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Abstract

Background: Umbilical cord blood (UCB) is commonly used in epigenome-wide association studies of prenatal
exposures. Accounting for cell type composition is critical in such studies as it reduces confounding due to the cell
specificity of DNA methylation (DNAm). In the absence of cell sorting information, statistical methods can be
applied to deconvolve heterogeneous cell mixtures. Among these methods, reference-based approaches leverage
age-appropriate cell-specific DNAm profiles to estimate cellular composition. In UCB, four reference datasets
comprising DNAm signatures profiled in purified cell populations have been published using the Illumina 450 K and
EPIC arrays. These datasets are biologically and technically different, and currently, there is no consensus on how to
best apply them. Here, we systematically evaluate and compare these datasets and provide recommendations for
reference-based UCB deconvolution.

Results: We first evaluated the four reference datasets to ascertain both the purity of the samples and the potential
cell cross-contamination. We filtered samples and combined datasets to obtain a joint UCB reference. We selected
deconvolution libraries using two different approaches: automatic selection using the top differentially methylated
probes from the function pickCompProbes in minfi and a standardized library selected using the IDOL (Identifying
Optimal Libraries) iterative algorithm. We compared the performance of each reference separately and in
combination, using the two approaches for reference library selection, and validated the results in an independent
cohort (Generation R Study, n = 191) with matched Fluorescence-Activated Cell Sorting measured cell counts. Strict
filtering and combination of the references significantly improved the accuracy and efficiency of cell type estimates.
Ultimately, the IDOL library outperformed the library from the automatic selection method implemented in
pickCompProbes.

Conclusion: These results have important implications for epigenetic studies in UCB as implementing this method
will optimally reduce confounding due to cellular heterogeneity. This work provides guidelines for future reference-
based UCB deconvolution and establishes a framework for combining reference datasets in other tissues.

Keywords: DNAm, Cell type heterogeneity, Umbilical cord blood, Reference dataset, Deconvolution, IDOL, minfi,
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Background
DNA methylation (DNAm) is involved in the regulation
of genes and is essential for normal development. Hu-
man epigenome-wide association studies (EWAS) are
widely used to investigate the association between
DNAm variation and prenatal environmental factors
to understand the developmental origin of phenotypes
and diseases [1–3]. These studies are often performed in
the umbilical cord blood (UCB), which is collected from
the umbilical cord after birth. UCB is easily accessible
and an ideal time point for capturing and studying the
influence of fetal environmental exposures on DNAm.
In addition, DNAm differences in UCB can reflect sys-
temic exposures and, in some instances, potentially serve
as surrogate and proxy for tissues that cannot be easily
assessed (e.g., brain tissue) [4].
Cell types present in UCB reflect those in the periph-

eral whole blood at birth, including hematopoietic stem
cells and nucleated red blood cells (nRBCs), which rap-
idly decline in the newborn after birth. The median pro-
portion of nRBCs present at birth usually ranges from 4
to 9% and rarely exceeds 22% [5]. Leukocytes in the
newborn are immunologically immature, consistent with
the need for these cells to develop both the appropriate
response to pathogens as well as immunological mem-
ory. This is a hallmark of the adaptive immune system
and is under epigenetic control [6, 7]. The major
leukocyte subsets in UCB are granulocytes, monocytes,
and lymphocytes, with the latter containing T cells, B
cells, and Natural Killer (NK) cells [8]. The different leu-
kocytes in UCB are functionally and developmentally
distinct and display cell type-specific DNAm patterns
[9]. Chronic and acute stressors can alter the compos-
ition of cell types in UCB between individuals. As a con-
sequence, it is important to pay particular attention to
this confounding source of variability when conducting
an EWAS using heterogeneous cell mixtures such as
UCB. In addition, cell type proportions can be a medi-
ator between exposure and disease. Many EWAS have
demonstrated the importance of adjusting for cell type
heterogeneity [10, 11].
There are reference-free and reference-based strategies

to address the problem of cell type heterogeneity in
blood samples, which have been discussed and reviewed
elsewhere [12–14]. A widely used deconvolution method
is the reference-based using constrained projection/
quadratic programming (CP/QP) proposed by House-
man et al. [15]. Briefly, the CP/QP method uses a refer-
ence dataset consisting of cell type-specific DNAm
signatures as the basis for inferring cell proportions in
samples comprised of heterogeneous mixtures of those
cell types. These deconvolution estimates can then be
included as covariates in the downstream statistical
models to adjust for the potential confounding effects of

cell type differences between samples. The CP/QP
method depends entirely on a reference library consist-
ing of cell type-specific DNAm markers. Hence, a critical
first step involves selection and assembly of a library that
reflects a DNAm fingerprint of the cell types using a ref-
erence dataset. This is commonly performed using one
of two algorithms: pickCompProbes implemented in the
minfi package [16] and Identifying Optimal Libraries
(IDOL). In UCB, pickCompProbes [16] performs a de-
fault automatic selection process choosing the top 100
most differentially methylated probes with a F-test p <
10E−08 per cell type. Compared to adult peripheral
blood, applying this algorithm to UCB selects probes ag-
nostic of the direction of DNAm difference. This leads
to libraries that poorly discriminate certain leukocyte
subpopulations, particularly those that have a shared
lineage [17]. IDOL [18] is an iterative algorithm, which
dynamically scans a candidate set of cell type-specific
DNAm markers for a library that is optimized to accur-
ately estimate cell types, often referred to as leukocyte
differentially methylated regions (L-DMRs). IDOL re-
quires a set of samples with known values for the cell
mixtures, ideally artificially spiked samples with pure cell
subtypes of known mixing proportions, but mixed sam-
ples with cell counts can be substituted [18, 19].
Currently, four analogous UCB references have been

published consisting of cell type-specific DNAm data
assayed using the Illumina 450 K or 850 K EPIC technol-
ogy [17, 20–22]. These datasets possess a range of bio-
logical and technical differences related to the number
of samples, isolated cell fractions and phenotyping, pur-
ity estimates, separation method, ethnicity, sex ratio, ges-
tational age, and array technology. Although the
application of one of the reference datasets for deconvo-
lution has been validated [21], it is not known how these
differences influence the deconvolution estimates. Im-
portantly, there is no consensus on how to best use UCB
reference methylome datasets, whether it is appropriate
to combine reference datasets, and if so, which library
selection method will have optimal performance. There-
fore, the aims of this study were to (1) give a compara-
tive descriptive overview of the different references
datasets, (2) compare how different methods for select-
ing reference libraries impact deconvolution estimates,
(3) benchmark and validate deconvolution estimates in
an independent cohort containing matched cell counts,
and (4) provide guidelines for reference-based cord
blood deconvolution using the four UCB references sep-
arately and in combinations.

Results
Descriptive overview and data filtering
Four publicly available UCB reference datasets were used,
named by the first author of the respective publications:
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Bakulski reference, de Goede reference, Gervin reference, and
Lin reference [17, 20–22]. These datasets possess several no-
ticeable biological and technical differences (Table 1).
Stringent quality control and probe filtering proce-

dures were applied to minimize technical variation. As
expected, a principal component analysis (PCA) revealed
distinct clustering of the cell types according to the
hematopoietic lineage (i.e., lymphoid and myeloid cells),
reflecting different DNAm profiles (Fig. 1). The refer-
ences containing nRBCs (de Goede and Bakulski) dem-
onstrate clear separation between white blood cells and
erythrocytes. The CD4T and CD8T cells show very simi-
lar DNAm profiles and form partly overlapping clusters.
Of note, the Bakulski reference also shows considerable
variation not related to cell types and more overlapping
cell type clusters compared to the others.
The technical and biological differences associated

with each reference dataset, including purity and pheno-
typing (i.e., antibodies used for Magnetic-Activated Cell
Sorting (MACS) and Fluorescence-Activated Cell Sort-
ing (FACS) isolation) likely influence the deconvolution
process using datasets individually, and especially in
combination. To test this, we reasoned that a strict fil-
tering of the datasets prior to deconvolution could im-
prove the accuracy and precision of the deconvolution
estimates. The filtering process is described in detail in
the “Methods” section. Briefly, using a projection of
adult cell types from an adult reference [19], samples
showing < 70% of the adult cell type were removed from
the reference and samples with > 70% of a different cell
type were reclassified to the “correct” cell type. The re-
sults from this filtering process are shown in Fig. 2 and
Additional file 3: Table S1. Using a 70% cut-off resulted
in removal of 24 of 89 samples (26.9%) (n = 4 Bcell, n =

6 CD4T, n = 12 CD8T, n = 1 Gran, n = 1 Mono) and re-
classification of 1 sample (CD8T to NK) in the Bakulski
reference. Of note, almost all CD8T fractions in this ref-
erence showed a large proportion of NK cells (Fig. 2).
Further, three samples (n = 3 Mono) were removed and
three samples from the same individual reclassified to
opposite cell types (n = 3 CD4T to CD8T and n = 3
CD8T to CD4T) in the Gervin reference. No samples
were removed or reclassified from the de Goede or Lin
references. An adult reference was not applicable for the
nRBC cell type, and all nRBC samples were retained. In
total, 263 cell type DNAm signatures (n = 42 Bcell, n =
41 CD4T, n = 33 CD8T, n = 43 Gran, n = 48 Mono, n =
45 NK, and n = 11 nRBCs) were included in a combined
cleaned UCB reference, which we have made available as
a Bioconductor package named “FlowSorted.CordBlood-
Combined.450 K” [23].

Selection and comparison of reference libraries for UCB
deconvolution
Deconvolution of heterogeneous cell mixtures like
UCB relies on a suitable set of cell type-specific
DNAm markers often referred to as a L-DMR library.
To compare the four reference datasets (individually
and in different combinations) and to evaluate how
the filtering process influenced deconvolution esti-
mates, we used two different methods to select L-
DMR libraries. These analyses were performed in a
test dataset (n = 24) consisting Gran, Mono, Bcell,
CD4T, CD8T, NK, and nRBCs UCB DNAm signa-
tures and matched CBC and FACS counts. First, we
applied the selection strategy used by pickCompP-
robes, which selects the top 100 differentially methyl-
ated probes per cell type (in UCB the algorithm will
not select the top 50 hyper- and the top 50 hypo-
methylated CpGs as in adult peripheral blood). This
resulted in the selection of a total number of probes
ranging between 600 and 700 for the different UCB
references depending on filtering, whether nRBCs are
included, and the combination of the references. The
selected probes with annotation are provided in add-
itional information (Additional files 4, 5, 6, 7, 8, 9,
10, 11, 12 and 13: Tables S2 to 11). Second, we used
IDOL to select a L-DMR library which identified a L-
DMR library consisting of 550 probes, of which 517
probes were present on both the 450 K and 850 K
EPIC arrays, as the ideal number of probes for UCB
deconvolution (Additional file 14: Table S12).
The resulting L-DMR libraries from both methods were

evaluated by calculating the R2 and root mean square
error (RMSE) comparing estimates and FACS counts from
each cell type in the test dataset. The results showing the
pickCompProbes and IDOL optimized cell estimates pre-
cisions using the references as published and cleaned

Table 1 Descriptive overview of the UCB reference datasets

Bakulski de Goede Gervin Lin

No. cell fractions

Bcell 15 7 11 13

CD4T 15 7 11 14

CD8T 14 6 11 14

Gran 12 7 11 14

Mono 15 12 11 14

NK 14 6 11 14

nRBC 4 7 NA NA

Sex (M/F) 8/7 5/2 6/5 10/4

Array technology 450 K 450 K 450 K EPIC

Isolation method MACS FACS FACS MACS

Gestational age (range) NA NA 38.4–40.6 NA

Nationality Americans Canadians Norwegians Mixed

Purity estimates NA NA 97.1–98.8 NA

NA not applicable
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(using 70% cut-off), both individually and combined, are
summarized in Fig. 3 and presented in Additional files 15,
16 and 17: Tables S13 to 16. The unfiltered Bakulski refer-
ence generated poorer cell type estimates (lower R2 and
higher RMSE) compared to the other three reference data-
sets, though the filtered results were more similar across
all individual references. Specifically, both pickCompP-
robes and IDOL performed poorly in estimating CD8T
(pickCompProbes: R2 = 0.08, RMSE = 4.95 and IDOL: R2

= 0.46, RMSE = 4.66) and NK (pickCompProbes: R2 =
0.43, RMSE = 0 and IDOL: R2 = 0.88, RMSE = 1.16) pro-
portions using the unfiltered Bakulski reference. In par-
ticular, this reference predicted values of zero for NK
cells, resulting in an RMSE approximating 0. Overall, the
data filtering and removal of contaminated samples sig-
nificantly improved the accuracy of the deconvolution es-
timates. The R2 values were generally higher and RMSE
values lower for the filtered references, both individually
and combined, across the two tested methods.

Importantly, we obtained consistently more accurate esti-
mates across all cell types when using the optimized IDOL
L-DMR library compared to pickCompProbes (higher R2

and lower RMSE, Fig. 3). This was observed across all in-
dividual reference datasets and in combinations. In fact,
the R2 more than doubled for several cell types, particu-
larly the estimated Bcell, Mono, and Gran cell popula-
tions. Since the aggregated proportions of these cell types
comprise approximately 70% of the leukocytes in cord
blood, this is likely to have a substantial impact on the
ability of the model to predict the “true” relative leukocyte
composition. Similarly, the increased precision of the
IDOL L-DMR to predict smaller proportions can reduce
the confounding source of variability where subtle differ-
ences in cell types impact on the associations identified in
EWASs. Combining all four references resulted in slightly
and more consistently increased accuracy of the predic-
tions across most of the cell types. Leaving out references
one by one did not change the overall accuracy, although

Fig. 1 PCA scatterplot of cell type-specific DNAm in four UCB references as published (raw). The two first principal components are plotted with the
proportion of variance explained by each component indicated next to the axis labels. The plot clearly shows distinct clustering of the different cell
types and most of the variance in DNAm can be attributed to the different cell types. Of note, nRBCs are not included in the Gervin and Lin references

Gervin et al. Clinical Epigenetics          (2019) 11:125 Page 4 of 15



some cell type estimates were marginally improved. How-
ever, this was not consistent or attributable to one single
reference dataset alone (Additional file 17: Table S17). In
conclusion, these results clearly demonstrate the import-
ance of using a clean combined reference and that the
IDOL algorithm outperformed the pickCompProbes auto-
matic selection of L-DMRs used for UCB deconvolution.
We also investigated whether stricter filtering (i.e., re-
moval of samples instead of reclassifying to “correct” cell
type) would impact our results, but found that this did not
improve the accuracy of cell estimates (data not shown).

Therefore, we based the downstream analyses upon the
combined, cleaned UCB reference.

Genomic location of the selected pickCompProbes and
IDOL reference libraries
The probes selected by the two methods using combined,
cleaned references are shown as heatmaps in Fig. 4a and
compared in Fig. 4b. pickCompProbes did not discrim-
inate as well as IDOL between hyper and hypomethy-
lated probes in UCB (Fig. 4a). Whereas the minfi
L-DMR probes were biased towards hypermethylated,

Fig. 2 Data filtering using a projection of adult cell types. Samples in the four UCB references showing < 70% of the adult cell type were
removed, whereas samples with > 70% of a different cell type were reclassified to the corresponding cell type. Using a 70% cut-off resulted in
removal of 24 samples (26.9%, indicated by red asterisk) and reclassification of three samples (indicated by green asterisk). Of note, the majority of
the CD8T cell fractions in the Bakulski reference showed a large proportion of NK cells

Fig. 3 Evaluation of libraries. The selected libraries from pickCompProbes and IDOL were evaluated by calculating the R2 and RMSE comparing
estimates and FACS counts from each cell type in the test dataset (n = 22) using individual and combined UCB references. Mean R2 and RMSE
are plotted on the y- and x-axes, respectively
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the IDOL L-DMR library consists of probes evenly dis-
tributed between hyper and hypomethylated. In
addition, IDOL selected probes displaying intermediate
DNAm, particularly for nRBCs. Only a small number of
probes overlapped between the selections arising from
applying pickCompProbes (to the raw and filtered ref-
erences) and IDOL (n = 45 and n = 43, respectively). A
comparison of the probes selected by the two methods
with the genomic and functional context of the probes
is provided in Table 2.

Validation of deconvolution estimates in an independent
birth cohort
Once we determined the L-DMR libraries for cell type
estimation, we set out to estimate the accuracy of the
deconvolution estimates in an independent cohort to

assess the reproducibility of the reference datasets and
selected libraries. To test this, we applied the CP/QP
model using the pickCompProbes and IDOL L-DMR li-
braries to samples selected from the Generation R Study
(n = 191), from which cord blood 450 K data and
matched FACS cell counts were available [8, 24, 25].
Unfortunately, nRBC FACS cell counts were not avail-
able from the validation cohort, but approximately 90%
of the total white blood cells were covered by the
remaining six cell types in the references. Of note, the
nRBC estimates were excluded from the predictions and
the sum of the remaining six cell type estimates were
rescaled to one so that the estimate proportions would
be more similar to the FACS cell frequency data. Com-
parison of estimated cell type proportions with matched
FACS counts revealed moderate R2 (coefficient of

A

B

Fig. 4 Comparison of L-DMR libraries selected using automatic selection in pickCompProbes and the IDOL algorithm for optimization. a L-DMR
libraries selected from combined UCB reference (raw n = 666 and filtered n = 662) using automatic selection in pickCompProbes and IDOL (n =
517). b Overlapping of probes from the three methods
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determination) values ranging from 15.19 to 78.86 %
across cell type and method (Fig. 5). Surprisingly, we ob-
tained higher R2 for all cell types, except CD4T when
using the L-DMR library generated with pickCompP-
robes compared to IDOL. However, the RMSE (root
mean square error) was higher for the same cell types
when using the pickCompProbes L-DMR, with a fold
change in RMSE ranging from 0.93 to 2.33. Whereas the
R2 is a relative measure of the fit, RMSE indicates the
absolute fit of the model to the data (i.e., how close the
FACS counts are to the deconvolution estimates pre-
dicted by the CP/QP model). RMSE is a measure of the
accuracy of the model, and the most important measure
for the fit in this setting where the main purpose of the
model is prediction. Hence, the consistently smaller
RMSE using the IDOL L-DMR indicated a better fit and
accuracy. The higher R2 using pickCompProbes L-DMR
showed how well the results adjusted to the line even if
the line was shifted (higher correlation, but further away
from the FACS counts). This was evident in the box
plots of FACS cell counts and deconvolution estimates
from the six cell types using the four methods (IDOL
clean, IDOL clean strict, pickCompProbes using the fil-
tered references and pickCompProbes using the raw
references), which revealed a dramatic shift in the esti-
mates using the pickCompProbes selection (Fig. 6a and
Additional file 1: Figure S1) compared to IDOL. Clearly,
IDOL estimates approximated the actual proportions
more precisely, independent of the filtering process,
while pickCompProbes estimates overestimated all cell
types, except granulocytes. Further, subtracting the
FACS cell counts from the deconvolution estimates

(absolute errors) also shows that IDOL is more precise
compared to pickCompProbes, which either over or
underestimates the actual proportions (Fig. 6b and Add-
itional file 2: Figure S2). Finally, Bland-Altman plots
(Fig. 6c) comparing IDOL to pickCompProbes also show
that IDOL results in more accurate UCB cell type
predictions.

Discussion
We conducted a systematic comparison and evaluation
of four publicly available UCB reference datasets [17, 21,
22, 26] and provide recommendations for reference-
based UCB deconvolution. Our analysis was supported
by a descriptive characterization of the four datasets,
and we determined the purity of the isolated cell frac-
tions to generate clean references. To test the perform-
ance of raw and filtered references, both separately and
in combinations, we applied two methods for selection
of deconvolution libraries (i.e., automatic selection im-
plemented in pickCompProbes and IDOL) and validated
the deconvolution estimates in an independent cohort
containing detailed, matched cell count information.
The UCB references were generated by four different

laboratories and exhibit numerous technical and bio-
logical differences, which potentially impacts the down-
stream application of the data. Of these, purity and
phenotyping of cells were hypothesized to have the lar-
gest impact on the resulting deconvolution estimates.
Two frequently used methods for cell purification were
used: MACS (Bakulski, Lin) and FACS (de Goede, Ger-
vin). Although relevant publications comparing MACS

Table 2 Genomic and functional context of IDOL and pickCompProbes (raw and filtered) libraries

pickCompProbes automatic selection: raw pickCompProbes automatic selection: filtered IDOL

n = 666 (%) n = 662 (%) n = 517 (%)

Genomic context

CpG island 18 (2.7) 17 (2.6) 39 (7.5)

Shelves 95 (14.2) 101 (15.3) 76 (14.7)

Shores 100 (15) 107 (16.2) 119 (23)

Open sea 453 (68.1) 437 (66.1) 282 (54.5)

Functional context

TSS1500 72 (10.8) 74 (11.2) 71 (13.7)

TSS200 36 (5.4) 40 (6) 37 (7.2)

5'UTR 81 (12.2) 80 (12.1) 75 (14.5)

Exon1 18 (2.7) 18 (2.7) 19 (3.7)

Body 335 (50.3) 320 (48.3) 246 (47.6)

3′ UTR 46 (6.9) 42 (6.3) 29 (5.6)

Intergenic 146 (21.9) 153 (23.1) 107 (20.1)

Enhancers (Phantom 5) 38 (5.7) 33 (5) 19 (3.7)

DNase hypersensitive sites 436 (65.5) 436 (65.9) 350 (67.7)
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versus FACS related to cell enrichment, viability and
functions of human blood cells were not available, FACS
is known to often provide better purity [27]. Indeed, the
purity estimates (where available) showed considerable
variation between the UCB references.
We leveraged knowledge of blood cell types at a differ-

ent developmental time point to implement a novel ref-
erence sample quality control process. We estimated the
proportion of each of our UBC reference samples using
an adult blood reference dataset derived from MACS
sorted measures in women and men between 19 and 59
years old. We looked for agreement between cell type
identities in our UBC samples based on the adult mea-
sures. A filtering procedure (using an arbitrary cut-off
estimating 70% of the purified cell type for inclusion)
using a projection of adult cell types significantly im-
proved the accuracy and precision of the deconvolution
estimates. Although a 70% cut-off is moderate, we do
not consider a stricter cut-off appropriate given the
known physiological differences between cord and adult
blood cell types. The filtering resulted in removal of
29.6% of the samples from the Bakulski reference. Of
note, almost all CD8 T cell fractions in this reference
showed a large proportion of other cell types, mainly NK
cells, when using a projection of adult CD8T cells.

Further, three CD8T and CD4T samples from the same
individual in the Gervin reference clustered to the oppos-
ite cell type. These samples were not processed together,
and we could not find evidence of sample swapping.
Overall, the UCB, CD4, and CD8 T cells displayed very
similar DNAm patterns, whereas these cell types in
adults differed more clearly [9, 19, 28]. Since T lympho-
cytes play a central role in adaptive immunity, CD4T
and CD8T cells will eventually develop more cell type-
specific DNAm patterns as the cells mature [6, 7, 9].
The CD8T estimates using any of the UCB references
were significantly less accurate compared to the other
cell types, regardless of the library selection method. In
general, UCB leukocytes are immunologically immature,
as immunological memory still has to be established fol-
lowing responses to pathogens. The naïve CD4 and CD8
T cells have not yet established their effector functions,
and this could explain why they are quite similar in their
epigenetic profiles in UCB.
Cell type-specific DNAm analyses are challenging with

respect to sample storage, processing, and cost, and all
current reference datasets are limited by the number of
available samples per cell type. Despite the range of bio-
logical and technical differences across the UCB refer-
ences, combining references would yield a larger sample

Fig. 5 Comparison of estimated cell types and matched FACS cell counts. Scatter plots of deconvolution estimates using CP/QP programming
and matched FACS cell counts in an individual birth cohort (Generation R, n = 191) using cleaned IDOL and pickCompProbes libraries and the
combined UCB reference. Smoothing lines represent the linear model. R2 and RMSE using the two methods are indicated for each cell type
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size, which we hypothesized would result in increased
power and accuracy of the CP/QP model. A previous
study combined three of the UCB reference datasets (de
Goede, Bakulski, and Gervin) [29], though the authors
did not validate the specificity of the combined refer-
ence. Interestingly, though our analyses on combined
data slightly improved accuracy and sensitivity of the de-
convolution estimates, a clean reference reflecting cell
type purity was much more important. Together, our
findings demonstrate that reference datasets can be ef-
fectively combined across studies, provided adequate
quality control, enabling improved sample quality con-
trol and cell type estimation.
A critical first step in the CP/QP model is selection of

suitable reference libraries (i.e., probes discriminating
cell types). Two methods for library selection: the in-
ternal function pickCompProbes from minfi [16] and
IDOL[18], were included for comparison in this study.
The default selection of probes implemented in pick-
CompProbes performs differently for UCB (selecting
sites agnostic of direction of DNAm) and adult blood

(selecting an even number of hyper and hypomethylated
probes). Currently, this is the most frequently used
method. In contrast, IDOL, which is an iterative algo-
rithm, performs a dynamic scan and optimization of ref-
erence probes to accurately estimate cell types in a test
sample set with known cell mixture values [18, 19]. It is
notable that the pickCompProbes and IDOL processes
selected cell type-distinguishing probe sets that were
largely non-overlapping, underscoring the widespread
genomic extent to which cell type-specific DNAm pat-
terns influence whole UBC measures.
We validated the combined references and library selec-

tion methods in an independent cohort (the Generation R
Study), from which both matched, leukocyte-only FACS
cell counts, and UCB 450 K data were available. Once we
rescaled the CP/QP estimates to match the leukocyte
proportions derived from the FACS cell counts, we
observed results closer to the identity line using IDOL
(lower RMSE and absolute errors). These analyses re-
vealed that although we observed a better goodness of fit
for pickCompProbes (higher R2 compared to IDOL),

A

B

C

Fig. 6 Measurements of accuracy and agreement between methods. a Box plots of FACS cell counts (red) and estimates generated using IDOL
(blue) and pickCompProbes (green) and a combined UCB reference (raw and filtered). b Absolute errors (estimates minus FACS counts) by
deconvolution method and the combined UCB reference (filtered and raw). c Bland-Altman plots (differences versus means) showing the
agreement between IDOL and pickCompProbes using a filtered combined UCB reference. The mean difference per method (blue and green) and
zero difference (red) are indicated by horizontal lines
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pickCompProbes estimates were biased with higher re-
sidual differences (and hence almost double RMSE com-
pared to IDOL). However, whilewe observe more
variability in the point estimates of the R2 in the validation
set, there were no statistical differences in the mean R2 for
all the cell estimates between IDOL (R2 = 0.45, 95%CI
0.36–0.56) and pickCompProbes (R2 = 0.57, 95%CI 0.48–
0.66). In contrast, the average RMSE is consistently
smaller for IDOL (3.20) than for pickCompProbes (5.57).
Thus, assuming a similar goodness of fit of both methods,
IDOL was still consistently better. Ultimately, the choice
of method depends on the specific research question. For
investigators that seek relative cell proportion estimates
within their population to use as covariates to remove cell
type confounding, these results suggest that pickCompP-
robes is still an acceptable approach. In contrast, IDOL se-
lects a L-DMR with the lowest bias, but as a trade-off
increases the model variance (decreases the R2). Thus, for
those investigators interested in predicting absolute cell
proportions from DNAm data, RMSE is the most import-
ant criterion for fit [30] and IDOL is the preferred estima-
tion method. We have observed that researchers
frequently want to both interpret the cell type estimations
and adjust for confounding in EWAS. In those cases,
interpreting biased estimates would not be a good idea,
and IDOL remains the best option in our opinion. In both
scenarios, we recommend using the curated, combined,
and cleaned library rather than the original UCB reference
libraries.
Although we obtained good estimations using the indi-

vidual cleaned references (Additional files 1 and 2: Fig-
ures S1 and S2), unaccounted technical and genetic
variability could increase residual noise during the esti-
mations of specific cell subtypes. The use of average
DNAm values across the four references within each cell
type would reduce (though it will not eliminate) these
sources of variability. Any difference in maternal age,
gestational age, ethnicity, genetic polymorphisms, and
technical issues (e.g., during DNAm array processing)
between the reference and validation cohorts may re-
duce the accuracy of the estimates. In addition, any dif-
ference in the fluorescent labeling of cells and
performance of the conjugated antibodies between the
two cell separation platforms (FACS and MACS) could
contribute to the observed performance differences be-
tween individual references after filtering. Specifically, in
some references, the NK cells are not depleted for CD3,
and thus might include a fraction of CD3 + CD56+ T
cells (also known as NKT cells) that could have affected
the DNAm profile. Further, the NK cells in the valid-
ation cohort were depleted for CD3, but defined as being
CD16 and/or CD56. Most of the CD16 cells are also
CD56, but some are not, and could introduce more vari-
ation in the DNAm profile. As previously noted, it is not

possible to unravel the impact these differences solely on
the results presented here. However, as these subpopula-
tions are very scarce, they will likely be absorbed within
the next most similar cell population [19].
An additional limitation of the presented work is that

only cell types in the reference datasets were estimated
and validated. It is expected that cell types lacking refer-
ence DNAm signatures will be accounted for by the next
most similar cell type represented in the reference data-
set. In addition, different cell states and cell-cell interac-
tions, which involves rapid epigenetic coordination,
would not be picked up by a statistical model [7, 31].
Unmeasured cells are a potential weakness of any refer-
ence-based deconvolution method. Importantly, nRBC
FACS counts were not available from this validation co-
hort. Approximately 90% of the total white blood cells,
however, were captured by the remaining six cell types
in the references and validation datasets. nRBCs are a
particular cell type of interest in the UBC community,
given that their hypomethylation can be detected at half
of the probes on the 450 k array. A previous study tested
one reference dataset (Bakulski) for validation with
complete blood count cell measures in the Gen3G birth
cohort. Among all pairwise estimated and measured cell
types, they observed the highest correlation for nRBCs
(R2 = 0.85) [32]. Given the reference sample overlap, we
expect that our combined reference dataset would be ap-
plicable for nRBC estimation as well.
Based on our current findings, we recommend that

studies with UBC DNAm measures on Illumina arrays
who seek reference-based cell proportion estimates em-
ploy the following methods: (1) filtered and combined
reference dataset available via Bioconductor as “FlowSor-
ted.CordBloodCombined.450 k” [23] and (2) estimate-
CellCounts2() function in the FlowSorted.Blood.EPIC R
package [19], specifying all seven cell types, IDOL probe
selection for deconvolution and noob preprocessing. We
look forward to expanded reference datasets available in
the future for UCB and other tissues. Profiles generated
in multiple laboratories with complementary methods,
featuring cell types of expertise, provide a more compre-
hensive view of the tissue and time point. The develop-
ment of multiple references also allows for reference
sample quality control screening, with great improve-
ment to estimates. Here, we demonstrate the utility of
developing a cross-lab reference dataset to harness the
power of multiple studies. While UCB is a well-charac-
terized tissue, advances in single-cell sequencing tech-
nology will enable future characterization and
identification of rare and intermediate cell states.

Conclusions
In conclusion, these results clearly demonstrate the im-
portance of using a filtered, combined reference for
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estimating cell proportions from DNAm data. The IDOL
library selection significantly outperformed the pick-
CompProbes automatic selection of probes used for
UCB deconvolution. These results have important impli-
cations for future epigenome-wide studies of DNAm in
cord blood, offering a method that has the potential to
reduce confounding due to cellular heterogeneity. Fur-
ther, we provide guidelines for reference-based cord
blood deconvolution.

Methods
Description of datasets
Four publicly available UCB reference datasets were in-
cluded in this study, here named by the first author of
the respective papers and listed by time of publication:
de Goede reference [26], Bakulski reference [17], Gervin
reference [21], and Lin reference [22]. The first three
datasets consist of 450 K DNAm data and the Lin refer-
ence contains EPIC 850 K DNAm data. Validation and
benchmarking of the estimated cell type proportions to
matched cell counts was performed in independent UCB
samples selected from the Generation R study [25, 33].

de Goede reference
The de Goede reference is obtained from UCB samples
(n = 7, five females and two males) collected at the BC
Women’s Hospital. From each sample, seven cell types
(Gran, Mono, Bcell, CD4T, CD8T, NK, and nRBCs) were
separated using FACS. Of note, one participant’s sample
did not result in sufficient CD8T cell DNA and so was
not included. In addition, the DNAm profiles from
whole cord blood prior to separation were included. 450
K DNAm data was retrieved from the GEO data reposi-
tory (GEO accession GSE68456). For full details, refer to
de Goede et al. [26].

Bakulski reference
The Bakulski reference was obtained from UCB samples
(n = 15, 8 males and 7 females) collected from full-term
deliveries at John Hopkins Hospital. From each sample,
seven cell types (Gran, Mono, Bcell, CD4T, CD8T, NK,
and nRBCs) were separated using MACS and double
density centrifugation. In addition, the DNAm profiles
from whole cord blood prior to separation were in-
cluded. The race/ethnicity of the participants are un-
known. The resulting dataset consisted of a variable
number of cell type fractions included in the final data.
450 K DNAm data was retrieved from the R package
FlowSorted.CordBlood.450 K in Bioconductor. For full
details, refer to Bakulski et al.[17].

Gervin reference
The Gervin reference was obtained from UCB samples
(n = 11, 5 males and 6 females) from full-term births at

the Alternative Birth Care unit at Oslo University Hos-
pital in Norway. The Gervin reference consisted of all
native Norwegians. All samples were successfully frac-
tionated into six cell types (Gran, Mono, Bcell, CD4T,
CD8T, and NK) using FACS. Notably, nRBCs were not
included in this reference dataset. 450 K DNAm data
was retrieved from the R package FlowSorted.CordBlood-
Norway.450 K in Bioconductor. For full details, refer to
Gervin et al. [21].

Lin reference
The Lin reference was obtained from UCB samples (n =
14, 10 males and 4 females) from full-term births. In
addition, this reference also contains cord blood tissue,
which has not been included for comparison in the
present study. The ethnic distribution of subjects included
5 Chinese, 4 Malay, and 5 Indian. All UCB samples were
fractionated into six cell types (Gran, Mono, Bcell, CD8T,
CD4T, and NK) using MACS. In addition, UCB buffy coat
samples were also assayed for DNAm prior to fraction-
ation. Notably, nRBCs were not isolated in this reference
dataset. EPIC 850 K DNAm data from UCB was retrieved
from the R package FlowSorted.CordTissueAndBlood.E-
PIC. For full details, refer to Lin et al. [22].

Jones dataset (test dataset)
For IDOL optimization and for comparison versus the
pickCompProbes procedure, we used a data set (n = 24)
collected at the British Columbia Women’s hospital con-
sisting of UCB DNAm signatures and matched FACS
counts for the seven cell types with available references
(Gran, Mono, Bcell, CD4T, CD8T, NK and nRBCs, GEO
GSE127824). One sample showed extreme FACS values
for NK (14%), and a second sample showed low granulo-
cytes (23%) and high CD4T (51%). As these extreme
values could influence the R2 results in our comparisons,
we restricted the samples to n = 22.

Generation R dataset (validation cohort)
Immunophenotyping of white blood cell subsets using
FACS and whole UCB DNAm measures in the samples
(n = 191) selected from the Generation R study are de-
scribed elsewhere [34].

Adult reference
The adult blood reference dataset correspond to the re-
cently published FlowSorted.Blood.EPIC library [19].
Briefly, six MACS-isolated and FACS-verified pure cell
subtypes (neutrophils (Neu), Mono, Bcell, CD4T, CD8T,
and NK) were purchased from commercial vendors.
Cells were isolated from 31 males and 6 females, all an-
onymous healthy donors. The donors had a mean age of
32.6 years (range 19–59 years) and an average weight of
86 kg (range 65–118 kg) and were negative for HIV,
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HBV, and HBC. Women were not pregnant at the time
of sample collection, and samples were collected from
donors with no history of heart, lung, or kidney disease;
asthma; blood disorders; autoimmune disorders; cancer;
or diabetes. DNAm was measured using Illumina
HumanMethylationEPIC array. For our analyses, we
used the legacy IDOL library optimized for Illumina
HumanMethylation450k using artificial mixtures as de-
scribed in the original paper [19].

Data processing and filtering
Data processing
All analyses were carried out using the R programming
language (http://www.r-project.org/). DNAm data from
all datasets were preprocessed in minfi [16] using pre-
processNoob for background and dye-bias normalization.
We performed a general quality control to ascertain that
none of the samples showed signs of bisulfite conversion
problems or hybridization technical defects. None of the
samples showed more than 5% detection p values over
the background > 10E−07. We did not have access to the
number of beads information for most of these samples;
thus, no additional filtering using that criterion was per-
formed. Although we examined strict filtering excluding
X and Y chromosomes and potential cross-reactive
probes, we decided to use the complete information
from the raw datasets without any filtering. Given poten-
tial technical batch issues when combining the two dif-
ferent array platforms (450 K and EPIC with different
intensity ranges), we first used the combined 450 K data-
sets for IDOL optimization. This resulted in a dataset
consisting of 207 samples for the Bakulski, de Goede,
and Gervin references (see Table 1). After data filtering
and IDOL optimization, we included the Lin dataset (n
= 83). We retained 452 567 overlapping probes shared
across all four reference datasets and array technology
platforms.

Reference data sample filtering
Each reference dataset possesses technical and biological
differences, each with potential strengths and weak-
nesses. Differences in purity estimates and phenotyping
of cell types will likely influence the deconvolution esti-
mates from the datasets individually, and particularly in
combination. To test this, we reasoned that a strict fil-
tering of the datasets prior to deconvolution could im-
prove the accuracy and precision of the deconvolution
estimates. Specifically, we projected adult cell types
(from the FlowSorted.Blood.EPIC R package [19]) onto
the sorted UCB reference samples. We visualized the
relative proportions of each adult cell type that were pre-
dicted in the cord sample using stacked bar charts. We
compared the observed adult cell type estimates and the
expected cord cell type identity with an arbitrary

inclusion cut-off of 70% of the expected purified cell
type. Consequently, any sample with < 70% of the
equivalent adult cell type was considered a cell mixture
and removed from the reference. Samples with > 70% of
a different cell type were reclassified to the “correct” cell
type. This quality control step was applied to UCB cell
types with parallel adult cell types available (Gran,
Mono, Bcell, CD8T, CD4T, and NK). Due to adult and
infant physiologic differences, this step was not per-
formed for nRBCs.

Descriptive comparison of reference datasets
To compare the UCB references, we used multidimen-
sional reduction and unsupervised hierarchical cluster-
ing. For dimensionality reduction, we performed PCA
using the prcomp function in stats R package. In each
reference dataset, we computed the variance explained
by the principal components. We plotted principal com-
ponents one and two, colored by cell type label, and
visually inspected for overlap of cell types.

Selection of reference libraries and deconvolution
We used two approaches for selection of reference li-
braries prior to applying the Houseman CP/QP method
implemented in minfi for deconvoluting Gran, Mono,
Bcell, CD4, CD8, NK, and nRBCs.

Automatic probe selection (pickCompProbes)
We used the estimateCellCounts2 function in the Flow-
Sorted.Blood.EPIC R package [19] to automatically select
library probes from each reference data separately and in
combinations, by specifying the default cord blood op-
tions. The estimateCellCounts2 function is a modifica-
tion of the commonly used estimateCellCounts function
in minfi [16]. Notably, estimateCellCounts2 provides a
flexible input of any RGChannelSet or raw MethylSet
and selection of a customized set of probes obtained
from IDOL optimization in addition to the pickCompP-
robes included in the original function. According to
previous literature, we used the automatic selection (op-
tion “any”), choosing the top 100 most differentially
methylated probes per cell type based on F-test statistics.
Depending on the library, the number of probes could
be 700, or fewer if some of the selected probes
overlapped.

IDOL algorithm
A complete explanation of the IDOL algorithm is de-
scribed elsewhere, please refer to Koestler et al. [18]
and Salas et al. [19]. In brief, the IDOL algorithm per-
forms a dynamic search in a candidate set of cell type-
specific DNAm markers for a library that is optimized
to accurately estimate cell types. In the IDOL algo-
rithm, a series of two-sample t tests are first fit to the
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matrix of CpGs and used to compare the mean methy-
lation beta-values between each of the K cell types
against the mean DNAm beta-values computed across
the remaining K − 1 cell types. Putative L-DMRs are
identified by first rank ordering CpGs by their t-statis-
tics, then taking the top M (150 CpGs in our process)
L-DMRs with the smallest and largest t-statistics for
each of the K comparisons. Using this list, IDOL per-
forms an iterative process trying to find the optimal
probes (highest R2 and lowest RMSE) for a defined size
of candidates. The procedure collects the optimal can-
didates for several predefined L-DMR library sizes. To
define optimal library, the algorithm compares the cell
estimates obtained using CP/QP in each iteration ver-
sus the true estimates in the mixture (e.g., the cell pro-
portions derived from the FACS cell counts).
IDOL optimization was performed using the Jones

dataset (n = 22). The Jones dataset consists of UBC
samples in which the “true values” for the seven cell
subtypes interrogated in the reference libraries is
known (FACS information). The samples in this dataset
were divided half into training (n = 11) and half into
testing (n = 11) groups for the IDOL L-DMR libraries.
Specifically, to calibrate the selection of optimal L-
DMR libraries, we applied IDOL to the training set to
identify several sets of optimized reference libraries for
UCB deconvolution. Libraries ranging from 300 to 600
probes have previously demonstrated to generate accur-
ate and reliable deconvolution estimates [19]. Hence,
we chose a preselected library size between 150 and
700 probes with increments of 50 probes per each
optimization cycle. During the implementation of the
IDOL, a total of 500 iterations were run for library
optimization. The IDOL reference libraries were evalu-
ated by calculating the R2 and RMSE comparing the
proportion estimates using CP/QP and the proportions
derived from the FACS counts for each cell type in the
11 samples used for training versus the 11 samples used
for testing each library. Among the 12 sets of libraries,
the optimal library showed the highest R2 and the low-
est RMSE on both the testing and training sets when
comparing the cell estimates versus the proportions de-
rived from the FACS counts.

Comparison of selected libraries
We identified four libraries (pickCompProbes raw, pick-
CompProbes filtered, IDOL raw, and IDOL filtered). We
used heatmaps with hierarchical clustering to visualize
sorted cell type methylation levels in each of the libraries
selected. We used an Euler diagram to describe the rela-
tionships between the probes selected for the library
methods. The selected libraries were used for deconvo-
luting Gran, Mono, Bcell, CD4T, CD8T, NK, and nRBCs
by applying the Houseman CP/QP method to obtain cell

type estimates in the test samples (n = 22). We used the
combined reference dataset as well as the four reference
datasets individually. The cell proportion estimates
resulting from these libraries and reference datasets were
compared to FACS counts for each cell type and evalu-
ated by calculating the R2 and RMSE.

Leave-one-out analysis
We compared the cell estimates obtained using the
IDOL procedure using the combination of the four ref-
erences versus those obtained excluding one of the refer-
ences while leaving the other three.

Validation of the deconvolution estimates
The accuracy of the deconvolution methods was vali-
dated by comparing pickCompProbes and IDOL cell
type estimates against matched cell counts in cord blood
samples selected from the Generation R study (n = 191).
Note, nRBCs were not available in the validation dataset,
and testing was performed exclusively on CD8T, CD4T,
NK, Bcell, Mono, and Gran cell types. Correlation of the
cell type estimates and matched cell counts was calcu-
lated using the Pearson correlation test. We further cal-
culated the absolute errors (cell type estimates minus
FACS counts) by library selection method and by the
combined UCB reference (filtered and raw). With the fil-
tered, combined UCB reference dataset, we used Bland-
Altman plots to assess the difference versus the mean
cell type estimate per library selection method (pick-
CompProbes and IDOL).
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