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Abstract 

Background:  Prenatal risk factors are related to poor health and developmental outcomes for infants, potentially via 
epigenetic mechanisms. We tested associations between person-centered prenatal risk profiles, cumulative prenatal 
risk models, and epigenome-wide DNA methylation (DNAm) in very preterm neonates.

Methods:  We studied 542 infants from a multi-center study of infants born < 30 weeks postmenstrual age. We 
assessed 24 prenatal risk factors via maternal report and medical record review. Latent class analysis was used to 
define prenatal risk profiles. DNAm was quantified from neonatal buccal cells using the Illumina MethylationEPIC 
Beadarray.

Results:  We identified three latent profiles of women: a group with few risk factors (61%) and groups with elevated 
physical (26%) and psychological (13%) risk factors. Neonates born to women in higher risk subgroups had differential 
DNAm at 2 CpG sites. Higher cumulative prenatal risk was associated with methylation at 15 CpG sites, 12 of which 
were located in genes previously linked to physical and mental health and neurodevelopment.

Conclusion:  We observed associations between prenatal risk factors and DNAm in very preterm infants using both 
person-centered and cumulative risk approaches. Epigenetics offers a potential biological indicator of prenatal risk 
exposure.
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Background
Infants born less than 30  weeks postmenstrual age 
(PMA) are at increased risk for adverse health and devel-
opmental outcomes. As children, they are at high risk for 
experiencing chronic health problems related to brain 
injury, including cerebral palsy, autism spectrum disor-
der, seizures, epilepsy, mental health disorders [1–4] and 
developmental delay in motor, language, and cognitive 

domains [1–3, 5–7]. However, there is also marked het-
erogeneity in outcomes [8–10]. For example, a recent 
follow-up study from the Neonatal Research Network 
(NRN) cohort of infants born extremely preterm found 
that by age 2, one quarter (24%) of children had no neu-
rodevelopmental impairment, and 45% had only sus-
pected or mild impairment [7].

Adverse prenatal conditions contribute to risk of pre-
term birth, and may also exacerbate the risk of negative 
outcomes associated with immaturity and illness in very 
preterm children [11]. For example, maternal mood dis-
orders (e.g., depression, anxiety) and medical complica-
tions (e.g., pre-eclampsia, pre-pregnancy obesity) during 
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pregnancy predict poorer neurobehavioral outcomes in 
very preterm neonates [11], which in turn are associated 
with longer term impairments [12]. Sociodemographic 
risk factors, such as low socioeconomic status, are also 
associated with poor developmental outcomes for very 
preterm children [13]. While these adverse conditions 
arise from unique sources (physical, psychological, and 
sociodemographic), they may impact similar biological 
systems and could have additive effects on the developing 
fetus. Therefore, exposure to a greater number or specific 
combinations of risk factors in the prenatal environment 
may contribute to the heterogeneous outcomes observed 
among preterm children.

One mechanism by which prenatal conditions may 
alter child neurodevelopment is via epigenetic processes 
[14]. Epigenetics refers to molecular processes that reg-
ulate gene expression without altering the underlying 
DNA sequence. DNA methylation (DNAm) is the most 
commonly studied epigenetic mechanism in humans and 
involves addition of a methyl group to a cytosine-phos-
phate-guanine (CpG) dinucleotide on a strand of DNA. 
DNAm plays an important role in regulating gene activ-
ity and expression. Additionally, offspring DNAm is sen-
sitive to variations in environmental experience [15–17] 
and therefore may provide information about the biologi-
cal embedding of prenatal conditions [14, 18–20].

Perhaps the most studied of all prenatal risk factors 
are those indicative of maternal psychological distress, 
including perceived stress and mood disorders [21]. 
These factors have also been studied in a growing num-
ber of candidate gene and epigenome-wide association 
studies (EWAS) [22, 23]. While candidate gene studies 
show associations between psychological risk factors in 
pregnancy and DNAm in genes implicated in offspring 
stress response systems [15], more recent EWAS on the 
same psychological risk factors have produced mixed 
findings [24–31], with differences not easily explained by 
study sample size. Therefore, the extent to which psycho-
logical risk factors in pregnancy impact offspring DNAm 
remains unclear. Physical risk factors (e.g., pre-pregnancy 
body mass index [BMI]) have also been investigated in 
relation to offspring DNAm and have similarly been 
associated with differential neonatal DNAm at a handful 
of CpGs [32]. These previous findings should be inter-
preted in light of several limitations, including the use of 
small sample sizes, exclusive use of cord blood for DNA 
sampling, and use of convenience or low-risk samples. 
Finally, most previous studies have investigated indi-
vidual risk factors (e.g., depression, obesity) in isolation, 
rather than comprehensively assessing multiple facets of 
prenatal stress.

In this study, we investigated the relationship between 
prenatal risk factors and DNAm using buccal cell 

specimens in a high-risk population: children born very 
preterm. In addition, we studied prenatal risk compre-
hensively using two multiple-risk-factor approaches, 
rather than an individual variable approach. We first used 
cumulative risk models to investigate the additive burden 
of increasing number of risk factors on neonatal DNAm. 
Second, we used person-centered models to investigate 
the relationship of different types of risk factors with 
neonatal DNAm. Person-centered approaches such as 
latent class (LCA) and latent profile analysis (LPA) group 
individuals with similar co-occurring risk factors or phe-
notypes into mutually-exclusive groups. Whereas one 
previous study investigated cumulative prenatal risk in 
association with neonatal DNAm [24], person-centered 
models have not yet been used to study the association 
between prenatal risk phenotypes and neonatal DNAm. 
Therefore, the goals of this study were to examine rela-
tions among prenatal risk factors and DNAm in very pre-
term neonates and to understand whether these relations 
differ depending on whether cumulative risk or person-
centered models are used. Addressing these goals may 
enable us to identify important biological mechanisms 
underlying the association between prenatal environ-
mental experiences and child outcomes and will provide 
information regarding how best to operationalize prena-
tal risk factors in future studies of neonatal health.

Methods
Study population
The Neonatal Neurobehavior and Outcomes in 
Very Preterm Infants (NOVI) study enrolled infants 
born < 30  weeks postmenstrual age (PMA) from nine 
NICUs affiliated with six universities from April 2014 to 
June 2016. Inclusion criteria included: (a) birth < 30 weeks 
PMA; (b) parental ability to read and speak English or 
Spanish; and (c) residence within 3  h of the NICU and 
follow-up clinic. Infants were excluded for major congen-
ital anomalies [33], NICU death, maternal age < 18 years, 
maternal cognitive impairment, or maternal death.

Parents of eligible infants were invited to partici-
pate in the study when survival to discharge was deter-
mined to be likely by the attending neonatologist. Study 
procedures were explained and informed consent was 
obtained in accordance with each institution’s review 
board. Children were included in this analysis if they 
were enrolled in NOVI at birth and had a neonatal buc-
cal swab collected (MPMA = 39.2 weeks). There were 704 
infants enrolled in NOVI; of these 651 (92%) had paren-
tal consent to obtain buccal swabs. Mothers were inter-
viewed at enrollment to obtain demographic information 
(age, education, occupation, race/ethnicity, and marital/
cohabitation status). Information regarding prenatal 
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substance use, physical health, and psychological health 
were obtained via maternal interview and medical record 
review.

Measures
Prenatal risk factors
We assessed 24 prenatal risk factors in four domains: 
demographic (5 items), substance use (4 items), physical 
health (9 items), and psychological health (6 items). Indi-
vidual risk factors were assessed via maternal interview 
and medical record review.

Demographic risk factors included maternal 
age > 35  years, low socioeconomic status (Hollingshead 
category 5) [34], maternal education less than a high 
school degree, minority race or ethnicity, and no roman-
tic partner. Substance use items included maternal use of 
tobacco, alcohol, marijuana, or other illegal substances 
(e.g., heroin, cocaine) as noted in her medical record.

Physical health risks included maternal underweight 
(BMI < 18.5) and obesity (BMI ≥ 30), calculated from 
reported pre-pregnancy height and weight. Gestational 
weight gain that exceeded Institute of Medicine guide-
lines [35] was also determined using calculated BMI 
and reported weight gain. Maternal hypertension, pre-
eclampsia, diabetes, HIV/AIDS or other sexually trans-
mitted infection, any other infection, and receipt of 
prenatal care were all determined from medical record 
review.

Psychological health risks included maternal depres-
sion and anxiety and maternal moods and feelings. 
Maternal depression during pregnancy was determined 
from medical record or maternal report of anti-depres-
sant use, or from maternal report of depression diagno-
sis, treatment, or counseling during pregnancy. The same 
method was used to determine maternal anxiety during 
pregnancy. Beyond diagnosed mental health disorders, 
maternal moods and feelings during pregnancy were 
assessed from four questions asking mothers to indicate 
the extent to which (a) their pregnancy was a hard time 
in their lives, and the extent to which they felt (b) down, 
(c) hopeless, and (d) slow during their pregnancy. Risk 
was determined by responses indicating that pregnancy 
was a “very hard time” or “one of the worst times” in their 
lives, or if mothers indicated they “often” or “always” felt 
down, hopeless, or slow [36].

Neonatal DNA methylation (DNAm)
Genomic DNA was extracted from buccal swab samples, 
collected near term-equivalent age, using the Isohelix 
Buccal Swab system (Boca Scientific), quantified using 
the Quibit Fluorometer (Thermo Fisher, Waltham, MA, 
USA) and aliquoted into a standardized concentration for 
subsequent analyses. DNA samples were plated randomly 

across 96-well plates and provided to the Emory Univer-
sity Integrated Genomics Core for bisulfite modification 
using the EZ DNA Methylation Kit (Zymo Research, 
Irvine, CA), and subsequent assessment of genome-wide 
DNAm using the Illumina MethylationEPIC Beadarray 
(Illumina, San Diego, CA) following standardized meth-
ods based on the manufacturer’s protocol.

Pre-processing of data followed a modified workflow 
described elsewhere [37]. Array data were normalized 
via Noob normalization [38, 39] and samples with more 
than 5% of probes yielding detection p-values > 1.0E-5 
or mismatch between reported and predicted sex were 
excluded. In addition, one of two duplicated samples 
was omitted (retained duplicated sample with smallest 
detection p-values). Probes with median detection p-val-
ues < 0.05, probes measured on the X or Y chromosome, 
probes that had single nucleotide polymorphisms (SNP) 
within the binding region or that could cross-hybridize 
to other regions of the genome were excluded [40]. Then, 
array data were standardized across Type-I and Type-II 
probe designs with beta-mixture quantile normalization 
[41, 42]. After exclusions, 706,323 probes were available 
from 542 samples for this study (83% of 651 with buccal 
swab consent; 77% of entire NOVI cohort). These data 
are accessible through NCBI Gene Expression Omnibus 
(GEO) via accession series GSE128821.

Covariates
DNAm varies by cell type and cellular heterogeneity is a 
documented source of confounding in EWAS that make 
use of mixed cell samples [43]. A variety of cell-type 
deconvolution methods have been developed to estimate 
cell type proportions based on cell-type specific DNAm 
pattern. We estimated the proportion of epithelial, 
fibroblast, and immune cells (e.g., B-cells, natural kill-
ers, CD4 + and CD8 + T-cells, monocytes, neutrophils, 
eosinophils) in our buccal samples using reference meth-
ylomes [44]. As previously shown [45], for 95% of our 
buccal samples, 95.7% of the cells were epithelial cells, 
with the remainder being immune cells. Given the strong 
inverse correlation between epithelial and immune cell 
proportions, cellular heterogeneity was adjusted for by 
including the proportion of epithelial cells as a covariate 
in all statistical models.

In addition to cellular heterogeneity, our EWAS mod-
els controlled for child sex, recruitment site, and PMA at 
buccal swab. We accounted for potential batch effects by 
controlling for sample plate.

Statistical analysis
Prenatal risk classes and index
We first conducted latent class analysis (LCA) to cat-
egorize subgroups of women with similar prenatal risk 
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factors. LCA is a statistical method for classifying indi-
viduals into mutually exclusive groups, or latent classes, 
based on their pattern of responses to a set of categori-
cal indicator variables. The method is considered latent 
because true group membership is unknown. LCA 
employs maximum likelihood estimation. The optimal 
number of latent classes is determined using fit statistics 
and interpretibility of the models. For these analyses, we 
fit LCA models to our 24 observed risk factors and exam-
ined solutions ranging from 1 to 4 classes. All models 
were run in Mplus 8.4. We used posterior probabilities 
from the best fitting LCA model to classify women into 
distinct subgroups. We describe the subgroups in terms 
of how they differ on the 24 prenatal risk factors.

Next, we created a cumulative prenatal risk index that 
measured the total number of risk factors experienced by 
mothers. One point was assigned for each of 24 risk fac-
tors and a proportion score was created by dividing this 
sum by the total number of items mothers responded to. 
A proportion was used rather than a sum because of the 
possibility of item nonresponse. However, the majority of 
mothers (96%) had data for all 24 items.

Epigenome‑wide association study (EWAS)
All EWAS analyses were conducted in R 4.0.2. We used 
generalized estimating equations (GEE) that accounted 
for the nesting of children within families. GEE models 
were run on logit transformed ( log

(

β
1−β

)

 ) DNAm data 
that approximated a Gaussian distribution. For easier 
interpretation of significant CpG sites, we present model 
coefficients obtained from both transformed and 
untransformed (beta-values) data, where the latter can be 
interpreted in terms of percent methylation at a given 
CpG site. To account for multiple testing, p-values were 
adjusted using a Bonferroni correction (α = 0.05/706323). 
We conducted separate EWAS analyses with latent pre-
natal class (3-level factor) and cumulative prenatal risk 
(continuous) as the focal independent variables and com-
pare our findings from the two types of models. We 
report results from models that yielded suggestive asso-
ciations (FDR < 10%) in Additional file 1 and report those 
results that were significant with Bonferroni-correction 
(706,323 tests) herein.

One challenge of EWAS in humans is the inaccessibil-
ity of tissues of interest, namely brain tissue. Although 
we rely on peripheral tissues such as buccal cells, there 
is variability in the extent to which peripheral DNAm is 
associated with DNAm in the brain. For CpGs that were 
significantly associated with prenatal risk in either latent 
class or cumulative risk models, we examined the cor-
relation between DNAm in buccal and brain tissue [46]. 
This additional information can help us determine which 

of our significant CpGs may have similar patterns of 
DNAm in buccal and brain tissue.

To determine the biological functions of CpGs associ-
ated with prenatal risk, we conducted gene enrichment 
analyses using the gometh function in the MissMethyl 
package [47]. This procedure accounts for the number 
of CpGs annotated to each gene. We examined both 
pathway-based gene sets (i.e., KEGG and gene ontol-
ogy (GO) terms). For enrichment analyses, we included 
CpGs that were associated with prenatal risk at an FDR 
of < 5%. Overrepresentation results within a 10% FDR 
were deemed statistically significant. We also aimed to 
identify whether any CpGs associated with prenatal risk 
were within genes that have been linked with neurode-
velopmental phenotypes. Thus, based on the genes that 
were annotated to our significant CpGs, we additionally 
annotated these CpGs with traits that have been linked 
to these genes via prior genome-wide association studies 
(GWAS) using the NHGRI-EBI GWAS catalog [48].

All analyses described thus far have described methods 
for estimating the association between prenatal risk and 
individual CpGs. However, DNAm is generally highly 
correlated at adjacent CpG sites [49]. To better under-
stand whether our EWAS results are limited to individu-
ally significant CpGs or are more broadly representative 
of regions of the genome that are differentially methyl-
ated, we additionally conducted differentially methylated 
regions (DMR) analysis using the dmrff package [50].

Results
Study population
The NOVI study included 704 infants born to 601 moth-
ers. All mothers were included in the LCA analysis. Of 
the 651 potential buccal swabs, 624 (96%) were collected. 
Missing data were due to technical sampling or handling 
error, missing swabs, or unscheduled discharges prior 
to swabs being obtained. Of the 624 infants with buccal 
swabs, there were 542 infants (from 470 mothers) with 
DNAm data that passed quality control steps (described 
earlier).

Maternal and child characteristics are summarized in 
Table 1. Those without DNAm data were more likely to 
be low SES (p = 0.04) and to be a minority race or eth-
nicity (p = 0.004), compared to those with DNAm data. 
Included and excluded children did not differ based 
on prenatal risk class or cumulative prenatal risk (all 
p > 0.05).

Prenatal risk
We first estimated LCA models and used standard model 
fit statistics to determine the ideal number of latent pro-
files. Lo-Mendell-Rubin and bootstrapped loglikelihood 
ratio tests indicated that the 4-profile model did not fit 
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significantly better than the 3-profile model, but that the 
3-profile model did fit significantly better than the 2-pro-
file model. The 3-profile solution had the lowest Bayesian 
information criterion (BIC), high entropy (0.84), and high 
class probabilities (0.89–0.94). The class sizes were rea-
sonable (smallest class = 13%) and the classes were read-
ily interpretable. Thus, model fit statistics supported a 
3-profile LCA solution. Fit statistics for all LCA solutions 
are included in Additional file 2.

Women in the three latent classes differed on 21 out of 
24 prenatal risk factors (Table 2). Figure 1 depicts differ-
ences in the 3 classes by rates of endorsement of prenatal 
risk factors. Women in class 1 (“Typical”; 61%) had the 
lowest rates of endorsement for all risk factors. In con-
trast, women in class 2 (“Physical Risk”; 26%) exhibited 
elevated physical health problems, including high rates 
of obesity, hypertension, and pre-eclampsia. Women 
in class 3 (“Psychological Risk”; 13%) exhibited elevated 
substance use and psychological health problems. They 
endorsed high rates of alcohol, tobacco, and drug use 
during pregnancy, as well as high rates of anxiety and 

depression. Women in class 3 were also more likely to 
indicate that they felt “down”, “slow”, and “hopeless” dur-
ing their pregnancy, and to indicate that their pregnancy 
was a “very hard time” in their lives.

We then calculated a cumulative prenatal risk score for 
each participant. On average, mothers experienced an 
average of 3.6 risk factors (SD = 2.3), with a range from 
0 to 12.

Epigenome‑wide association study with prenatal risk 
profiles
Our first set of models compared DNAm for children 
born to women in the Physical Risk or Psychological 
Risk groups to children born to women in the Typical 
group. Results are displayed in Table 3. After Bonferroni 
adjustment, one CpG was differentially methylated in the 
Physical Risk group and one CpG was differentially meth-
ylated in the Psychological Risk group. Compared to the 
Typical group, neonates of mothers in the Physical Risk 
group had, on average, 5% lower DNAm at the identi-
fied CpG (cg25123362) located in the body of the BNIP3 

Table 1  Demographic and medical characteristics of the sample

Means ± standard deviations (continuous) or percentage and frequencies (categorical) of demographic and medical characteristics. p-values refer to the comparison 
of included versus excluded individuals and were obtained from t-tests (continuous variables) and chi-squared tests (categorical variables)

PMA, postmenstrual age; HS, high school; GED, General Equivalency Diploma; SES, socioeconomic status

*All mothers with prenatal data were included in the latent class analysis. Included versus excluded in this Table refers to individuals with data for the epigenome-
wide analysis
± Minority race or ethnicity was defined as any non-White race (e.g., Black, Asian) or ethnicity (e.g., Hispanic and/or Latino/a)
+ Serious brain injury included parenchymal echodensity, periventricular leukomalacia, or ventricular dilation diagnosed via cranial ultrasound

Sample characteristics Full sample
(N = 601)

Included
(N = 470)

Excluded
(N = 131)

p-value

Maternal characteristics*

Maternal education: < HS/GED 13% (79/598) 15% (68/468) 8.5% (11/130) 0.07

Low SES: Hollingshead = 5 9.9% (59/599) 8.5% (40/469) 15% (19/130) 0.04

Minority race or ethnicity± 58% (347/601) 55% (257/470) 69% (90/131) 0.004

No partner 25% (152/600) 26% (124/470) 22% (28/130) 0.26

Neonatal characteristics Full sample
(N = 704)

Included
(N = 542)

Excluded
(N = 162)

p-value

Infant gender = Male 56% (388/697) 55% (299/539) 56% (89/158) 0.85

Multiple gestation 26% (184/697) 27% (145/539) 25% (39/158) 0.58

Cesarean delivery 71% (495/696) 71% (382/539) 72% (113/157) 0.79

PMA at Birth (weeks) 27.0 ± 1.92 27.0 ± 1.92 27.0 ± 1.92 0.86

Birth weight (grams) 948.3 ± 280.6 951.1 ± 281.8 938.5 ± 277.0 0.62

Head circumference (cm) 24.5 ± 2.43 24.5 ± 2.48 24.4 ± 2.24 0.70

PMA at Discharge (weeks) 40.5 ± 5.43 40.3 ± 5.20 41.29 ± 6.12 0.05

Length of NICU stay (LOS days) 93.5 ± 41.9 91.7 ± 40.1 99.7 ± 47.4 0.05

Weight at discharge (grams) 3013 ± 905 3001 ± 861 3057 ± 1042 0.50

Severe retinopathy of prematurity 5.9% (41/697) 6.3% (34/539) 4.4% (7/158) 0.38

Necrotizing enterocolitis/sepsis 18% (128/697) 19% (103/539) 16% (25/158) 0.35

Chronic lung disease 51% (357/697) 51% (277/539) 51% (80/158) 0.87

Serious brain injury+ 13% (92/694) 13% (69/539) 15% (23/155) 0.51
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gene. Neonates of mothers in the Psychological Risk had 
4% lower DNAm at the identified CpG (cg08930413) 
located in the body of the PRKAG2 gene.

Epigenome‑wide association study with cumulative 
prenatal risk
Next, we tested for associations between cumulative 
prenatal risk and neonatal DNAm. We found 15 statisti-
cally significant CpGs that were differentially methylated 
with increasing cumulative prenatal risk (Fig. 2). Increas-
ing prenatal risk was associated with lower DNAm at 12 
CpGs and higher DNAm at 3 CpGs. These differences 
were small in magnitude and ranged from a 1–6% differ-
ence in DNAm associated with a 10% increase in cumula-
tive prenatal risk.

Brain‑buccal correlations
We used the publicly available IMAGE-CpG website 
(http://​han-​lab.​org/​methy​lation/​defau​lt/​image​CpG) to 
explore whether DNAm levels in buccal tissue was corre-
lated with DNAm levels in brain tissue [46], for the CpGs 

that were identified as significant in our EWAS models. 
While neither of the CpGs identified in our prenatal risk 
profile EWAS exhibited significant brain-buccal correla-
tions, 4 of the 15 CpGs that were identified in our models 
of cumulative prenatal risk did exhibit significant brain-
buccal correlations (r = 0.44 to 0.61, p < 0.05).

Functional and phenotypic enrichment
Because few CpGs were significant in our prenatal risk 
profile EWAS, we considered in our enrichment analy-
ses those CpGs that were significant within a 5% FDR in 
the cumulative prenatal risk model (n = 384 CpGs). After 
FDR correction, there were no significantly enriched 
pathway or gene ontology terms.

CpG annotation
We identified phenotypes and traits that have been asso-
ciated with the genes annotated to significant CpGs in 
our EWAS models (Table 4). Of the 17 significant CpGs, 
9 were located in genes associated with neurobehavioral 
traits including cognitive ability, memory, reaction time, 

Table 2  Distribution of individual prenatal risk factors in full sample and by latent class

STI, sexually transmitted infection; HIV, Human immunodeficiency virus

*p < .05, **p < .01, ***p < .001

Prenatal risk factors Full sample
(N = 601)

Typical
(N = 367; 61%)

Physical risk
(N = 155; 26%)

Psychological risk
(N = 79; 13%)

χ2

Age > 35 18% 18% 18% 14% 0.89

Low SES 10% 6.5% 14% 18% 12.78**

 < HS degree 13% 12% 9.8% 26% 12.54**

Minority 58% 57% 56% 66% 2.45

No partner 25% 21% 18% 62% 65.33***

No prenatal care 2.7% 1.6% 1.9% 9.1% 14.01***

Underweight 5.0% 5.8% 0.0% 12% 15.48***

Obese 34% 26% 53% 33% 35.11***

Too much weight gained 18% 12% 34% 17% 33.93***

Hypertension 27% 3.3% 95% 3.9% 490.33***

Pre-eclampsia 21% 0.0% 79% 0.0% 442.57***

Diabetes 6.0% 5.5% 9.7% 1.3% 7.00*

STI/HIV 7.0% 5.0% 6.5% 18% 16.33***

Infection 10% 10% 9.0% 14% 1.39

Alcohol 3.2% 1.4% 2.6% 13% 27.18***

Illegal substances 4.5% 0.3% 4.5% 24% 85.30***

Tobacco 14% 8.0% 14% 44% 70.36***

Marijuana 10% 4.1% 8.4% 41% 96.07***

Depression 11% 4.9% 10% 39% 79.51***

Anxiety 12% 7.4% 9.7% 35% 50.62***

Pregnancy “Hard Time” 11% 6.7% 6.5% 42% 86.18***

Pregnancy “Felt Down” 9.9% 2.7% 5.9% 51% 173.87***

Pregnancy “Felt Slow” 20% 13% 23% 46% 44.90***

Pregnancy “Felt Hopeless” 3.9% 0.3% 1.3% 26% 115.30***

http://han-lab.org/methylation/default/imageCpG


Page 7 of 14Camerota et al. Clin Epigenet          (2021) 13:171 	

brain volume, and mental health disorders (e.g., depres-
sion, bipolar disorder, schizophrenia). Of these 9 CpGs 
within neurobehaviorally-linked genes, 3 had significant 
blood-buccal correlations (cg19573457 [CRYBB2P1], 
cg11221492 [MBIP], cg22102865 [ZNF398]).

Additionally, 11 of the 17 CpGs were located in genes 
associated with physical health markers, including body 
mass index, cardiovascular disease, hypertension, type-2 
diabetes, and white blood cell counts. Of these 11 CpGs 
within health-linked genes, 3 had significant blood-buc-
cal correlations (cg16999677 [ZDHHC11], cg11221492 
[MBIP], cg22102865 [ZNF398]).

DMR analysis
Last, we performed DMR analyses to test whether there 
were regional, not just CpG site-specific, differences in 
DNAm associated with prenatal risk factors. DMR anal-
yses comparing the Physical Risk group to the Typical 
group found one significant region (Chr10: 133793734–
133794558) containing three CpG sites (cg25123362, 
cg12751948, cg16592121). Children born to mothers 
in the Physical Risk group had less methylation in this 
region, on average, compared to children born to moth-
ers in the Typical group (p = 4.17E-11). This region con-
tained the individually significant CpG described above 

in the Physical Risk versus Typical model (cg25123362) 
and this DMR similarly annotated to the BNIP3 gene.

Analyses comparing the Psychological Risk group to 
the Typical group also resulted in one significant DMR 
(Chr14: 77785784–77785968) containing two CpG sites 
(cg02181287, cg03738767). Children born to mothers in 
the Psychological Risk group had less methylation in this 
region, on average, compared to children born to moth-
ers in the Typical group (p = 4.65E-08). This DMR was in 
a different genomic location compared to the individually 
significant CpG described earlier and annotated to the 
GSTZ1 and POMT2 genes.

Finally, we found six DMRs that were significantly 
associated with cumulative prenatal risk. Five of the six 
were negatively associated with prenatal risk, suggesting 
lower DNAm with increasing levels of risk. One DMR 
was positively associated, suggesting more DNAm with 
increasing levels of risk. One of the six significant DMRs 
(Chr7: 148843026–148844053) was in a similar region 
as a CpG (cg22102865) that was identified as being 
individually significant. One region (Chr14: 77785784–
77785968) that was identified as a DMR related to 
cumulative prenatal risk was also identified as a signifi-
cant DMR in the comparison of the Psychological Risk 
group to the Typical group. The other four DMRs (Chr3: 

Fig. 1  Rates of endorsement of 24 prenatal risk factors by latent class membership. Women in class 1 (green; 61%) endorse few prenatal risk factors. 
Women in class 2 (red; 26%) endorse elevated physical health problems, whereas women in class 3 (blue; 13%) endorse elevated substance use and 
psychological problems
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186965021–186965150; Chr1: 155659719–155659882; 
Chr22: 25884154–25884537; Chr15: 34260712–
34260956) did not share CpGs in common with other 
DMR analyses or with the individual CpG results. These 
four DMRs annotated to the following genes: MASP1, 
DAP3, YY1AP1, CRYBB2P1, AVEN, and CHRM5. Full 
results for the DMR analysis are included in Additional 
file 3.

Discussion
We conducted an epigenome-wide study to test the 
associations between prenatal risk factors and neonatal 
DNAm in a sample of very preterm neonates. LCA find-
ings showed 3 distinct prenatal risk groups; a group with 
few risk factors (“Typical”; 61%) and groups with elevated 
physical (26%) or psychological (13%) risk factors. Neo-
nates born to women in these higher risk subgroups had 
differential DNAm patterns at two CpG sites. The cumu-
lative prenatal risk analysis showed that a higher risk 
score was associated with greater methylation at 3 CpG 
sites and lower DNAm at 12 CpG sites.

The investigation of both the total number (cumu-
lative score) and co-occurring types (LCA profiles) 

of prenatal risk factors as they relate to epigenome-
wide DNAm in infants, including preterm infants, 
is novel. Previous EWAS have relied on a single vari-
able approach with mixed findings. Two studies found 
no associations between psychological risk factors 
and neonatal DNAm [24, 25], several studies uncov-
ered only a small number of differentially methylated 
CpGs [26–31], and one study found 145 differentially 
methylated CpGs [51]. The only other study using a 
cumulative risk approach found no significant associa-
tions between cumulative prenatal stress and neona-
tal DNAm [24]. However, this study measured DNAm 
from blood, used a different DNAm bead chip, included 
term as well as preterm children, and did not assess 
physical health risks. In contrast, the cumulative pre-
natal risk index used in the current study accounted for 
24 demographic, substance use, physical health, and 
psychological health indicators. There was no overlap 
between significant CpGs or genes identified in this 
study and those identified in any of the previous EWAS 
on prenatal risk factors. These differences may be due 
to differences in methods (e.g., which risk factors were 
assessed; single versus multiple risk approach) and 

Table 3  Epigenome-wide association study results for CpG sites that yielded significant associations after Bonferroni adjustment

a Note that the coefficient for cumulative risk models represents the expected increase in % DNAm associated with a 10% increase in risk. ‡p < .10, *p < .05, **p < .01, + 
indicates closest gene. Adjusted p-value is Bonferroni corrected

CpG Location Gene annotation Coefficient 
(m-value)

p value (Raw) p value (Adj) Coefficienta 
(beta-value)

Brain-buccal 
correlation

Model 1: Physical Risk vs. 
Typical

cg25123362 Chr10: 133793734 BNIP3 (Body) − 0.25 2.76E−11 1.95E−05 − 0.05 − 0.09

Model 1: Psychological Risk 
vs. Typical

cg08930413 Chr7: 151548036 PRKAG2 (Body) − 0.28 2.11E−08 1.49E−02 − 0.04 0.22

Model 2: Cumulative Prena-
tal Risk

cg16999677 Chr5: 843982 ZDHHC11 (Body) − 2.05 6.85E−08 4.84E−02 − 0.05 0.61**

cg05324191 Chr1: 116994757 LOC101929023 (Body) 1.03 1.30E−09 9.18E−04 0.02 − 0.33

cg01533736 Chr20: 22542854 LINC00261 (Body) − 1.18 1.17E−09 8.25E−04 − 0.03 0.40

cg00569188 Chr21: 41122530 IGSF5 (Body) − 1.28 4.61E−08 3.26E−02 − 0.03 − 0.17

cg09979763 Chr1: 245499904 KIF26B (Body) − 2.02 4.23E−08 2.99E−02 − 0.03 − 0.07

cg11420269 Chr16: 70516713 COG4 (Body; ExonBnd) − 1.46 2.07E−08 1.46E−02 − 0.03 0.02

cg27514986 Chr15: 39486981 C15orf54+ 2.78 9.74E−09 6.88E−03 0.05 0.19

cg05636131 Chr7: 148844053 ZNF398 (5’ UTR; TSS1500) − 1.09 6.93E−08 4.90E−02 − 0.02 0.42‡

cg11531492 Chr3: 125673505 ROPN1B+ − 2.63 6.56E−08 4.63E−02 − 0.05 − 0.08

cg26760502 Chr14: 105493800 CDCA4+ − 0.88 4.89E−08 3.45E−02 − 0.01 − 0.09

cg19573457 Chr22: 25893657 CRYBB2P1+ − 1.68 2.17E−08 1.53E−02 − 0.04 0.44*

cg01284858 Chr10: 123902371 TACC2 (5’UTR; Body) 3.61 6.20E−09 4.38E−03 0.06 − 0.32

cg12155575 Chr3: 186965150 MASP1 (Body) − 1.16 8.97E−09 6.33E−03 − 0.03 0.08

cg11221492 Chr14: 36790270 MBIP (TSS1500) − 0.90 3.92E−08 2.77E−02 − 0.01 0.54*

cg22102865 Chr7: 148844067 ZNF398 (TSS1500; 5’ UTR) − 1.24 1.37E−08 9.64E−03 − 0.02 0.46*
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samples (e.g., primarily term versus exclusively preterm 
children).

We also investigated the relationship between prenatal 
stress phenotypes and neonatal DNAm by using LCA to 
classify women into subgroups on the basis of the same 
24 risk factors. We found evidence for three distinct pre-
natal stress phenotypes. The majority of women belonged 
to a group that experienced few risk factors. In compari-
son, women in the physical risk group had elevated lev-
els of medical risk factors, such as hypertension (95%) 
and pre-eclampsia (79%). Women in the psychological 
risk group had elevated levels of mental health concerns, 
including the highest rates of depression (39%) and anxi-
ety (35%), as well as the highest rates of tobacco (44%), 
marijuana (41%), alcohol (13%), and illegal drug (24%) 
use. Previous work investigating prenatal stress pheno-
types in relation to fetal and neonatal behavior [52] also 
found a group with elevated physical risk factors (e.g., 
higher blood pressure, greater calorie, fat, and sugar con-
sumption) and a group with elevated psychological risk 
factors (e.g., greater depression, anxiety, and perceived 

stress) with similar proportions of women falling into 
the low risk or typical group (approximately 2/3) versus 
one of the two higher risk groups (approximately 1/3). 
These similarities emerged despite different study meth-
odologies (e.g., maternal self-reported versus objectively 
assessed risk factors) and different variables included in 
the latent models. Taken together, these findings provide 
evidence for distinct subgroups of women who may dif-
ferentially be impacted by physical health issues or psy-
chological health issues during pregnancy. However, our 
study is the first to demonstrate associations between 
prenatal risk phenotypes and neonatal DNAm.

Among the 15 CpGs that were associated with cumu-
lative prenatal risk, 12 were located in genes that have 
been linked in GWAS studies to relevant phenotypes 
for both physical (e.g., blood pressure [53], BMI [54], 
diabetes [55]) and mental health outcomes (e.g., schizo-
phrenia [56], depression [57], bipolar disorder [58]) as 
well as neurodevelopmental markers (e.g., brain vol-
ume/measurement [59], reaction time [60]). One gene 
(CDCA4) identified in our analysis encodes a member 

Fig. 2  Manhattan plot of epigenetic loci associated with cumulative prenatal risk. The x-axis shows the genomic location of individual CpG sites 
and the y-axis shows the −log10(p values) from models relating cumulative prenatal risk to CpG methylation, adjusting for child sex, recruitment 
site, postmenstrual age at collection, sample batch, and cellular heterogeneity. Gene annotations have been added for all CpGs yielding significant 
associations after Bonferroni adjustment. The horizontal red line depicts the Bonferroni adjusted p-value threshold (α = 0.05/706323). +indicates 
closest gene
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of the E2F family of transcription factors, which regu-
late spindle organization, cytokinesis, and cell prolif-
eration [61]. This gene has also previously been shown 
to be associated with leukocyte telomere length [62], 
suggesting potential ties between prenatal risk and bio-
logical aging processes. There was also some overlap in 
genes (KIF26B; TACC2) identified in the current analy-
sis with genes we previously reported to be associated 
(FDR < 0.10) with atypical neurodevelopmental pro-
files in the same sample [45]. Therefore, it is possible 
that DNAm of these genes may play a role in explain-
ing the prenatal programming of child neurodevelop-
ment, although additional longitudinal studies would 
be needed to rigorously test this hypothesis.

Only 2 CpG sites were differentially methylated 
across prenatal risk groups. Neonates of mothers in the 
physical risk group had 5% less methylation, on aver-
age, at cg25123362, located in the BNIP3 gene. Neo-
nates of mothers in the psychological risk group had 
4% less methylation, on average, at cg08930413, located 
in the PRKAG2 gene. Interestingly, both the BNIP3 
and PRKAG2 genes have been associated with similar 
traits in previous GWAS analyses, including educa-
tional attainment [63] and cognitive function [60, 63], 
suggesting that the associations between prenatal risk 
factors and child outcomes may be marked by some 
degree of equifinality (i.e., different biological pathways 
leading to the same outcome) [64].

Our DMR analyses yielded overlapping results with 
the individual CpG analyses for ZNF398 (associated 
with cumulative risk) and BNIP3 (associated with physi-
cal risk group). We also identified four significant DMRs 
that did not include individually significant CpGs from 
our EWAS, annotated to MASP1, DAP3, YY1AP1, 
CRYBB2P1, AVEN, and CHRM5. ZNF398 and BNIP3 are 
particularly interesting given that they were identified in 
both CpG-specific and regional analyses. Prior GWAS 
have linked ZNF398 to brain volume and neuroimaging 
measurements [65], while BNIP3 has been linked to cog-
nitive function [60]. Additionally, we found that DNAm 
levels at one CpG within the ZNF398 gene (cg22102865) 
were positively correlated between brain and buccal tis-
sues from publicly available data [46].

It was notable that our analysis using cumulative pre-
natal risk identified more significant CpGs (N = 15) than 
our analyses investigating phenotypes of prenatal risk 
(N = 2). There was also no overlap in significant CpGs or 
genes identified by the two models, suggesting that they 
may be unique methods for identifying risk. Cumula-
tive risk models are attractive because of their simplic-
ity, parsimony, and relatively greater statistical power, 
compared to alternative approaches (e.g., individual 
risk variables) [66]. They also mimic how these factors 
impact pregnant women as they rarely occur in isola-
tion. An empirical comparison of cumulative risk indices 
to either individual variable or factor score approaches 

Table 4  CpGs associated with prenatal risk are linked to genes that have been associated with traits in the GWASdb

Gene Traits (N) Selected traits

BNIP3 8 Self-reported educational attainment, intelligence, mathematical ability, household income, schizophrenia, cognitive func-
tion

PRKAG2 38 Self-reported educational attainment, mathematical ability, brain/neuroimaging measurement, gut microbiome meas-
urement, white matter microstructure, cardiovascular disease, brain volume measurement, bipolar disorder, psychotic 
symptoms, cognitive function

ZDHHC11 1 Myopia age of onset

LOC101929023 – –

LINC00261 4 Body mass index, fasting blood glucose measurement, birth weight

IGSF5 4 Systolic blood pressure, hypertension, short-term memory, health literacy

KIF26B 15 Brain volume/neuroimaging measurement, response to SSRI, unipolar depression, diet measurement, brain measurement, 
schizophrenia

COG4 3 Body height, body weight, body mass index

C15orf54 1 Dihydroxy docosatrienoic acid measurement

ZNF398 10 Brain volume/neuroimaging measurement, white blood cell count

ROPN1B – –

CDCA4 1 Telomere length

CRYBB2P1 4 Bipolar disorder

TACC2 16 Opioid dependence, metabolite measurement, body weight gain, schizophrenia, body height, reaction time measurement

MASP1 3 Type 2 diabetes

MBIP 6 Self-reported educational attainment, hypertension
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also found that risk indices provide better prediction of 
developmental patterns [67]. Therefore, cumulative pre-
natal risk indices may be a useful approach in that they 
provide a strong signal for the relationship of early adver-
sity to child outcomes, including DNAm. Indeed, there 
is precedence in the epigenetic literature for the use of 
cumulative risk scores as predictors of children’s DNAm 
[24, 68]. The disadvantages of cumulative risk indices 
are that each individual risk factor carries equal weight. 
Moreover, we cannot determine which variables are the 
most important drivers in explaining the association with 
outcomes which limits the practical application of these 
risk indices in clinical practice. Alternative “person-cen-
tered” approaches, like LCA and LPA models, allow for 
the modeling of patterns of correlated risk factors as they 
co-occur in real participants. An underlying assump-
tion is that different types of risk are differentially asso-
ciated with outcomes. “Person-centered” approaches 
offer advantages over individual variable or cumulative 
risk approaches in that they are both comprehensive and 
specific. The differentiation of prenatal risk phenotypes 
into physical and psychologically stressed individuals 
offer a new way to think about types of adverse prenatal 
environments that may be differentially related to child 
outcomes [52] and may require different types of inter-
vention. Previous studies comparing cumulative risk and 
LPA approaches in the context of child development have 
similarly reported that these two types of analyses pro-
vide complementary information about the relationships 
between risk factors and outcomes [69].

Limitations of this study are to be appreciated. First, 
we only considered binary risk factors as opposed to 
continuous indicators. This decision was partly necessi-
tated by our creation of a cumulative risk index. Many of 
the risk factors we included (e.g., presence or absence of 
physical or mental health diagnosis) are dichotomous in 
nature but some loss of information may have occurred 
from dichotomizing other variables (e.g., SES). Second, as 
the inclusion criteria for this study included birth prior 
to 30  weeks gestation and likely survival to discharge, 
women were necessarily recruited after pregnancy, and 
some pregnancy data were assessed retrospectively (e.g., 
maternal report of pregnancy moods and feelings). How-
ever, any retrospective data were collected in the neona-
tal period, potentially reducing the impact of recall bias. 
Third, we were unable to locate an external replication 
sample because of the unique nature of this cohort (e.g., 
very preterm neonates). The unique nature of the sam-
ple means that it is unclear to what extent our results 
are sample specific or whether they would generalize to 
later preterm or term children. Fourth, we observed dif-
ferential DNAm in buccal cells rather than in the tissues 
that may be more clearly related to children’s health (i.e., 

neural tissues for neurodevelopment). However, a benefit 
of measuring DNAm in peripheral tissue is that it could 
represent processes that are occurring elsewhere in the 
body such as in the immune and metabolic systems. As 
prematurity is a systemic condition impacting nearly all 
organ systems, peripheral tissues may be particularly rel-
evant to study in this sample. Finally, although the differ-
ences in DNAm we observed were small (1–6%), they are 
consistent with what has been reported in other epide-
miological studies investigating peripheral DNAm as it 
relates to other prenatal risk factors (e.g., smoking [70]), 
as well as previous studies in our sample [37, 45]. How-
ever, small effects in DNAm are likely important [71], as 
they open a potential window into understanding mecha-
nisms driving child health.

Conclusions
In sum, we observed associations between prenatal risk 
factors and DNAm in very preterm infants using both 
cumulative risk and risk phenotype approaches. Epi-
genetics offers a potential biological indicator of the 
amount and type of prenatal risk that children were 
exposed to, which may be particularly useful for identi-
fying infants at greatest risk especially in populations of 
vulnerable infants. There remains a need to better under-
stand whether differences in DNAm at birth are related 
to children’s health and neurodevelopmental trajectories.
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