre-processing 
and use of large matrix operations [97].

Another method for identifying methQTLs (and 
QTLs in general [98]) is RUV, which uses negative con-
trols to identify and remove unwanted variation [60, 
61]. It models the association between the log of CpG 

methylation (Y) and factors of interests (X) while consid-
ering unwanted variation (W).

The causal inference test (CIT) [99] has also been 
used to identify methQTLs. CIT evaluates four dif-
ferent conditions that help to identify the relationship 
between genotype, methylation levels and phenotype. 
Then, for each CpG-variant pair, the relationship is 
classified as either: (1) null, (2) independent, (3) inde-
pendent/hidden variable, (4) causal, (5) causal/inde-
pendent or (6) causal/hidden. CIT is mostly targeted at 
continuous phenotypes but can be modified to fit cat-
egorical phenotypes, including longitudinal study time 
points [100].

methQTLs examine the relationship between geno-
type and methylation. Since this relationship is disease-
agnostic and driven by genotype, it is possible to build 
large databases of methQTLs for researchers to lever-
age. The Genetics of DNA Methylation Consortium 
(mqtldb.godmc.org.uk), published in 2021, indexes 
over 270,000 methQTLs identified across 30,000 sam-
ples from over 30 cohorts [101]. As seen with eQTL 
databases [102], methQTL databases allow researchers 

Fig. 9  methQTL at polymorphism rs9271155 based on sample group. Genotype at rs9271155 affects methylation level at CpG site cg17416722, 
whereby individuals with AA genotype at rs9271155 have low methylation levels at cg17416722, and individuals with BB genotype have high 
methylation levels. Individuals with a heterozygous genotype (AB) have intermediate methylation levels. From [unpublished data]. Abbreviations: 
methQTL = methylation quantitative trait locus
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to investigate the relationship between genotype and 
methylation in DMRs, in relation to a trait of interest.

Estimating cell type proportions
For EWASes performed using DNA from mixed cell 
samples, such as peripheral blood mononuclear cells 
(PBMCs), it is important to consider that methylation 
state can vary substantially by cell subtype. Failing to 
address this technical characteristic with deconvolution 
methods can lead to two main issues, namely spuri-
ous associations between CpGs and phenotypes due to 
variation in cell proportion, and/or missing potentially 
important cell-type specific DMPs. Several statisti-
cal methods have been developed to estimate the rela-
tive proportions of the major blood cell subtypes using 
methylation data derived from whole blood or PBMC 
samples. These algorithms can be classified either as 
“reference-based” [103], or “reference-free” [104, 105], 
depending on whether they use an a priori database of 
cell-type specific DNA methylation reference profiles 
to perform deconvolution. Reference-free methods are 
attractive because they can, in principle, be applied 
to any tissue; however, the reliability of the estimates 
has not been well established for many cell types. Fur-
thermore, reference-free methods do not necessarily 
provide individual-level estimates of cell proportions, 
which offer flexibility for downstream association mod-
elling. Therefore, reference-based methods are cur-
rently the most widely used in EWASes.

The first reference-based method developed was the 
so called “Houseman algorithm” [103], which remains 
the most cited algorithm to date. Of the 182 studies 
published in 2020 (available on PubMed) using cell type 
proportion algorithms, 92.3% used the Houseman algo-
rithm. This algorithm estimates cell proportions using a 
variant of regression-based calibration known as linear 
constrained projection (LCP), whereby non-negativity 
and normalization constraints on cellular proportions 
are imposed based on observed cell-specific data.

More recently, Teschendorff et  al. [106] developed a 
reference-based method that used a technique called 
robust partial correlations (RPC). Using empirical and 
simulated methylation datasets, they showed that the 
RPC method accurately estimated proportions of the 
major blood cell types, and outperformed LCP in terms 
of error of the estimates. Thus, for accurate estima-
tion of blood cell subtype proportions, we recommend 
the tool EpiDISH, which is available as a Bioconduc-
tor package in the R statistical environment [107]. 
Individual-level proportion estimates derived from 
EpiDISH can then be included in association models 
as covariates, and in doing so, can help identify DMPs 

associated with phenotypes that are independent of (or 
adjusted for) cell subtype variation.

Identifying cell‑specific differential methylation 
from mixed cell data
The methods available for identifying cell-specific dif-
ferential methylation (CDM) using mixed cell data are 
less developed. This is mainly due to the statistical com-
plexity of the problem, which involves interactive effects 
and lack of empirical data to validate statistical models. 
Fundamentally, identifying CDM relies on accurate cell 
type proportion estimation. These estimates can then be 
regressed against phenotypes to detect interactive effects 
between cell proportions and site-specific methylation 
signal, which indicates a CDM effect on the phenotype. 
Using this premise, Zheng et  al. [108, 109] developed a 
tool called CellDMC. CellDMC takes the cell propor-
tion estimates derived from EpiDISH [107] as input, and 
tests for interactive effects to indicate site-specific CDM 
signal. This method was validated using both empiri-
cal and simulated datasets, achieving >90% sensitivity 
and specificity. The main issue with applying CellDMC 
is the power limitation. Zheng et al. showed that sample 
sizes of 100 cases and 100 controls will achieve approxi-
mately 80% power to detect CDM of 20% or more [109]. 
However, effect sizes are typically much less than this 
(sometimes <5%), and therefore, CDM signals may not be 
detected. Fortunately, the continued reduction in costs 
of methylation microarrays and the availability of large 
cohorts from the GWAS era mean that the detection of 
important CDM signals is becoming more feasible.

Methylation age acceleration analysis
Epigenetic age, or more specifically, methylation age, 
is a form of biological age calculated from methylation 
levels at CpG sites that are associated with chronologi-
cal age. These CpGs are known as clock CpGs. Several 
algorithms, known as indices or clocks, that calculate 
methylation age using epigenome-wide methylation 
data have been created. They can be broadly categorised 
into chronological and biological indices. Chronological 
indices predict chronological age from methylation lev-
els, while biological indices are a form of biological age 
that correlate with health, lifespan and clinical outcomes. 
Methylation age acceleration (MAA) is calculated as the 
residual term of regressing chronological age on methyla-
tion age, allowing researchers to compare MAA between 
groups or timepoints of interest.

Chronological age indices
The Horvath index (2013) [110] was the first index cre-
ated and is currently the most widely cited (Fig.  10). It 
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uses methylation levels at 353 clock CpGs to predict 
chronological age within a five-year margin and a cor-
relation of over 0.9 in different tissue types [110]. The 
strength of this index is the accurate prediction of chron-
ological age in a range of tissues types [110]. However, 
tissue-specific methylation age acceleration, rather than 
systemic acceleration, likely occurs in many diseases. 
Thus, the pan-tissue nature of the Horvath index may 
limit its use in studies of disease-states. The Hannum 
index [111] was created to predict chronological age, 
accounting for four confounding factors gender, body 
mass index (BMI) and genotype [111]. It uses 71 clock 
CpGs to predict chronological age within 4.9  years and 
a correlation of 0.91 in whole blood [111]. These clock 
CpGs were mapped to genes associated with ageing-
related conditions, metabolism and obesity [111]; sug-
gesting a biological relevance to these clock CpGs not 
seen with the Horvath index. MAA using the Horvath 
index is associated with all-cause morbidity and mor-
tality. However, recent studies have shown that MAA 
calculated with the Horvath and Hannum indices are 
confounded by age-related changes in cell-type propor-
tions [112]. The main limitation of these indices that they 
predict chronological age exceptionally accurately and 
consequently, cannot identify individuals of the same 
chronological age but different biological ages. As biolog-
ical age is more closely associated with health or disease 
than chronological age, it can be argued that the Horvath 

and Hannum indices are unlikely to provide insights into 
an individual’s risk of, and the mechanisms driving, dis-
ease and mortality.

Biological age indices
The PhenoAge index (2018) [113] was developed to more 
accurately predict lifespan and “healthspan” by includ-
ing 513 CpGs that are associated with clinical differences 
between individuals of the same chronological age, as well 
as chronological age itself. The chosen CpGs are enriched 
in CpG islands and Polycomb group protein targets [113]. 
Methylation at Polycomb group protein targets promoter 
regions has previously been correlated with the number 
of stem cell divisions, related to the stem cell theory of 
ageing [114]. Studies have shown that a one-year increase 
in PhenoAge represents a 4.5% increased risk of all-cause 
mortality [113], and more generally, a higher PhenoAge 
predicts a shorter lifespan and more age-related comor-
bidities (i.e. shorter healthspan) [113]. A notable limita-
tion of the PhenoAge index is its restriction to European 
cohorts as there is evidence of the index tagging ethnic-
ity, as DNA methylation is a highly heritable trait, rather 
than health-related outcomes.

The GrimAge index (2019) [115] is the newest meth-
ylation age index, and predicts morbidity and mortality 
using surrogate DNA methylation biomarkers of demo-
graphic, clinical and lifestyle variables. The GrimAge 
index uses methylation levels at 1030 CpGs to calculate 

Fig. 10  Popularity of methylation age indices. The proportion of PubMed publications by year for DNA methylation age indices
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methylation age. GrimAge can be adjusted for chrono-
logical age to obtain GrimAge Acceleration (AgeAccel-
Grim), which accurately predicts time to death, time 
to cancer and time to coronary heart disease [115]. 
AgeAccelGrim is further associated with T-cell senes-
cence [116], age-related changes in blood cell propor-
tions and leukocyte telomere length [115].

epiTOC (2016) [114] is an epigenetic mitotic clock 
that estimates the rate of stem cell divisions using meth-
ylation levels at 385 Polycomb group target (PCGT) 
promoter CpGs. As PCGT promoters are unmethylated 
in foetal tissue [117], age-associated hypermethylation 
and cumulative methylation aberrations resulting from 
cell divisions are used to estimate the rate of stem cell 
divisions [117]. The universally accelerated epiTOC rate 
in pre-cancerous and cancerous lesions, and epithelial 
tissue exposed to carcinogens, is concordant with exist-
ing knowledge of the association between cancer risk 
and the rate of stem cell divisions [118]. Thus, epiTOC 
is powerful in accurately estimating cancer risk using 

whole-blood methylation data [114]. The recently pub-
lished epiTOC2 uses a similar method to directly esti-
mate the number of stem cell divisions (rather than 
the rate), which can be used to differentiate cancer risk 
between tissue types [119].

For researchers to harness the accuracy of chronologi-
cal age indices alongside the biological insight provided 
by biological age indices, we recommend calculating 
methylation age using a range of indices. However, the 
GrimAge clock deserves the most attention as this has 
been shown to be the single best performing index for 
assessing differential epigenetic ageing and predicting 
morbidity and mortality. In longitudinal studies, associ-
ating differences in chronological and methylation age 
trajectories with clinical outcomes may provide insight 
into disease mechanisms and risk factors. Therefore, 
we recommend methyAge function in the Bioconduc-
tor package ENmix, to calculate methylation age using 
the Horvath [110], Hannum [111] and PhenoAge [113] 
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Fig. 11  Steps and tools for downstream EWAS analyses. Recommended tools include epiDISH (https://​www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​
bioc/​html/​EpiDI​SH.​html), ENmix (https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​ENmix.​html) and GEM (https://​bioco​nduct​or.​org/​packa​ges/​
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indices. GrimAge can be calculated using an online DNA 
methylation age calculator [120].

Useful tools for the downstream analyses discussed 
above are recapitulated in Fig. 11.

Epigenome‑wide association study databases
The number of published EWASes and associated meth-
ylation data has risen exponentially since 2009 (Fig.  1) 
and will continue to do so as the cost of microarrays fall. 
To harness this magnitude of data for scientific purposes, 
researchers have created databases of EWAS data. Such 
databases can be categorised into Deposition, Integration 
or Association databases (Fig.  12). Deposition databases 
contain raw methylation data and metadata, Integration 
databases contain normalised data and metadata, while 
Association databases contain normalised data, metadata 
and published associations at the CpG level.

Deposition databases, such as gene express omnibus 
(GEO) [121], primarily serve as data archives, as methyla-
tion data is not normalised or integrated across datasets, 
tissue types and diseases [121]. Integration databases, 
such as EWAS Datahub [122], have built on this by build-
ing a pipeline that performs data normalisation, batch 
effect correction and data standardisation across data-
sets [123]. Association databases, such as EWAS Atlas 
[124], further build on integration databases by including 
EWAS associations, manually curated from published lit-
erature [125]. EWAS databases provide a useful resource 
for researchers to perform analyses when laboratory 

resources are limited, or to validate preliminary find-
ings. Further to this, they are valuable for untangling the 
molecular mechanisms underpinning methylation-trait 
associations, aiding in the development of diagnostic, 
prognostic and therapeutic tools [126].

Researchers should note that differential methylation 
exists among racial/ethnic groups [127, 128]. In addi-
tion, to epigenetic drift, these differences will reflect 
differences in both genetic and environmental factors. 
Of the publications reported in the EWAS Atlas, 51% 
represent from European cohorts, 19% African and 20% 
Asian cohorts [125]. Therefore, researchers should be 
mindful of the potential for confounding of results due 
to ethnic differences. Steps to guard against this include 
adding genomic structure components in the statistical 
modelling.

Conclusion and future directions
Blood cell-based EWASes are useful experimental 
designs for identifying cell-type independent or cell-
type specific methylation levels associated with an out-
come trait of interest. The reducing cost of methylation 
microarrays and the advance of associated bioinformat-
ics toolkits are aiding in the discovery of epigenetic fac-
tors related to disease outcomes. However, translating 
these differences into clinically useful findings, includ-
ing prognostic biomarkers and therapeutic targets in the 
epigenome, has often been restricted by factors such as 
inappropriate or inadequate statistical analysis methods, 

Fig. 12  EWAS Databases containing deposited, integrated and/or associated datasets. Deposition databases: GEO, ArrayExpress. Integrated 
databases: ENCODE, IHEC, MethBank, DiseaseMeth, EWAS Datahub. Association databases: EWAS Atlas, EWASdb, EWAS Catalog. Site URLs are listed 
in "Packages and databases" section: Packages and databases. Abbreviations: EWAS = epigenome-wide association study, GEO = Gene Expression 
Omnibus, IHEC = International Human Epigenome Consortium
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insufficiently powered sample sizes, non-validated find-
ings and an inability to establish causality. Here, we pro-
vide up-to-date recommendations for maximising the 
value of EWASes based on these factors. We acknowl-
edge that our commentary is restricted to blood-based 
EWASes. Therefore, extrapolation of our recommenda-
tions to EWASes of other cell and tissue types should be 
applied with caution since there are substantive epige-
netic differences. Similarly, we focus on one epigenetic 
mechanism, DNA methylation, without discussing his-
tone modification and post-transcriptional regulation. 
These epigenetic mechanisms work together to regulate 
gene expression, and therefore, the study of one mecha-
nism in isolation will limit biological understanding and 
the clinical relevance of results. Methods to study histone 
modification and post-transcriptional regulation have 
been reviewed previously [129, 130].

Lastly, whole-genome bisulphite sequencing (WGBS) is 
fast becoming a viable option for studying DNA methyla-
tion, due to recent advances in sequencing technologies. 
Compared to microarrays, WGBS measures methylation 
at a higher density of CpG sites and detects non-CpG 
methylation [131]. Reduced representation bisulphite 
sequencing (RRBS) enriches and captures DNA frag-
ments in CpG-rich regions using restriction enzymes. 
The costs of RRBS and microarray-based methylation 
studies are comparable and affordable as they continue 
to fall in cost, while WGBS remains prohibitively expen-
sive—particularly in studies that require many samples. 
Compared to RRBS, microarrays have more consistent 
genome-coverage and methylation level estimations, 
making them a better choice for EWASes [132]. How-
ever, RRBS is more flexible and can be used to interrogate 
loci that are not covered by microarrays. Third-genera-
tion sequencing technologies, such as Oxford Nanopore 
Sequencing (ONS), conduct long-read DNA and meth-
ylation sequencing simultaneously. Advantages of ONS 
include little sample preparation as bisulphite conversion 
is not required as with microarrays. Furthermore, ONS 
measures 5mC, 5hmC, 6mA methylation, while microar-
rays measure 5mC only.

Nevertheless, Illumina microarrays are currently 
12–15% more accurate than Oxford nanopore sequenc-
ing [133], and therefore remain the most widely used 
sequencing technology for EWASes.

In this review, we have critically compared multiple 
aspects of EWAS study design and bioinformatic analy-
sis, including numerous tools yet to be reviewed, to pro-
vide recommendations to researchers new to conducting 
blood cell-based EWASes.

Packages and databases

ChAMP https://​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​ChAMP.​html

Minfi https://​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​minfi.​html

Limma https://​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​limma.​html

ComBat https://​rdrr.​io/​bioc/​sva/​man/​
ComBat.​html

Bumphunter https://​www.​bioco​nduct​or.​org/​
packa​ges/​relea​se/​bioc/​html/​
bumph​unter.​html

DMRcate https://​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​DMRca​te.​html

Comb-p https://​rdrr.​io/​bioc/​ENmix/​man/​
combp.​html

PLINK https://​zzz.​bwh.​harva​rd.​edu/​plink/

GEM https://​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​GEM.​html

epiDISH https://​www.​bioco​nduct​or.​org/​
packa​ges/​relea​se/​bioc/​html/​EpiDI​
SH.​html

ENmix https://​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​ENmix.​html

missMethyl http://​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​missM​ethyl.​html

ToppGene https://​toppg​ene.​cchmc.​org/

FEM http://​bioco​nduct​or.​riken.​jp/​packa​
ges/3.​7/​bioc/​html/​FEM.​html

GEO https://​www.​ncbi.​nlm.​nih.​gov/​geo/

ArrayExpress https://​www.​ebi.​ac.​uk/​array​expre​ss/

ENCODE https://​www.​encod​eproj​ect.​org/

IHEC https://​ihec-​epige​nomes.​org/

MethBank http://​bigd.​big.​ac.​cn/​methb​ank

DiseaseMeth http://​bio-​bigda​ta.​hrbmu.​edu.​cn/​
disea​semeth

EWAS Datahub https://​bigd.​big.​ac.​cn/​ewas/​datah​
ub

EWAS Atlas http://​bigd.​big.​ac.​cn/​ewas

EWASdb http://​www.​bioapp.​org/​ewasdb/

EWAS Catalog http://​www.​ewasc​atalog.​org/

The Genetics of DNA Methylation 
Consortium

http://​mqtldb.​godmc.​org.​uk
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quantitative trait loci; MHC:: Major histocompatibility complex; MZ:: Monozy‑
gotic; PBMCs:: Peripheral blood mononuclear cells; PPIN:: Protein–protein 
interaction; QC:: Quality control; RRBS:: Reduced representation bisulphite 
sequencing; RUV:: Remove unwanted variation; SNPs:: Single-nucleotide 
polymorphisms; SSnoob:: Single-sample noob; SVD:: Singular value decom‑
position; SWAN:: Subset-quantile within microarray normalisation; WGBS:: 
Whole-genome bisulphite sequencing; 27k:: Illumina HumanMethylation27 
microarray; 450k:: Illumina HumanMethylation450 microarray.
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