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Abstract 

Background:  Current clinical guidelines suggest that breast cancers with low hormone receptor expression (LowHR) 
in 1–10% of tumor cells should be regarded as hormone receptor positive. However, clinical data show that these 
patients have worse outcome compared to patients with hormone receptor expression above 10%. We performed 
DNA methylation profiling on 23 LowHR breast cancer specimens, including 13 samples with HER2 amplification and 
compared our results with a reference breast cancer cohort from The Cancer Genome Atlas to clarify the status for this 
infrequent but important patient subgroup.

Results:  In unsupervised clustering and dimensionality reduction, breast cancers with low hormone receptor expres-
sion that lacked HER2 amplification usually clustered with triple negative breast cancer (TNBC) reference samples 
(8/10; “LowHR TNBC-like”). In contrast, most specimens with low hormone receptor expression and HER2 amplifica-
tion grouped with hormone receptor positive cancers (11/13; “LowHR HRpos-like”). We observed highly similar DNA 
methylation patterns of LowHR TNBC-like samples and true TNBCs. Furthermore, the Ki67 proliferation index of LowHR 
TNBC-like samples and clinical outcome parameters were more similar to TNBCs and differed from LowHR HRpos-like 
cases.

Conclusions:  We here demonstrate that LowHR breast cancer comprises two epigenetically distinct groups. Our 
data strongly suggest that LowHR TNBC-like samples are molecularly, histologically and clinically closely related to 
TNBC, while LowHR HRpos-like specimens are closely related to hormone receptor positive tumors.
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Background
The classification of breast cancer is based on the expres-
sion of the estrogen and progesterone receptor as well 
as the presence or absence of HER2 amplification [1]. 

Patients with hormone receptor positive tumors usually 
benefit from endocrine therapy and have better disease 
specific survival compared to hormone receptor negative 
tumors [2]. Additionally, tumors with HER2 amplification 
can be treated with different types of anti-HER2-therapy 
[3].

The evaluation of hormone receptor expression and the 
HER2 status is primarily performed by using immunohis-
tochemistry (IHC) and in situ hybridization. In the 2010 
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revision of the guidelines of the American Society of 
Clinical Oncology and the College of American Patholo-
gists (ASCO/CAP), the cut-off value for the definition of 
hormone receptor positive breast cancers was reduced 
from 10 to 1% [4]. Only recently, the ASCO/CAP has 
updated this assessment, but also introduced a “ER low 
positive” category for samples with estrogen receptor 
expression between 1 and 10% [5]. However, breast can-
cers with low hormone receptor expression are usually 
still considered as hormone receptor positive (= lumi-
nal) subtype [6]. Various studies showed that therapy 
response and outcome of patients with tumors showing 
low hormone receptor expression between 1 and 10% 
(LowHR) are more similar to triple negative breast cancer 
(TNBC), the so-called basal subtype [6–13]. These results 
are supported by molecular studies, using RNA-based 
classification algorithms [14]. This led to a dilemma 
in treatment decision, as it is unclear if patients with 
LowHR tumors should receive endocrine therapy or not 
or should be treated with more aggressive approaches 
like adjuvant chemotherapy, including platin compounds 
and even more, whether these tumors might be candi-
dates for targeted therapeutic approaches like CDK4/6 
inhibitors. More importantly, these patients are typically 
not included in clinical trials investigating new therapy 
strategies for TNBC, like immune checkpoint inhibitors. 
Furthermore, there are no data on the treatment of low 
hormone receptor expression and the additional HER2 
amplification.

More recently, numerous studies showed that DNA 
methylation profiles are a reliable tool to classify differ-
ent cancer types, reflecting the tumor’s cell-of-origin 
[15–17]. With regards to breast cancer, TNBCs exhibit 
global hypomethylation which is distinct from hormone 
receptor positive tumors [18]. To find new molecular 
support for the currently proposed hypothesis that breast 
cancers with low hormone receptor expression resemble 
TNBCs, we subjected a cohort of these two subgroups to 
genome-wide DNA methylation profiling and compared 
the epigenetic profile of these specimens with a large 
reference cohort of hormone receptor positive tumors 
and TNBCs from The Cancer Genome Atlas (TCGA). 
Furthermore, we also correlated our results with clinical 
patient outcome.

Results
Dimensionality reduction and cluster analysis
Unsupervised hierarchical clustering of LowHR and 
TCGA samples based on DNA methylation profiles 
revealed four distinct clusters (Fig. 1a), mainly represent-
ing normal breast tissue (“Normal Cluster”), hormone 
receptor positive breast cancers (“HR+ Cluster 1” and 
“HR+ Cluster 2”) as well as TNBCs (“TNBC Cluster”) 

with little overlap between the different groups. The two 
HR+ clusters were not associated with the luminal A or B 
subgroups as assessed using the RNA sequencing-based 
AIMS classification scheme. Similar results were seen 
using a t-SNE analysis (Fig.  1b–f), although there was 
no clear separation between the two groups of hormone 
receptor positive tumors that were observed in hierarchi-
cal clustering (Fig. 1f ). Tumors in the periphery of their 
respective groups as well as tumor samples that fell in the 
normal breast tissue group tended to have relatively low 
tumor cell content (Additional file 1: Fig. S1).

Specimens with low hormone receptor expression 
either fell into one of the HR+ clusters or the TNBC 
cluster. This separation was mainly associated with the 
HER2 amplification status: samples that clustered with 
hormone receptor positive tumors (LowHR HRpos-
like) usually showed HER2 amplification (11/13; 85%), 
while this was a rare event in LowHR TNBC-like sam-
ples (2/10; 20%). Of note, the HER2 status in copy num-
ber data derived from DNA methylation data was in line 
with the results from IHC and/or SISH. In particular, we 
confirmed the presence of HER2 amplification in the two 
HER2 positive LowHR TNBC-like samples and did not 
find any evidence for HER2 copy number changes in the 
two HER2 negative LowHR HRpos-like samples.

Summary copy number plots derived from DNA meth-
ylation data revealed additional similarities between 
LowHR TNBC-like samples and TNBCs, such as fre-
quent losses of chromosome 4q and 5q as well as recur-
rent gains of chromosome 10p (Fig. 2).

Analysis of differential DNA methylation
To compare DNA methylation profiles between TNBCs 
and the two LowHR subtypes, we tested our dataset for 
differentially methylated positions (DMP) and differen-
tially methylated regions (DMR).

A correlation analysis of the beta values of all CpGs 
revealed general hypermethylation in LowHR HRpos-
like samples when compared to LowHR TNBC-like and 
TNBC specimens (Fig.  3a, b). There was a very strong, 
almost linear correlation between LowHR TNBC-like 
and TNBC samples (Fig.  3c). We identified 1446 DMPs 
between TNBC and LowHR HRpos-like samples. 1352 
CpGs (93%) were hypomethylated in TNBCs (Fig.  3d). 
Comparing LowHR TNBC-like with LowHR HRpos-like 
samples, 1272 site were significantly differentially meth-
ylated. Again, the majority of CpGs (1151, 89%) were 
hypomethylated in LowHR TNBC-like samples (Fig. 3e). 
There was a considerable overlap between the identified 
DMPs, with 666 shared CpGs sites (Fig.  3g). Further-
more, we observed almost no difference between LowHR 
TNBC-like and TNBC samples, as our analysis only 
revealed a single differentially methylated probe (Fig. 3f ). 
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Fig. 1  Unsupervised hierarchical clustering as well as t-distributed stochastic neighbor embedding (t-SNE) to compare DNA methylation signatures 
across different breast cancer subtypes from The Cancer Genome Cohort (n = 422) as well as our own analyses (n = 36). a Unsupervised hierarchical 
clustering reveals four distinct clusters, representing normal breast tissue (“Normal Cluster”), tumors with hormone receptor expression (“HR+ 
Cluster 1” and “HR+ Cluster 2”) as well as TNBCs (“TNBC Cluster”). Molecular subtype classification based on results from immunohistochemistry 
(IHC) and/or HER2 in situ hybridization as well as RNA sequencing using the AIMS classification are shown below the heatmap. b General 
annotation of normal breast tissue and different breast cancer subtypes from IHC and/or in situ hybridization in a t-SNE plot. c and d t-SNE plot 
showing the distribution of estrogen (c) and progesterone (d) receptor expression. e t-SNE visualizing the HER2 amplification status. f Correlation 
between t-SNE analysis and hierarchical clustering. Abbreviations: ER estrogen receptor, PR progesterone receptor
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Similar results were obtained for DMRs. The DMRs iden-
tified when comparing LowHR HRpos-like samples and 
TNBCs included cancer-relevant genes such as EN1, 
TFF3 or IRX1 which have previously been described to 
be differentially methylated and expressed in TNBCs and 
hormone receptor positive breast cancers [26–28]. All 
DMRs are listed in Additional files 5–7: Tables S3–S5.

Correlation with proliferation index and clinical outcome
To further evaluate potential differences regarding the 
biological behavior and clinical outcome of the two iden-
tified LowHR subtypes and TNBCs, we compared the 
Ki67 tumor proliferation rate as well as pCR rate and OS 
between these groups using clinical trial information. 
DNA methylation classes did not correlate with local 
tumor stage or nodal status (Additional file 8: Table S6).

With 56% (p = 0.03) in TNBCs and 77% (p = 0.0002) in 
LowHR TNBC-like samples, the proliferation rate (Ki67) 
of these groups was significantly higher than in LowHR 
HRpos-like tumors (37%; Fig. 4a).

Furthermore, the pCR rate in TNBC (4 of 14 patients, 
29%) and LowHR TNBC-like samples (3 of 10 patients, 
30%) was lower than in LowHR HRpos-like cases (9 of 

13 patients, 69%), although this difference had only bor-
derline significance (p = 0.05 and p = 0.09; Fig. 4b). Nota-
bly, OS tended to be shorter in patients with LowHR 
TNBC-like tumors, although pairwise log rank test was 
not significant (p = 0.07) when compared with LowHR 
HRpos-like samples (Fig. 4c).

Discussion
With this study, we demonstrate that breast cancers with 
low hormone receptor expression can be separated into 
two highly distinct groups by DNA methylation profil-
ing. One group (“LowHR HRpos-like”) shows a DNA 
methylation profile similar to hormone receptor positive 
tumors, is strongly enriched with HER2 amplification, 
closely mirrors the chromosomal pattern of hormone 
receptor positive tumors and has a lower proliferation 
rate and a better clinical course. The other group (LowHR 
TNBC-like) shows a DNA methylation pattern of TNBC, 
has low rates of HER2 amplification, closely resembles 
the chromosomal pattern of TNBC and has a high prolif-
eration rate and worse clinical outcome.

Since the lowering of the cut-off value for hormone 
receptor positive breast cancers by the ASCO/CAP in 

Fig. 2  Summary copy number plots derived from DNA methylation data, showing the proportion of tumor samples with gains (above the 
baseline) or losses (below the baseline) at the respective position. a Summary copy number plot of hormone receptor positive (n = 282) and triple 
negative samples (TNBC; n = 52) from The Cancer Genome Atlas (TCGA). b Summary copy number plot comparing genome wide copy number 
profiles of samples with low hormone receptor expression that clustered with hormone receptor positive (LowHR HRpos-like; n = 13) or triple 
negative breast cancers (LowHR TNBC-like; n = 10) in unsupervised hierarchical cluster analysis. The focal spike at chromosome 17q in the LowHR 
HRpos-like subgroup represents the gene locus of ERBB2 
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2010, repeated concerns were raised that the outcome 
of patients with LowHR tumors is worse, as they do not 
benefit from endocrine therapy. However, despite from 
RNA expression profiles, there were no molecular data to 
support this clinical observation [14].

Using hierarchical clustering as well as t-SNE as a 
method of dimensionality reduction that has previously 
been proven to be a valuable tool to identify subgroups 
in DNA methylation data sets, we observed that normal 

breast tissue, hormone receptor positive breast cancers 
and TNBCs can be reliably distinguished based on their 
epigenetic profile. The small overlap between tumor sam-
ples and normal breast tissue was most likely due to low 
tumor cell content within these specimens, as we have 
recently demonstrated for other tumor entities [17]. The 
overlap between the two hormone receptor positive and 
the TNBC cluster was also very low. This is in line with 
previous studies that demonstrated that TNBCs exhibit 

Fig. 3  Density plots, volcano plots and Venn diagrams to compare beta values, differentially methylated positions (DMP) and differentially 
methylated regions (DMR) between triple negative breast cancers (n = 14) and the two subtypes with low hormone receptor expression (LowHR; 
n = 23). a–c Density plots showing the pairwise correlation of beta values of all CpGs between the three subgroups. d–f Volcano plots visualizing 
DMPs between LowHR HRpos-like and TNBC samples (d), LowHR HRpos-like and LowHR TNBC-like specimens (e) as well as TNBC and LowHR 
TNBC-like samples (f). f Venn diagrams showing overlapping and unique DMPs and DMRs between the pairwise comparisons

Fig. 4  Correlation of the two LowHR subtypes (n = 23) and triple negative breast cancers (TNBC; n = 14) with proliferation rate and clinical 
outcome. a Boxplot comparing the Ki67 proliferation rate between the three groups. b Barplot comparing the pathological complete response of 
the two LowHR subgroups and TNBCs. c Kaplan–Meier plot showing overall survival rates across the three groups
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epigenetic signatures characterized by global DNA 
hypomethylation that are distinct from hormone recep-
tor positive breast cancers [18]. These findings provided 
the necessary rationale to compare the epigenetic signa-
tures of these two subtypes with LowHR specimens. As 
described, LowHR tumors lacking HER2 amplification 
predominantly clustered with TNBCs, while specimens 
with additional HER2 amplification were typically very 
similar to hormone receptor positive tumors. Four speci-
mens did not fit into this pattern. Differential DNA meth-
ylation analysis revealed almost no difference between 
LowHR TNBC-like and true TNBC samples, strongly 
supporting the assumption that these subtypes do not 
only show similar clinical outcome, but are also identi-
cal on the molecular level. Our investigation for differ-
entially methylated genes between LowHR HRpos-like 
and TNBC specimens revealed a considerable overlap 
with cancer-relevant genes that have previously been 
described to be differentially methylated and expressed 
in hormone receptor positive tumors and TNBCs [26]. 
This indicates that despite the low expression of hormone 
receptors, most HER2 amplified tumors are still very sim-
ilar to hormone receptor positive breast cancers.

As DNA methylation signatures are considered to rep-
resent the cell-of-origin of a tumor, these findings could 
indicate that LowHR TNBC-like samples derive from the 
same cell type as TNBCs. On the other hand, the pres-
ence of HER2 amplification in LowHR HRpos-like speci-
mens suggests a common origin with hormone receptor 
positive breast cancer, in line with previous cell-of-origin 
theories [29]. This is also supported by the observation 
that all three hormone receptor negative samples with 
HER2 amplification that were included in the TCGA ref-
erence data set aggregated in one of the HR+ clusters.

Using genome wide copy number profiles derived from 
raw DNA methylation data, we were also able to study 
the differences in frequency of genome copy number 
alterations between hormone receptor positive tumors, 
TNBCs and LowHR specimens. In line with our results 
from DNA methylation profiling, LowHR TNBC-like 
tumors and TNBCs generally showed comparable num-
bers of recurrent genome copy abnormalities. On the 
other hand, copy number profiles of LowHR HRpos-like 
samples generally resembled hormone receptor posi-
tive breast cancers, with the exception of the previously 
described high rate of HER2 amplification. Previous stud-
ies already showed that there are differences in frequency 
of numeric alterations between TNBCs and hormone 
receptor positive tumors and the respective chromo-
somal locations we observed in our study were in line 
with these reports [30, 31]. These findings provide addi-
tional and independent proof for the correctness of the 
DNA methylation-based classification of LowHR tumors.

Based on our results, DNA methylation-based clas-
sification of LowHR tumors could be used to assess the 
individual prognosis and could guide treatment deci-
sions in further studies. Based on the differences in their 
epigenetic profiles and clinical outcome data, one might 
suggest that LowHR TNBC-like samples require a simi-
lar treatment as TNBCs, whereas patients with LowHR 
HRpos-like tumors might still benefit from endocrine 
therapy. Strikingly, we observed high pCR rates for 
LowHR HRpos-like samples, which is unexpected due to 
their molecular similarity with hormone receptor posi-
tive breast cancer. However, it remains uncertain if this 
behavior is characteristic for this specific subgroup or 
if this observation is biased by other factors. Due to the 
retrospective design of our study and the small sample 
size, the clinical results should be interpreted with cau-
tion and need to be addressed in larger and prospective 
clinical trials.

Conclusion
In conclusion, using DNA methylation our study pro-
vides new molecular support that LowHR breast can-
cer comprises two molecularly distinct groups that can 
be separated by DNA methylation profiling, resembling 
TNBC and hormone receptor positive breast cancer with 
potential implications for individual patient prognosis 
and therapy selection.

Methods
Patients and samples
A flowchart which summarizes the composition of the 
study cohort is available as Additional file 2: Fig. S2.

For this study, we selected a total of 23 cases from 
the GeparSixto (NCT01426880) and GeparSepto 
(NCT01583426) trial of the German Breast Group 
(GBG) and the Arbeitsgemeinschaft Gynäkologische 
Onkologie – Breast Study Group (AGO-B) with estro-
gen and progesterone receptor expression between 1 
and 10%, including 13 samples with HER2 amplifica-
tion [19, 20]. Informed consent was obtained from all 
patients for study participation and translational research 
projects. Histopathological characteristics are summa-
rized in Table 1. As a reference, we also included 14 ran-
domly selected TNBC specimens from the GeparSepto 
study with estrogen and progesterone receptor expres-
sion < 1%. This study included only female early stage 
breast cancer patients without distant metastases. For all 
analyses, formalin-fixed and paraffin-embedded biopsy 
specimens from the initial diagnosis were used. There-
fore, all patients were treatment-naïve. All samples were 
tested for hormone receptor expression and HER2 sta-
tus as part of the central pathology assessment at the 
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Institute of Pathology of the Charité – University Hospi-
tal Berlin.

Raw DNA methylation data from 709 samples as well 
as the corresponding pathology reports were obtained 
from the TCGA BRCA dataset available at the TCGA 
legacy archive (https://​portal.​gdc.​cancer.​gov/​legacy-​archi​
ve/). In this study, the definition of different breast cancer 
subtypes is based on the results from IHC. Therefore, we 
excluded patient samples without documented percent-
age of estrogen or progesterone receptor positive cells 
by IHC (n = 271) in the corresponding pathology reports 
as well specimens with bad quality in DNA methylation 
analysis (n = 16), as defined below. The resulting refer-
ence dataset consisted of 422 samples, including 334 
breast cancer and 88 normal breast tissue specimens. The 
corresponding sample list is available as Additional file 3: 
Table S1.

IHC and silver in situ hybridization (SISH)
Antibodies, SISH reagents and scoring systems are listed 
in Additional file 4: Table S2. All antibodies for IHC were 
used in combination with the ultraView Universal DAB 
Detection Kit (VENTANA). Stainings were performed 

on the VENTANA BenchMark XT automated slide 
stainer using the “Cell Conditioning 1, Standard” setting 
for antigen retrieval and an incubation time of 16 min at 
37  °C (estrogen and progesterone receptor) and 32  min 
(HER2) at 37  °C, respectively. HER2 SISH was also per-
formed on the VENTANA BenchMark XT automated 
slide stainer with ISH-Protease 3 digestion for 8  min, 
followed by hybridization for 6 h and silver staining for 
4 min. All slides were subsequently counterstained using 
the “Hematoxylin II” setting for 8  min and the “Bluing 
reagent” option for 4 min.

The results from central pathological investigation were 
used for further analyses.

DNA extraction
We identified representative tumor areas using light 
microscopy of hematoxylin and eosin stained sections. 
If necessary, macrodissection was performed to reach a 
tumor cell content of at least 70%. Semi-automated DNA 
extraction was performed on the Maxwell RSC Instru-
ment using the Maxwell RSC FFPE Plus DNA Purifi-
cation Kit (Custom, AX4920; Promega), according to 
the manufacturer’s instructions. Extracted total DNA 

Table 1  Table summarizing the proportion of estrogen (ER) and progesterone receptor (PR) positive tumor cells, the results from HER2 
immunohistochemistry (IHC) and silver in situ hybridization (SISH), the Ki67 proliferation rate as well as histopathological grading of 
LowHR samples included in this study

Case # ER (%) PR (%) HER2 IHC HER2 SISH Ki67 (%) Grading cT cN

1 8 0 1+ Not done 80 G3 cT2 cN−
2 5 0 3+ Not done 30 G3 cT2 cN+
3 2 0 3+ Positive 15 G2 cT2 cN+
4 5 0 2+ Positive 40 G3 cT2 cN+
5 5 0 3+ Positive 15 G2 cT2 cN−
6 5 0 3+ Positive 40 G3 cT2 cN−
7 5 0 3+ Not done 30 G3 cT2 cN+
8 0 3 1+ Not done 90 G3 cT1 cN−
9 5 0 2+ Negative 70 G3 cT2 cN−
10 0 5 3+ Not done 70 G3 cT2 cN−
11 3 0 0 Not done 80 G3 cT3 cN+
12 5 0 0 Not done 80 G3 cT1 cN+
13  < 1 8 3+ Not done 20 G3 cT4 cN+
14 5 0 0 Not done 50 G3 cT1 cN+
15 8 8 3+ Not done 73 G3 cT2 cN+
16 2 0 2+ Negative 50 G3 cT2 cN−
17 3 2 2+ Negative 85 G3 cT1 cN−
18 3  < 1 3+ Not done 40 G3 cT2 cN−
19 3 0 2+ Negative 30 G3 cT2 cN−
20 0 5 0 Not done 95 G3 cT2 cN−
21 2 0 2+ Positive 90 G3 cT2 cN−
22 0 5 3+ Not done 38 G3 cT2 cN−
23 2 0 3+ Not done 35 G3 cT2 cN+

https://portal.gdc.cancer.gov/legacy-archive/
https://portal.gdc.cancer.gov/legacy-archive/
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quantities were measured using the Qubit™ HS DNA 
Assay (Thermo Fisher Scientific).

DNA methylation analysis
We used the Illumina Infinium HD FFPE DNA Restore 
Kit for DNA restoration of FFPE samples. Following 
restoration, the EpiTect Bisulfite Kit (Qiagen) was used 
for bisulfite conversion. DNA methylation analysis was 
performed using the Illumina Infinium MethylationE-
PIC BeadChip, according to protocols supplied by the 
manufacturer.

Statistical analysis
Statistical analysis was performed using RStudio version 
1.1.463 based on the statistical language R version 3.5.1. 
DNA methylation data were processed using the minfi 
package. The combineArrays function was used to merge 
data from the 450  K and 850  K array generation into a 
virtual 450 K dataset. The pfilter function of the wateR-
melon package with the parameter perc = 5 was used to 
filter samples and probes with low quality [21]. Samples 
were preprocessed using the normal-exponential out-
of-band (Noob) normalization. Furthermore, we used 
the pwod function of the wateRmelon package for probe 
outlier detection. Testing for differentially methylation 
positions (DMP) and differentially methylation regions 
(DMR) was performed using the DMPfinder function of 
the minfi package and the bumphunter function of the 
bumphunter package, respectively [22]. For both tests, 
hits with a false-discovery rate (FDR) below 0.05 and a 
median beta fold-change of at least 0.4 were considered 
to be significant. For the bumphunter function, we per-
formed 1000 permutations.

T-distributed stochastic neighbor embedding (t-SNE) 
plots were generated based on the 5000 most variant 
CpG sites and using the Rtsne function of the Rtsne pack-
age with 2000 iterations while the perplexity was set to 25 
[23]. Heatmaps were generated using the ComplexHeat-
map package with the “ward.D2” method and “euclidean” 
distance measuring [24]. Tumor purity estimations for 
TCGA samples were derived from previously published 
datasets [25].

The means of Ki67 proliferation rates were tested for 
significance using the Wilcoxon–Mann–Whitney-Test. 
Pathological complete response (pCR) rates were com-
pared using the Fisher’s test. Overall survival (OS) was 
visualized using Kaplan–Meier curves and tested for sig-
nificant differences using pairwise logrank test.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13148-​021-​01176-5.

Additional file 1. Fig. S1: t-distributed stochastic neighbor embedding 
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study cohort with samples from the publicly available “The Cancer 
Genome Atlas” (TCGA) dataset as well as specimens from the clinical 
GeparSixto and GeparSepto trial. Abbreviations: BRCA = breast cancer; 
ER = estrogen receptor; PR = progesterone receptor; TNBC = triple nega-
tive breast cancer; t-SNE = t-distributed stochastic neighbor embedding.
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