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MethCORR infers gene expression from DNA 
methylation and allows molecular analysis 
of ten common cancer types using fresh‑frozen 
and formalin‑fixed paraffin‑embedded tumor 
samples
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Abstract 

Background:  Transcriptional analysis is widely used to study the molecular biology of cancer and hold great bio-
marker potential for clinical patient stratification. Yet, accurate transcriptional profiling requires RNA of a high quality, 
which often cannot be retrieved from formalin-fixed, paraffin-embedded (FFPE) tumor tissue that is routinely col-
lected and archived in clinical departments. To overcome this roadblock to clinical testing, we previously developed 
MethCORR, a method that infers gene expression from DNA methylation data, which is robustly retrieved from 
FFPE tissue. MethCORR was originally developed for colorectal cancer and with this study, we aim to: (1) extend the 
MethCORR method to 10 additional cancer types and (2) to illustrate that the inferred gene expression is accurate and 
clinically informative.

Results:  Regression models to infer gene expression information from DNA methylation were developed for ten 
common cancer types using matched RNA sequencing and DNA methylation profiles (HumanMethylation450 
BeadChip) from The Cancer Genome Atlas Project. Robust and accurate gene expression profiles were inferred for 
all cancer types: on average, the expression of 11,000 genes was modeled with good accuracy and an intra-sample 
correlation of R2 = 0.90 between inferred and measured gene expression was observed. Molecular pathway analysis 
and transcriptional subtyping were performed for breast, prostate, and lung cancer samples to illustrate the general 
usability of the inferred gene expression profiles: overall, a high correlation of r = 0.96 (Pearson) in pathway enrich-
ment scores and a 76% correspondence in molecular subtype calls were observed when using measured and inferred 
gene expression as input. Finally, inferred expression from FFPE tissue correlated better with RNA sequencing data 
from matched fresh-frozen tissue than did RNA sequencing data from FFPE tissue (P < 0.0001; Wilcoxon rank-sum test).

Conclusions:  In all cancers investigated, MethCORR enabled DNA methylation-based transcriptional analysis, thus 
enabling future analysis of cancer in situations where high-quality DNA, but not RNA, is available. Here, we provide the 
framework and resources for MethCORR modeling of ten common cancer types, thereby widely expanding the pos-
sibilities for transcriptional studies of archival FFPE material.
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Background
In the clinic, patients are stratified based on staging of 
their tumors, which is founded in clinico-pathological 
evaluation of tumor appearance, growth pattern, and 
extend of disease spread. Despite this, cancers of similar 
stage still exhibit great differences in clinical outcome [1]. 
Probably because the inter-tumor heterogeneity at the 
molecular level still is very high within each tumor stage, 
causing “one-size fits all” treatment strategies to fail.

Recently, transcriptomic data have been widely used 
to resolve this molecular heterogeneity, e.g., by stratifi-
cation of tumors into homogenous molecular subtypes 
[2–7] and application of subtype-specific biomarkers 
[5]. This paradigm-changing research was primarily per-
formed using high-quality RNA purified from fresh-fro-
zen tumor samples. Yet, fresh-frozen tumor tissue is not 
routinely collected in the clinic. Here, formalin-fixation 
and paraffin-embedding (FFPE) is the standard method 
for preservation and storage of tissue. As the quality of 
RNA purified from FFPE tissue is variable and often poor 
[8], transcriptional profiling of FFPE tissue samples can 
be challenging [9–11]. This currently complicates broad 
clinical testing of promising transcriptional biomarkers. 
Additionally, since FFPE preservation has been used for 
decades, large biobanks of archival FFPE samples with 
long-term clinical follow-up information exist. These 
represent a highly desirable resource for retrospective 
studies of tumor classification and to derive more focused 
biomarkers such as subtype-specific biomarkers [5, 12].

To unlock the potential of archival FFPE samples for 
molecular analysis and facilitate broad clinical testing, 
we previously developed the MethCORR method [12] 
using colorectal cancer (CRC) samples. MethCORR uses 
DNA methylation levels of RNA expression-correlated 
CpG sites, located anywhere in the genome, to infer 
RNA expression (iRNA) for a large fraction of genes 
using regression modeling (11,222 genes in CRC). As 
input, MethCORR utilizes DNA methylation profiles 
generated by the Illumina Infinium BeadChip platform 
(450K/EPIC), which can produce highly concordant 
DNA methylation profiles in matched fresh-frozen and 
FFPE samples [13–15]. In agreement, we have shown 
that MethCORR is compatible with both fresh-frozen 
and FFPE colorectal cancer tissue and that MethCORR 
allows uniform molecular characterization, classifica-
tion, and prognostic biomarker identification indepen-
dently of preservation type [12]. Based on these results, 
we hypothesized that the MethCORR method may 
be applicable to other cancer types as well and enable 

transcriptional analysis of samples with low RNA quality 
or when only DNA methylation profiles are available.

In this study, we demonstrate the applicability of the 
MethCORR method to ten other cancer types by exploit-
ing the availability of matched RNA expression and DNA 
methylation data from The Cancer Genome Atlas project 
(TCGA), in order to identify RNA expression-correlated 
CpG sites in each cancer type. Our primary aim was to 
demonstrate the generality of the MethCORR method 
in cancer samples and to present MethCORR models 
that can be used to predict RNA expression from DNA 
methylation profiles in each cancer type. Secondar-
ily, by focusing on breast, lung, and prostate cancer, we 
illustrated the potential use of inferred RNA expression 
profiles for molecular classification and characterization 
using fresh-frozen and FFPE cancer cohorts.

Results
MethCORR infers RNA expression from DNA methylation 
in ten cancer types
The MethCORR method [12] was applied to data from 
ten cancer types (BRCA, PRAD, LUAD, LUSC, SKCM, 
STAD, BLCA, KIRC, ESCA, and UCEC; Table  1 and 
Additional file  1). In brief, this involved application of 
the following steps in samples used for training (80% of 
samples for each cancer; Fig.  1a): (1) identification of 
all genome-wide correlations between gene expression 
and CpG-site methylation levels using matched RNA 
sequencing and 450K methylation data. (2) Gene-wise 
selection of CpG sites (up to 200 sites per gene) whose 
methylation level most negatively- and positively cor-
related with expression (≤ 100 negatively and ≤ 100 
sites positively correlated CpG sites). (3) Calculation 
of a MethCORR score (MCS) for each gene using the 
200 expression-correlated CpG sites (see “Methods” 
section). (4) The MCSs were next used as input in lin-
ear regression modeling to identify genes for which the 
MCS can be used to infer RNA expression with good 
accuracy (as evaluated both by cross-validation and in 
completely independent samples; see methods section). 
A good relationship between observed RNA expression 
and inferred RNA expression (iRNA) was reached for 
9313–13,018 genes, dependent on the cancer type ana-
lyzed (average of 11,000 genes; R2 > 0.16; Table 1; inter-
sample modeling metrics can  be found in Additional 
file  2). These genes, with high inter-sample correla-
tions, were termed MethCORR genes. An investigation 
of all MethCORR models revealed that genes with 
good models (i.e., MethCORR genes) exhibited greater 
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variation in RNA expression between samples as com-
pared to genes with poor performing MethCORR mod-
els (non-MethCORR genes; R2 ≤ 0.16; Additional file 5: 
Fig. S1a), as previously described for colorectal cancer 
[12]. Hence, RNA expression variation between sam-
ples is needed for accurate MethCORR modeling and 
may explain why the number of MethCORR genes dif-
fer slightly between cancer types.

Using MethCORR genes, a high intra-sample correla-
tion was found between observed RNA expression and 
iRNA expression for the completely independent vali-
dation samples in all cancer types [Fig. 1b, c; median R2 
all cancer types: 0.91 (R2 range all cancer types: 0.59–97; 
Additional file 3)]. Furthermore, for available independ-
ent validation samples with matched fresh-frozen and 
FFPE tissue samples (BRCA, PRAD, LUAD, BLCA, 
KIRC, and UCEC; 25 samples in total; Additional file 4), a 
significantly (P < 0.0001, Wilcoxon rank-sum test) higher 
intra-sample correlation between iRNA expression cal-
culated from FFPE DNA methylation and matched fresh-
frozen RNA sequencing profiles was found (median R2 
all cancer types: 0.89; R2 range all cancer types: 0.69–
0.95; Fig.  1d), compared to FFPE RNA sequencing and 

matched fresh-frozen RNA sequencing (median R2 all 
cancer types: 0.79; R2 range all cancer types: 0.49–0.88; 
Fig.  1d and Additional file  5: Fig. S1b). Demonstrat-
ing how inferring of RNA expression from FFPE DNA 
methylation often can be a superior route to obtain 
robust RNA expression profiles from FFPE tissue com-
pared to direct sequencing of RNA extracted from FFPE 
tissue. The finding is in line with our previous observa-
tion in CRC [12]. A PCA provided additional evidence, 
by revealing that matched fresh-frozen and FFPE RNA 
sequencing profiles clustered according to preservation 
method, whereas samples clustered more according to 
cancer type when analyzing RNA sequencing of fresh-
frozen samples and iRNA expression from matched FFPE 
samples (Fig. 1e).

The performance of the MethCORR method was 
compared to that of TOBMI [16] and BioMethyl [17], 
which are two alternative approaches to methylation-
based RNA expression imputation. We compared the 
gene-specific model performance (inter-sample corre-
lation between inferred RNA expression and observed 
RNA expression) for MethCORR, TOBMI, and BioM-
ethyl and found that MethCORR exhibited overall higher 

Table 1  Overview of cancer cohorts used in the study

The number of samples with matched RNA sequencing and 450K DNA methylation for each cancer type is given. The number of MethCORR genes for each cancer 
reflects the number of genes with R2 > 0.16 between observed and inferred RNA expression (iRNA) in both the discovery and the validation set, as previously defined 
for colorectal cancer [12]

Cohort Cancer type Number of samples Available datatypes Number 
of MethCORR 
genes

UCSC XENA TCGA BRCA​ Breast invasive carcinoma 873 RNA seq
450K DNA meth

13,018

UCSC XENA TCGA PRAD Prostate adenocarcinoma 533 RNA seq
450K DNA meth

11,348

UCSC XENA TCGA LUAD Lung adenocarcinoma 477 RNA seq
450K DNA meth

11,935

UCSC XENA TCGA LUSC Lung squamous cell carcinoma 379 RNA seq
450K DNA meth

10,911

UCSC XENA TCGA STAD Stomach adenocarcinoma 372 RNA seq
450K DNA meth

11,259

UCSC XENA TCGA BLCA Bladder urothelial carcinoma 424 RNA seq
450K DNA meth

11,238

UCSC XENA TCGA SKCM Skin cutaneous melanoma 474 RNA seq
450K DNA meth

9473

UCSC XENA TCGA KIRC Kidney renal clear cell carcinoma 343 RNA seq
450K DNA meth

10,725

UCSC XENA TCGA UCEC Uterine corpus
endometrial carcinoma

197 RNA seq
450K DNA meth

9313

UCSC XENA TCGA ESCA Esophageal carcinoma 182 RNA seq
450K DNA meth

10,786

GSE117439 Breast cancer 52 450K DNA meth –

GSE84207 Breast cancer 279 450K DNA meth –

GSE73549 Prostate cancer 57 450K DNA meth –

GSE66836 Lung adenocarcinoma 164 450K DNA meth –
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inter-sample correlations (Additional file 5: Fig. S1c and 
S1d).

MethCORR inferred RNA expression allows molecular 
stratification of breast, prostate, and lung cancer
Next, it was investigated whether iRNA expression could 
be used as a substitute for RNA expression in molecular 
stratification of breast, prostate, and lung cancer. These 
cancer types were in focus here due to the availability of 
450K methylation profiles from independent fresh-frozen 
and FFPE samples, which allow comparative evaluation 
of the MethCORR method in both fresh-frozen and FFPE 
cohorts.

Initially, the focus was on breast cancer and a differ-
ential expression analysis with normal vs tumor tissue 
revealed an agreement of 95% in identified significantly 
differential expressed genes (n = 9936, Wilcoxon rank-
sum test < 0.01) between RNA and iRNA expression 
(Additional file  6: Fig. S2a). This analysis underscores 
the ability of iRNA expression to identify possible bio-
marker candidates for discrimination and stratification 
of normal and tumor tissue samples. The clinical classi-
fication of breast cancer currently relies on histological 
grading, hormone receptor status, and molecular clas-
sification. For samples with available hormone recep-
tor status on the estrogen receptor (ER), we found that 
samples clustered together according to receptor (ER) 
status both in a PCA and in bootstrap hierarchical clus-
tering analysis performed with either RNA expression or 
iRNA expression in the TCGA BRCA cohort (Fig. 2a and 
Additional file 6:  Fig. S2b and S2c). This result supported 
and highlighted that iRNA expression in breast cancer 
possess biological information equally to RNA expres-
sion data. This separation of ER positive and negative 
samples was confirmed in a PCA and clustering analy-
sis with iRNA expression calculated in an independ-
ent fresh-frozen (GSE84207) and, notably also, a FFPE 

cohort (GSE117439) with available ER status (Additional 
file 6: Fig. S2b and S2c).

In the clinical management of breast cancer, the 
PAM50 gene expression classifier is a widely used 
molecular classification system [18]. It stratifies the 
disease into the intrinsic subtypes “Basal-like,” “HER2-
enriched,” “Luminal A,” “Luminal B,” and “Normal-like.” 
Here, all tumor samples of the TCGA BRCA cohort 
were PAM50 classified using either RNA expression or 
iRNA expression as input. A moderate concordance was 
observed between the subtype predictions made with 
RNA and iRNA expression data (Cohen’s kappa coef-
ficient = 0.64; Fig.  2b). Concordance was observed for 
72% of all analyzed samples and was low for the HER2-
enriched and Luminal A subtype tumors (Basal-like 
96%, HER2-enriched 52%, Luminal A 50%, Luminal B 
76%, and Normal-like 88%; Fig. 2b). We also performed 
comparison of the RNA and iRNA-based PAM50 clas-
sification to the original microarray-based classification 
provided by the TCGA [3]. Here, a good agreement was 
found between microarray- and RNA-based classifica-
tion, whereas the agreement between microarray and 
iRNA-based classification were again moderate (Addi-
tional file 6: Fig. S2d and S2e). To gain insights into pos-
sible reasons for PAM50 classification discrepancies, we 
performed an inspection of the 50 PAM50 genes. This 
showed that MethCORR model performance R2 was 
between 0.17 and 0.80 for these genes and that, e.g., top 
three genes defining the HER2-enriched subtype all had 
a R2 value below 0.37 (Additional file  6:  Fig. S2f ). We 
therefore speculate that disconcordance between RNA 
and iRNA PAM50 subtypes may be partly explained 
by MethCORR genes with low model performance. 
We next investigated if the PAM50 subtype classifica-
tions stratified patients into groups with differences in 
postoperative survival. Reports have shown that of the 
five subclasses, the Luminal A tumors have the most 

(See figure on next page.)
Fig. 1  MethCORR inferred RNA expression in ten cancer types. a Overview of the MethCORR method. (1) Each TCGA cohort with matched 
RNA expression and DNA methylation data is independently used for the MethCORR method. (2) The expression of each RNA is correlated to 
the methylation level of each CpG site across all discovery samples. (3) The ≤ 100 most positive and ≤ 100 most negative expression-correlated 
CpG sites specific for each RNA constitute the MethCORR matrix. (4) The methylation level of the RNA expression-correlated CpG sites from the 
MethCORR matrix is used to calculate inferred RNA expression for each gene in fresh-frozen and FFPE samples. The iRNA expression profiles can 
be used for transcriptional-like analysis. b Scatterplots with intra-sample correlations between observed RNA expression and iRNA expression for a 
representative sample (median R2) from the TCGA BRCA, PRAD, and LUAD validation samples. c Scatterplot with RNA expression-iRNA expression 
squared correlations (R2) for all validation samples for each of the ten TCGA cohorts. d Left: Table with squared correlation (R2) and root mean square 
error (RMSE) for correlations between observed RNA expression in fresh-frozen tissue and iRNA expression calculated in matched FFPE tissue or 
observed RNA expression in matched FFPE tissue. Correlations are shown for all validation samples with matched tissue for the BRCA (n = 3), PRAD 
(n = 3), LUAD (n = 9), BLCA (n = 3), KIRC (n = 3), and UCEC (n = 4) cohorts. Right: Scatterplots with correlations between observed RNA expression in 
fresh-frozen tissue and iRNA expression calculated in matched FFPE tissue for a representative independent validation sample from the TCGA BRCA, 
PRAD, and LUAD cohorts. e Scatterplot with the first- (PC1; X-axis) and second principal component (PC2; Y-axis) from a PCA performed with RNA 
expression for 25 fresh-frozen cancer samples and matched FFPE RNA sequencing data (top) or calculated iRNA expression (bottom). The analysis 
was performed with common MethCORR genes for the 25 cancer samples (six cancers; n = 2374 common MethCORR genes)
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favorable prognosis, and the HER2-enriched and Basal 
tumors the worst [19, 20]. Indeed, despite differences 
in the RNA microarray-, RNAseq-, and iRNA-based 

PAM50 classifications, we found that all three classifi-
cations yielded overall survival estimates in agreement 
with this (Fig.  2c and Additional file  6:  Fig. S2g). This 
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may point to a relevance and prognostic potential of 
the iRNA-based PAM50 classification. While the clini-
cal impact of the iRNA- and RNA-based classifications 
may be slightly different, we note that samples clustered 
by subtype status in a PCA regardless whether RNA 
or iRNA expression was used as input (Fig.  2d) and, 
moreover, also when the iRNA expression was inferred 
from fresh-frozen (TCGA BRCA cohort) and FFPE 
(GSE117439) samples (Fig. 2d). The latter highlights the 

robustness of MethCORR across tissue preservation 
methods.

To further illustrate the potential use of iRNA 
expression for molecular subtype discovery, we 
focused on prostate cancer. Molecular heterogeneity 
in prostate cancer has previously been addressed by 
molecular subtyping, in particular, the TCGA research 
network identified three molecular subtypes by unsu-
pervised clustering of RNA expression profiles [21]. 
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Fig. 2  Molecular subtyping with MethCORR inferred RNA expression. a Scatterplot with the first- (PC1; X-axis) and second principal component 
(PC2; Y-axis) from a PCA performed with iRNA expression calculated for 738 TCGA BRCA samples with available estrogen receptor (ER) status. b 
Caleydo StratomeX [40] plot showing the concordance between PAM50 breast cancer subtype predictions made with RNA or iRNA expression as 
input for the TCGA BRCA cohort. Only samples with a confident subtype call for both input types are shown (n = 581; confidence = 1). c Kaplan–
Meier plots showing the overall survival of AJCC stage I-IV patients from the TCGA BRCA cohort stratified according to PAM50 subtypes using either 
RNA-based (left panel) or iRNA-based (right panel) PAM50 subtype calls (for all confidence levels). Significance was evaluated by the log-rank test. In 
parenthesis is provided the Bonferroni-adjusted P values (two comparisons, i.e., LumA vs. HER2 and LumA vs. Basal). d Scatterplot with the first- (PC1; 
X-axis) and second principal component (PC2; Y-axis) from a PCA performed with TCGA BRCA RNA expression, TCGA BRCA iRNA expression, and 
iRNA expression calculated in an independent breast cancer FFPE cohort (GSE117439) for the PAM50 genes. Samples are colored according to their 
predicted subtype. Only samples with a confident subtype call are shown (confidence = 1). e Caleydo StratomeX plot showing the concordance 
between prostate cancer subtype predictions (ConsensusClusterPlus) made with RNA or iRNA expression as input for 497 TCGA PRAD tumor 
samples. f Caleydo StratomeX plot showing the concordance between lung cancer subtype predictions made with RNA or iRNA expression as 
input for 454 TCGA LUAD tumor samples. PI: Proximal Inflammatory, PP: Proximal Proliferative, TRU: Terminal Respiratory Unit. g Scatterplot with 
the first- (PC1; X-axis) and second principal component (PC2; Y-axis) from a PCA performed with TCGA LUAD RNA expression, TCGA LUAD iRNA 
expression, and iRNA expression calculated in an independent fresh-frozen cohort (GSE86836) for the 474 centroid genes used for subtyping. 
Samples are colored according to their predicted subtype
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Here, we imitated the strategy used by the TCGA 
research network [21] and performed unsupervised 
clustering using both iRNA and RNA expression pro-
files. Indeed, three subtypes were identified, both 
when using TCGA PRAD iRNA expression or RNA 
expression data (Additional file  6:  Fig. S2h). A good 
agreement between the iRNA and RNA derived sub-
types was observed (Cohen’s kappa coefficient = 0.65; 
Fig. 2e; RNA Subtype 1 95%, RNA Subtype 2 78%, and 
RNA Subtype 3 60%). The findings were validated in 
independent FFPE samples (GSE73549). When the 
iRNA expression for the FFPE samples was analyzed 
together with the iRNA and RNA expression from 
the TCGA fresh-frozen samples, in a PCA, the sam-
ples generally clustered according to subtype status 
independently of preservation method (Additional 
file 6: Fig. S2i).

In lung cancer, Hayes et  al. in 2006 proposed three 
adenocarcinoma transcriptional subtypes: Proximal 
Inflammatory (PI), Proximal Proliferative (PP), and 
Terminal Respiratory Unit (TRU) [22]. The subtypes, 
which had different molecular characteristics and dif-
fered in survival, have since been further characterized 
by the TCGA research network [6]. Applying the same 
subtyping strategy as the TCGA research network to 
RNA and iRNA expression values from the TCGA 
LUAD cohort revealed good concordance between 
the subtype predictions made with the different RNA 
inputs (Cohen’s kappa coefficient = 0.72; Fig.  2f; PI 
78%, PP 83%, and TRU 83%). iRNA expression data 
were also extracted from the independent fresh-frozen 
lung cancer cohort (GSE66836) and used for subtyp-
ing. A combined PCA with iRNA expression data from 
GSE66836 together with iRNA and RNA expression 
data from TCGA LUAD revealed that the samples 
clustered according to subtype, independent of the 
study of origin and the input data type (Fig. 2g).

MethCORR inferred RNA expression allows biological 
characterization of cancer subtypes and samples
Although categorical subtyping is a potential clinical rel-
evant strategy for molecular stratification of cancer, it 
does not capture all aspects of inter-tumor heterogene-
ity. Therefore, to illustrate that iRNA expression allows 
more extensive and uniform biological characteriza-
tion of fresh-frozen and FFPE samples a comparative 
molecular characterization of the breast cancer sub-
types was performed by gene set enrichment analysis 
(GSEA). Initially, it was investigated if GSEA identified 
the same gene set enrichments when performed with 
iRNA as input as with RNA as input. Indeed, a high cor-
relation in the normalized enrichment scores (NESs) 
was observed for most gene sets in all five breast cancer 
PAM50 subtypes (Fig. 3a and Additional file 7: Fig. S3a; 
Pearson’s r range all subtypes: 0.65–0.91). Furthermore, 
a high concordance for most gene sets was also observed 
when comparing NESs from GSEA of BRCA subtypes 
and subtypes predicted in the independent FFPE cohort 
(GSE117439) performed with iRNA expression as input 
(Fig. 3b and Additional file 7: Fig. S3b; Pearson’s r range 
all subtypes: 0.59–0.96). A focused analysis of the five key 
gene sets known to be enriched in each subtype showed 
that “Genes upregulated in Basal-like vs Luminal” were 
significantly enriched in Basal-like, “Genes upregu-
lated in HER2-enriched” were significantly enriched in 
HER2-enriched, “Genes upregulated in Luminal A/B” 
were significantly enriched in Luminal A/B, and “Genes 
upregulated in normal breast tissue” were significantly 
enriched in Normal-like (Fig.  3c). These findings were 
similar independent of the study of origin and the input 
data type (Fig. 3c). Additionally, when focusing on char-
acterization of the tumor immune microenvironment, 
a high correlation was found between tumor immune 
infiltration abundance scores determined with RNA 
and iRNA expression (Fig.  3d). Notably, the prognostic 

(See figure on next page.)
Fig. 3  Subtype characterization with MethCORR inferred RNA expression. a Scatterplot with correlation between normalized enrichment scores 
(NESs) from a gene set enrichment analysis (GSEA) of the TCGA BRCA Basal-like subtype vs. all other BRCA samples (HER2-enriched, Luminal, and 
normal-like) performed with RNA expression (x-axis) or iRNA expression (y-axis). b Scatterplot with correlation between NESs from a GSEA of 
the TCGA BRCA Basal-like subtype vs. all other BRCA samples performed with iRNA expression as input (x-axis) and the Basal-like subtype vs. all 
other samples in the independent FFPE cohort (GSE117439) performed with iRNA expression as input (y-axis). c Table with selected gene sets 
differentially enriched between breast cancer subtypes identified by GSEA analysis. GSEA was performed with RNA and iRNA expression in the TCGA 
BRCA cohort and iRNA expression in the independent breast cancer FFPE cohort (GSE117439). Gene sets with a positive NES are indicated by a red 
color scale and gene sets with a negative NES are indicated by a blue color scale. Significance is highlighted by bold (FDR < 0.05). See the methods 
section for the origin of the selected gene sets. d Scatterplot with correlation between ESTIMATE immune scores from an ESTIMATE [46] analysis 
performed with RNA expression (x-axis) or iRNA expression (y-axis). e Kaplan–Meier plots showing the overall survival of AJCC stage I-IV ER positive 
patients from the TCGA BRCA cohort stratified according to high or low CD8A expression (median cut-off ) using either RNA (left panel) or iRNA 
(right panel). Significance was evaluated by the log-rank test. f Line chart with correlations between enrichment scores from single sample GSEA 
performed with RNA expression in fresh-frozen tissue and iRNA expression calculated in matched FFPE tissue or RNA expression in matched FFPE 
tissue. Correlations are shown for all samples with matched tissue for the BRCA (n = 3), PRAD (n = 3), LUAD (n = 9), BLCA (n = 3), KIRC (n = 3), and 
UCEC (n = 4) cohorts
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T-lymphocyte marker CD8A was able to stratify the 
major group of estrogen receptor positive (ER+) breast 
cancer patients into groups with high and low survival 
risk independently of using RNA or iRNA expression and 
a similar trend was seen when analyzing all breast cancer 
samples (Fig. 3e and Additional file 7: Fig. S3c).

Finally, single sample GSEA (ssGSEA) was performed 
for the 25 samples (from six cancer types) with matched 
fresh-frozen RNA expression data and FFPE RNA 
expression/iRNA expression data. Overall, high correla-
tions between matched fresh-frozen and FFPE ssGSEA 
enrichment scores were observed, regardless of com-
paring fresh-frozen RNA expression with FFPE RNA 
expression or FFPE iRNA expression (Fig.  3f ). Notably, 
we found that correlations between enrichment scores 
for ssGSEA performed with matched fresh-frozen RNA 
expression and FFPE iRNA expression were significantly 
higher (average Pearson’s r = 0.96; P = 0.0003, Wilcoxon 
rank-sum test) as compared to ssGSEA performed with 
FFPE RNA expression data (average Pearson’s r = 0.92; 
Fig. 3f ).

Discussion
In this study, we investigated if the MethCORR method, 
originally developed for CRC, would be applicable in 
other cancer types to infer gene expression informa-
tion from DNA methylation, as an alternative to direct 
RNA profiling. We applied the MethCORR method to 
ten common cancer types and were able to infer RNA 
expression with good accuracy for both fresh-frozen and 
FFPE tissue samples. The conversion of DNA methylation 
profiles into a gene-centric expression format represent 
a particular strength for molecular analysis as it allows 
analysis of fresh-frozen and FFPE samples using the 
plethora of bioinformatics tools, databases, signatures, 
and biomarkers that is established for RNA expression 
data. We illustrate this by showing that iRNA expression 
can be used as a substitute for RNA expression during 
molecular classification/subtyping of three cancer types 
(Fig.  2) and during pathway analysis by GSEA indepen-
dently of the sample preservation type (Fig.  3). In con-
trast, such molecular analysis is currently not possible 
using DNA methylation data.

Transcriptional profiling can be difficult in FFPE tissue 
due to poor quality of the extracted RNA, especially of 
archival samples [8]. Using MethCORR, we have previ-
ously shown for colorectal cancer that fresh-frozen sam-
ples with low-quality RNA exhibit poorer intra-sample 
iRNA-RNA correlations than samples with high RNA 
quality [12]. This analysis shows that even slight RNA 
degradation in fresh-frozen tissue can lead to poor corre-
lations between iRNA and RNA, an effect that is expected 
to be much more pronounced in FFPE and fresh-frozen 

sample comparisons. In support of this, we here con-
firm for TCGA samples from six cancers that correlation 
between transcriptome profiles from matched fresh-
frozen and FFPE samples was modest (Fig. 1d). This can 
preclude confident transcriptional profiling and molecu-
lar analysis of archival FFPE samples with long-term 
clinical follow-up information and of FFPE samples that 
are routinely collected for all cancer patients in clinical 
departments. We and others have reported that DNA 
methylation is robustly measured in FFPE tissue [12–15], 
which is likely due to the fact that DNA is considered to 
have a higher biostability compared to RNA in FFPE tis-
sue [23, 24] and that DNA methylation is robustly meas-
ured in FFPE tissue by the Illumina Infinium BeadChip 
platform (450K/EPIC) upon DNA restoration [13, 14]. 
Consistently, the present matched analyses of FFPE and 
fresh-frozen tissues from six cancer types showed that 
MethCORR inferred RNA expression in FFPE tissue was 
most frequently better correlated to RNA sequencing 
data from fresh-frozen tissue, than RNA sequencing data 
of the FFPE tissue (Fig. 1). This demonstrates how Meth-
CORR analysis may unlock the great clinical potential of 
archival as well as routinely collected FFPE samples.

We fully acknowledge, and are encouraged, that some 
studies have shown good performance of RNA expres-
sion profiling in FFPE tissue and that such data have been 
used for transcriptional analysis [25–28]. However, only 
relatively few samples have been included in these studies 
and we are not aware of any large RNA sequencing stud-
ies performed on FFPE cohorts, which may indicate that 
FFPE RNA sequencing procedures still need improve-
ments to become widely used. Optimization of the FFPE 
preservation conditions and newer sequencing technolo-
gies have been introduced since the TCGA project was 
undertaken, which may improve FFPE RNA sequencing 
and outperform MethCORR. However, large datasets 
with newer RNA sequencing data and matched DNA 
methylation data are currently not available to allow such 
comparisons. We note that the performance of FFPE 
RNA sequencing [11] and transcription-based subtyping 
[27] is strongly dependent on the time passed since for-
malin fixation. It appears that the negative effects of fixa-
tion increase as time passes by. Therefore, it remains to 
be established if the pronounced shift in RNA expression 
profiles from fresh-frozen to FFPE tissue [29] can be fully 
resolved.

The analyses presented here show that the FFPE has 
less effect on DNA methylation and inference of RNA 
expression. The matched FFPE iRNA and fresh-frozen 
RNA sequencing profiles clustered together according 
to cancer type rather than preservation type, whereas 
matched fresh-frozen and FFPE RNA sequencing pro-
files clustered according to preservation type rather 
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than phenotypic differences (Fig.  1e) [12, 30, 31]. This 
indicates that the biological information in DNA meth-
ylation/iRNA expression is less influenced by the preser-
vation method.

Collectively, our detailed analysis of breast, lung, and 
prostate cancer shows that MethCORR iRNA expression 
profiles can support both uniform subtype classification, 
unsupervised subtype discovery, and characterization in 
fresh-frozen and FFPE samples using bioinformatics tools 
normally employed for RNA expression analysis. We find 
an overall 76% correspondence in molecular subtype calls 
for breast, prostate, and lung cancer when using RNA 
and iRNA expression profiles as input. We acknowledge 
that the concordance for some subtypes (especially the 
BRCA HER2-enriched and Luminal A subtypes) may 
be considered modest. We speculate that differences in 
MethCORR modeling accuracy between genes may be a 
contributor to differences in subtype classification when 
comparing RNA sequencing, RNA microarray, and iRNA 
data. This is not entirely unexpected nor disqualifying, as 
methods for subtype classification have previously been 
modified to better fit the profiling approach. For example, 
the original consensus molecular classifier for colorectal 
tumors based on RNA microarray data [2] was recently 
adapted to RNA sequencing data from, e.g., cell lines 
by replacement of genes included in the classifier [32]. 
Still, it is encouraging that iRNA-based PAM50 classifi-
cation recapitulates well-established survival differences 
between breast cancer subtypes despite disconcordances 
between RNA and iRNA-based subtype calls. However, 
further studies are needed to further evaluate the poten-
tial of iRNA-based PAM50 subtyping, as illustrated here, 
in independent cohorts.

We compared the performance of MethCORR to the 
TOBMI [16] and BioMethyl [17] methods and found that 
MethCORR outperformed both of the methods. The Bio-
Methyl method bears high resemblance to MethCORR; 
however, BioMethyl only uses CpG sites associated with 
each gene (i.e., CpG sites in the gene region) to infer 
gene expression, whereas MethCORR identified correla-
tions genome-widely. Perhaps for this reason, we found 
that the MethCORR method has overall better perfor-
mance in RNA expression imputation. Also, the Meth-
CORR models are only trained once and can hereafter be 
directly applied to independent DNA methylation data-
sets to infer gene expression. In contrast, TOBMI [16] is 
a k-nearest neighbor weighted method, and therefore, re-
computation should be performed whenever inferring of 
gene expression is performed for new samples.

Finally, it should be noticed that a major limitation is 
the requirement of large cohorts with matched DNA 
methylation and RNA sequencing data for establish-
ment of MethCORR models within a specific cancer 

type. However, with this manuscript we provide pre-
established MethCORR models for ten common cancer 
types, which will allow direct use of MethCORR for these 
cancers. Furthermore, it should be noted that Meth-
CORR allows three layers of molecular information to 
be derived from a single DNA methylation profile: the 
methylome profile itself (generated by either of the 450K 
or EPIC methylation arrays [12]), a MethCORR inferred 
RNA expression profile, and a chromosome copy num-
ber profile, calculated from the methylation array signal 
intensity [33]. Consequently, MethCORR is a cost-effi-
cient alternative method to RNA sequencing with robust 
performance in FFPE tissue.

Conclusions
We have demonstrated that MethCORR can infer RNA 
expression from DNA methylation profiles in all ten 
cancer types analyzed, in addition to CRC where the 
method was originally developed [12]. Furthermore, we 
have shown that inferred RNA expression allows subtype 
discovery, classification, and characterization of fresh-
frozen and FFPE samples. Hereby, we envision that Meth-
CORR inferred gene expression profiles can contribute to 
testing of molecular classification and biomarkers both in 
a clinical setting using the FFPE tissue that is standardly 
collected from all cancer patients, and in unexplored 
FFPE archives. With this study, the use of MethCORR by 
the scientific community is facilitated, as the ten Meth-
CORR matrixes and the associated gene regression mod-
els are made freely available, which allow calculation of 
inferred RNA expression profiles in independent samples 
with available DNA methylation data.

Methods
Cancer cohorts and datasets
The BRCA, PRAD, LUAD, LUSC, STAD, SKCM, 
BLCA, KIRC, ESCA, and UCEC cohorts were all col-
lected as part of the TCGA Project. All cohorts consist 
of mucosa and tumor samples. All clinical information, 
RNA sequencing data, and DNA methylation data were 
acquired via the UCSC XENA public Data Hubs [34] 
(https​://xena.ucsc.edu/publi​c/) and the GDC data por-
tal [35] (https​://porta​l.gdc.cance​r.gov/). The GSE117439, 
GSE84207, GSE66836, and GSE73549 cohorts were 
acquired as series matrix files from the Gene Expression 
Omnibus (GEO) [36]. Only tumor samples were used for 
subtype, biomarker, and pathway analysis (Figs.  2 and 
3). The estrogen receptor status for BRCA samples was 
obtained from the column “breast_carcinoma_estrogen_
receptor_status” in the “Phenotypes” file (clinical matrix) 
available from the UCSC XENA database [34].

https://xena.ucsc.edu/public/
https://portal.gdc.cancer.gov/
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DNA methylation data
Infinium HumanMethylation450K BeadChip (HM-450K) 
DNA methylation profiles for TCGA cohort samples 
were acquired from the UCSC XENA Public Data Hubs 
[34] (https​://xena.ucsc.edu/publi​c/) and GDC data por-
tal [35] (https​://porta​l.gdc.cance​r.gov/). HM-450K DNA 
methylation profiles for the GSE117439, GSE84207, 
GSE66836, and GSE73549 cohorts were acquired as 
series matrix files from the Gene Expression Omnibus 
(GEO) [36]. Methylation profiles were acquired as nor-
malized DNA methylation β-values.

RNA sequencing data
RNA sequencing profiles for TCGA cohort samples were 
acquired from the UCSC XENA Public Data Hubs [34] 
(https​://xena.ucsc.edu/publi​c/) as log2(FPKM + 1) nor-
malized RNA expression values for 20,530 genes and via 
the GDC data portal [35] (https​://porta​l.gdc.cance​r.gov/) 
as FPKM normalized RNA expression values for 60,483 
genes.

Datasets used for the MethCORR method
The MethCORR method [12] was independently applied 
to ten TCGA cancer types, which established a Meth-
CORR matrix and linear regression models specific to 
each cancer type. Primarily, MethCORR development 
was performed using HM-450K DNA methylation data 
and RNA sequencing data acquired in normalized for-
mat via the UCSC XENA Public Data Hubs (https​://xena.
ucsc.edu/publi​c/) [34].

Secondarily, MethCORR development was performed 
using HM-450K DNA methylation data and RNA 
sequencing data (17,611 RNAs, these were selected from 
the original dataset of 60,483 genes as they overlap with 
the RNAs included in the UCSC XENA RNA dataset) 
acquired in normalized format from the GDC data por-
tal [35] (https​://porta​l.gdc.cance​r.gov/). This analysis was 
performed to generate a GDC data-based MethCORR 
matrix that was used for analysis of the matched TCGA 
fresh-frozen and FFPE samples included in this study 
(BRCA, PRAD, LUAD, BLCA, KIRC, and UCEC), as data 
from these samples were acquired via the GDC data por-
tal (Additional file  4). All samples from the GDC data-
base with matched fresh-frozen and FFPE samples were 
excluded from training of MethCORR and only used for 
independent validation. During correlation analysis with 
RNA-sequencing data from matched fresh-frozen and 
FFPE samples, only data that originated from the same 
source center (RNA sequencing center; information 

available at https​://porta​l.gdc.cance​r.gov/) and subjected 
to identical bioinformatics processing were analyzed. 
One fresh-frozen-FFPE dataset pair was excluded 
as  fresh-frozen and FFPE RNA sequencing datasets did 
not originate from the same source center. Furthermore, 
in the cases where RNA sequencing was performed on 
two fresh-frozen samples for a patient, the RNA seq. run 
where the fresh-frozen sample was analyzed on the same 
sample plate as the matched FFPE sample was selected 
(information from the TCGA barcode).

The MethCORR method—identification of RNA 
expression‑correlated CpG sites
Identification of expression-correlated CpG sites was 
performed as previously described [12]: each cancer type 
was divided in two discovery sets (set 1–2, each encom-
passing 40% of samples), whereas a third set was reserved 
for independent validation (set 3, 20% of the samples; 
Additional file  1). Genome-wide Spearman correlations 
between the expression of each RNA and the DNA meth-
ylation level (β-value) of each CpG site were calculated 
independently in each discovery set. All nonsignificant 
Spearman correlation pairs were discarded. The remain-
ing significant (P < 0.01) expression-correlated CpG sites 
were ranked by their Spearman’s rho in each discovery 
set and after that by their rank-sum within the discovery 
set 1 and 2 to identify “common” top expression-corre-
lated CpG sites. From these common ranked CpG site 
lists, we selected up to 100 CpG sites whose methylation 
level (β-value) most negatively or positively correlated 
with RNA expression, which resulted in lists of ≤ 200 
expression-correlated CpG sites specific for each RNA 
(depending on the number of expression-correlated CpG 
sites in the common ranked lists). The ≤ 200 expression-
correlated CpG sites specific for each RNA constitutes 
the MethCORR matrix (UCSC XENA-based MethCORR 
matrix specific for each cancer is integrated in the pro-
vided MethCORR v1.0 R workspace (https​://moma.dk/
MethC​ORR-softw​are); GDC-based MethCORR matrix 
available upon request).

The MethCORR method—calculation of MethCORR scores
For each sample in each cancer type, we used the meth-
ylation β-values of the gene-specific top ≤ 200 expres-
sion-correlated CpG sites, included in the cancer specific 
MethCORR matrix, to calculate a MethCORR score 
(MCS) for each gene using the formula [12]:

https://xena.ucsc.edu/public/
https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/public/
https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/public/
https://xena.ucsc.edu/public/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://moma.dk/MethCORR-software
https://moma.dk/MethCORR-software
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The MCS formula calculates the average methylation 
value of the expression-correlated CpG sites specific for 
each gene. The R-package Impute v1.62.0 [39] was used 
to impute MCSs in samples with missing MCSs.

The MethCORR method—modeling of RNA expression 
and calculation of inferred RNA expression
For each cancer, we modeled the relationship between 
MCSs and RNA expression for each gene in the dis-
covery set samples (set 1 + 2). We used both simple lin-
ear (RNA = B0 + B1*MCS) and polynomial regression 
models (RNA = B0 + B1*MCS + B2*MCS2… + Bn*MCSn; 
n = 2–4). The Caret R-package v6.0-86 [37] was used to 
perform modeling by 10× 10-fold cross-validation. The 
best model was selected based on the root mean square 
error (RMSE). The model performances were highly 
similar for simple linear and polynomial regression mod-
els for most genes and, therefore, polynomial regression 
models were only selected if a ≥ 5% relative decrease in 
RMSE was observed over simple linear regression mod-
els. The gene-specific model performances were indepen-
dently validated in validation set 3 (UCSC XENA model 
performance in Additional file  2). Genes with well-per-
forming models (R2 > 0.16) in the discovery sets and the 
validation set were regarded as MethCORR genes and 
were included in the MethCORR matrix. All poorer per-
forming models (R2 ≤ 0.16) were excluded. These criteria 
for MethCORR gene annotation are in line with our pre-
vious MethCORR analysis of colorectal cancer [12]. For 
each gene in each sample, we used MCSs as input in the 
gene-specific regression model to infer RNA expression 
(iRNA expression).

The UCSC XENA linear regression models are inte-
grated in the provided MethCORR v1.0 R workspace 
(https​://moma.dk/MethC​ORR-softw​are). The Meth-
CORR R workspace provides instructions on how to 
predict iRNA expression from user-provided Illumina 
Human methylation 450K or EPIC datasets of either of 
the 11 cancer types we have analyzed by MethCORR. 
Example 450K data from the UCSC XENA database is 
provided for each cancer type. The successful application 
of MethCORR on Human Methylation EPIC data have 
been described previously for colorectal cancer samples 
[12]. The MethCORR v1.0 R workspace was developed 
using R version 4.0.0, the “data.table” R package version 
1.12.8 [38] and the “impute” R package version 1.62.0 
[39].  GDC linear regression models are available upon 
request.

MCS =
1

≤ 200

(

≤100
∑

1

β value pos. correl. CpGprobe+

≤100
∑

1

1− β value neg. correl. CpGprobe

)

.

TOBMI
The R package TOBMI [16] was used to infer RNA 
expression in validation set 3 samples for all ten cancers. 
We used HM-450K DNA methylation and RNA sequenc-
ing profiles from the UCSC XENA Public Data Hubs 
[34] (https​://xena.ucsc.edu/publi​c/) as input and default 
method parameters. The gene-specific model perfor-
mance (inter-sample correlation between inferred RNA 
expression and observed RNA expression) was evaluated 
for overlapping genes between TOBMI and MethCORR.

BioMethyl
The R package BioMethyl v1.1 [17] was used to infer 
RNA expression in all overlapping samples between Bio-
Methyl and MethCORR for all ten cancers. We used HM-
450K DNA methylation profiles from the UCSC XENA 
Public Data Hubs [34] (https​://xena.ucsc.edu/publi​c/) 
as input and default method parameters. We used RNA 
expression profiles from Firehose (https​://gdac.broad​
insti​tute.org/) to evaluate the gene-specific model per-
formance (inter-sample correlation between inferred 
RNA expression and observed RNA expression) for genes 
overlapping between BioMethyl and MethCORR. The 
RNA expression profiles were log2(RSEM + 1) trans-
formed followed by a z-transformation across samples as 
described by Wang et al. [17].

AUC analysis
AUC analysis was performed using the R-package ROCR 
v1.0–11 with RNA expression or iRNA expression data as 
input.

Principal component analysis
Principal component analysis (PCA) was performed 
using the R-package Stats v3.6.0 with RNA expression or 
iRNA expression data as input.

Bootstrap hierarchical clustering
Bootstrap clustering was performed to evaluate the sta-
bility of ER positive and ER negative breast cancer tumor 
clusters using the R package pvclust v2.2-0, 1000 rep-
etitions and Ward.D2 linkage. Clustering was performed 
with RNA or iRNA expression as input, and a row stand-
ard score was calculated with the scale function for each 
gene. AU (Approximately Unbiased) values were ana-
lyzed to evaluate clustering stability and clusters with 
AU > 0.9 are considered highly stable.

https://moma.dk/MethCORR-software
https://xena.ucsc.edu/public/
https://xena.ucsc.edu/public/
https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
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Caleydo StratomeX
Caleydo StratomeX [40] analysis was performed to visu-
alize concordance between subtype predictions using the 
Caleydo v3.1.5 software.

PAM50 classification
Subtype classification of breast cancer cohorts was per-
formed using the 50-gene PAM50 predictor [18]. Classi-
fications were performed with RNA expression or iRNA 
expression as input. Microarray-based PAM50 annota-
tions were taken directly from the “Phenotypes” file from 
the TCGA BRCA project available at the UCSC XENA 
database (https​://xena.ucsc.edu/publi​c/).

ConsensusClusterPlus classification
Subtype classification of prostate cancer cohorts was per-
formed by Consensus average linkage hierarchical clus-
tering using the R package ConsensusClusterPlus v1.48.0 
[41]. The top 3000 most variable genes were selected by 
median absolute deviation for both RNA expression data 
and iRNA expression data. Input data were gene median 
centered.

Nearest centroid predictor classification
Subtype classification of lung cancer cohorts was per-
formed using previously published gene expression 
subtype predictor centroids [42]. RNA expression and 
iRNA expression data were gene median centered for 
genes common to the predictor (474 out of 509 predic-
tor genes). The maximum Pearson’s correlation coeffi-
cient between class predictor centroids and sample RNA 
expression or iRNA expression was used for subtype 
assignment.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed 
with RNA expression and iRNA expression using the 
GSEA 4.1 tool [43] with default settings and gene-set 
permutation type. The Molecular Signatures Database 
(MsigDB) gene set C2 collection 7.2 was used. The follow-
ing gene sets were used for biological characterization: 
“Genes upregulated in Basal-like vs Luminal (CHARAFE_ 
BREAST_CANCER_LUMINAL_VS_BASAL_DN),” 
“Genes upregulated in HER2-enriched (SMID_BREAST_
CANCER_ERBB2_UP),” “Genes upregulated in Lumi-
nal A (SMID_BREAST_CANCER_LUMINAL_A_UP),” 
“Genes upregulated in Luminal B (SMID_BREAST_
CANCER_LUMINAL_B_UP),” and “Genes upregulated 
in normal breast tissue (TURASHVILI_BREAST_LOBU-
LAR_CARCINOMA_VS_DUCTAL_NORMAL_DN).”

Single sample GSEA [44] was performed with RNA 
expression and iRNA expression data as input using the 
ssGSEAProjection  v9.1.2 GenePattern module [45] and 
the Molecular Signatures Database (MsigDB) gene set C2 
collection 7.0.

Estimate
ESTIMATE Immune scores were calculated using the 
R-package ESTIMATE v1.0.13 [46] using default param-
eters, RNA, and iRNA expression as input.

Statistical analysis
Statistical significance of differences between groups was 
determined using a nonparametric Wilcoxon rank-sum 
test. During GSEA, a false discovery rate (FDR) < 0.05 
was considered significant. Overall survival (OS) analy-
sis was performed using the Kaplan–Meier method with 
the Stata/IC 14.2 (StataCorp) software. Significance was 
evaluated by log-rank test of equality in TNM stage I-IV 
TCGA BRCA tumors using curated clinical follow-up 
information [47]. Log-rank P values were adjusted using 
the Bonferroni correction method when multiple com-
parisons were made in survival analysis. Samples with 
no clear TNM stage annotation, incomplete OS survival 
information, and redacted samples were excluded from 
the survival analysis.

Supplementary Information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1314​8-021-01000​-0.

Additional file 1: Table S1. List of UCSC XENA TCGA samples used for the 
development of the MethCORR matrix and regression models.

Additional file 2: Table S2. Gene-specific model fit for UCSC XENA TCGA 
BRCA. Table S3. Gene-specific model fit for UCSC XENA TCGA PRAD. 
Table S4. Gene-specific model fit for UCSC XENA TCGA LUAD. Table S5. 
Gene-specific model fit for UCSC XENA TCGA LUSC. Table S6. Gene-spe-
cific model fit for UCSC XENA TCGA STAD. Table S7. Gene-specific model 
fit for UCSC XENA TCGA BLCA. Table S8. Gene-specific model fit for UCSC 
XENA TCGA SKCM. Table S9. Gene-specific model fit for UCSC XENA TCGA 
KIRC. Table S10. Gene-specific model fit for UCSC XENA TCGA UCEC. 
Table S11. Gene-specific model fit for UCSC XENA TCGA ESCA.

Additional file 3: Table S12. UCSC XENA TCGA intra-sample (per sample) 
specific model fit. Data is shown per individual sample and as summarized 
results.

Additional file 4: Table S13. GDC database UUIDs and TCGA barcodes for 
data files (https://portal.gdc.cancer.gov/) from 25 patients with available 
RNA-seq. and 450K DNA methylation profiles from matched fresh-frozen 
and FFPE tissues.

Additional file 5: Figure S1. MethCORR inferred RNA expression in ten 
cancer types. a) Graph showing the inter-sample RNA expression-iRNA 
expression squared correlations (R2) for BRCA, PRAD, and LUAD valida-
tion samples. Genes are ranked according to increasing RNA expression 
standard deviation in discovery samples. b) Scatterplots with correlations 
between RNA expression in matched fresh-frozen tissue and FFPE tissue 
for a representative validation sample from the TCGA BRCA, PRAD, and 
LUAD cohorts. c) Boxplot with MethCORR and TOBMI [16] validation set 3 

https://xena.ucsc.edu/public/
https://doi.org/10.1186/s13148-021-01000-0
https://doi.org/10.1186/s13148-021-01000-0
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inter-sample RNA expression-iRNA expression squared correlations (R2) for 
overlapping genes between the two methods. Data for all ten cancers are 
shown. * Wilcoxon rank-sum p<10−10. d) Boxplot with MethCORR valida-
tion set 3 and BioMethyl [17] inter-sample RNA expression-iRNA expres-
sion squared correlations (R2) for overlapping genes between the two 
methods. Data for all ten cancers are shown. * Wilcoxon rank-sum p<10−5.

Additional file 6: Figure S2. Molecular subtyping with MethCORR 
inferred RNA expression. a)  Scatterplot with correlation between AUC 
values from a tumor vs normal analysis performed with RNA expression 
(x-axis) or iRNA expression (y-axis). b) Scatterplot with the first principal 
component (PC1; X-axis) and the second principal component (PC2; 
Y-axis) from a PCA performed with (left) RNA expression from TCGA 
BRCA samples, (middle) iRNA expression calculated in an independent 
fresh-frozen (GSE84207) cohort, and (right) iRNA expression calculated in 
an independent FFPE (GSE117439) cohort. Samples are colored accord-
ing to their estrogen receptor (ER) status. c) Cluster dendrograms from 
hierarchical boostrap clustering (1000 repetitions) performed with BRCA 
RNA expression, BRCA iRNA expression, and iRNA expression from the 
fresh-frozen GSE84207 cohort, and the FFPE GSE117439 cohort. Samples 
with a “long id name” are ER negative samples.  Approximately unbiased 
p-values (AU) values are given for each cluster node and clusters with 
AU>0.9 are highlighted by pink rectangles. d+e) Caleydo StratomeX [40] 
plots showing the concordance between TCGA BRCA microarray based 
PAM50 subtypes and RNA (d) or iRNA (e) expression based PAM50 sub-
types (confidence=1). f) Scatterplot with regression model performance 
R2 (in independent validation samples) for the 50 genes that constitutes 
the PAM50 subtype classifier. Top three genes with the highest centroid 
value is marked for each PAM50 subtype. g) Kaplan–Meier plot showing 
the overall survival of AJCC stage I-IV patients from the TCGA BRCA cohort 
stratified according to microarray-based PAM50 subtypes (left panel), 
RNA-based PAM50 subtypes with confidence call=1 (middle panel), and 
iRNA-based PAM subtypes with confidence call=1 (right panel). Signifi-
cance was evaluated by the log-rank test. In parenthesis is provided the 
Bonferroni-adjusted P values (two comparisons, i.e., LumA vs. HER2 and 
LumA vs. Basal). h) Consensus cumulative distribution function (CDF) plots 
for ConsensusClusterPlus analysis performed with (left) iRNA expression 
and (right) RNA expression for 497 TCGA PRAD tumor samples. The num-
ber of clusters, k, is determined where the CDF first approaches maximum 
[41, 48]. Here, a large increase is seen between k=2 and k=3 and further 
increases in k does not improve consensus substantially, i.e., k=3 for both 
iRNA expression and RNA expression. i) Scatterplot with the first principal 
component (PC1; X-axis) and the third principal component (PC3; Y-axis) 
from a PCA performed with TCGA PRAD RNA expression, TCGA PRAD iRNA 
expression, and iRNA expression calculated in an independent prostate 
cancer FFPE cohort (GSE73549). Samples are colored according to their 
predicted subtype.

Additional file 7. Figure S3. Subtype characterization with MethCORR 
inferred RNA expression. a) Scatterplots showing correlations between 
normalized enrichment sores (NESs) from a gene set enrichment analysis 
(GSEA) of the TCGA BRCA HER2-enriched subtype vs. all other BRCA sam-
ples, the TCGA BRCA Luminal A subtype vs. all other BRCA samples, the 
TCGA BRCA Luminal B subtype vs. all other BRCA samples, and the TCGA 
BRCA Normal-like subtype vs all other BRCA samples performed with RNA 
expression (x-axis) and iRNA expression (y-axis). b) Scatterplots showing 
correlations between NESs from a GSEA of the HER2-enriched subtype vs. 
all other samples, the Luminal A subtype vs. all other samples, the Luminal 
B subtype vs. all other samples, and the Normal-like subtype vs all other 
samples performed with iRNA expression in the TCGA BRCA cohort (x-axis) 
and iRNA expression in the independent breast cancer FFPE cohort 
(GSE117439; y-axis). c) Kaplan–Meier plots showing the overall survival of 
all AJCC stage I-IV patients from the TCGA BRCA cohort stratified accord-
ing to high or low CD8A expression (median cut-off ) using either RNA (left 
panel) or iRNA (right panel). Significance was evaluated by the log-rank 
test.
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