
RESEARCH Open Access

Rheumatoid arthritis-relevant DNA
methylation changes identified in ACPA-
positive asymptomatic individuals using
methylome capture sequencing
Xiaojian Shao1,2,11, Marie Hudson3,4,5, Ines Colmegna3,6, Celia M. T. Greenwood1,3,5, Marvin J. Fritzler7,
Philip Awadalla8,9, Tomi Pastinen1,10† and Sasha Bernatsky3,6*†

Abstract

Objective: To compare DNA methylation in subjects positive vs negative for anti-citrullinated protein antibodies
(ACPA), a key serological marker of rheumatoid arthritis (RA) risk.

Methods: With banked serum from a random subset (N = 3600) of a large general population cohort, we identified
ACPA-positive samples and compared them to age- and sex-matched ACPA-negative controls. We used a custom-
designed methylome panel to conduct targeted bisulfite sequencing of 5 million CpGs located in regulatory or
hypomethylated regions of DNA from whole blood (red blood cell lysed). Using binomial regression models, we
investigated the differentially methylated regions (DMRs) between ACPA-positive vs ACPA-negative subjects. An
independent set of T cells from RA patients was used to “validate” the differentially methylated sites.

Results: We measured DNA methylation in 137 subjects, of whom 63 were ACPA-positive, 66 were ACPA-negative,
and 8 had self-reported RA. We identified 1303 DMRs of relevance, of which one third (402) had underlying genetic
effects. These DMRs were enriched in intergenic CpG islands (CGI) and CGI shore regions. Furthermore, the genes
associated with these DMRs were enriched in pathways related to Epstein-Barr virus infection and immune
response. In addition, 80 (38%) of 208 RA-specific DMRs were replicated in T cells from RA samples.

Conclusions: Sequencing-based high-resolution methylome mapping revealed biologically relevant DNA methylation
changes in asymptomatic individuals positive for ACPA that overlap with those seen in RA. Pathway analyses suggested
roles for viral infections, which may represent the effect of environmental triggers upstream of disease onset.
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Introduction
Rheumatoid arthritis (RA) is an autoimmune disease
and the most common chronic inflammatory polyarthri-
tis [1, 2] with a marked female predominance [3]. It is a
complex disease triggered by the combination of risk
alleles from different susceptibility genes and exposure
to environmental factors. During a pre-clinical course

lasting up to several years, RA-related antibodies such as
anti-citrullinated peptide antibodies (ACPA) can be
detected even prior to clinical manifestations as evidence
of early immune dysregulation [4, 5]. Though links
between environmental and genomic events are incom-
pletely understood, environmental effects may be mediated
through epigenetic mechanisms [6–8].
Altered DNA methylation patterns have been identi-

fied in clinical RA [9, 10]. Indeed, global hypomethyla-
tion was shown in T cells of RA patients [11–13] and
hyper- and hypomethylation of specific genomic sites
were also shown in synovial fibroblasts [14–16]. RA
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synovial fibroblasts display global DNA hypomethylation
[17, 18], and more complicated patterns are seen in
CD4+ T cells or peripheral blood mononuclear cells
(PBMCs) [12, 19–21]. Prominent DNA methylation al-
terations mediating genetic risk in RA have been found
in the major histocompatibility complex (MHC) region
[6]. Comparing DNA methylation patterns in subjects
with and without RA (including subjects with ACPA
positivity but no clinical signs) would have implications
for understanding causal pathways related between epi-
genetic abnormalities and disease. However, targeted
array-based platforms such as Illumina Human Methyla-
tionHM450K (HM450K) preferentially cover CpG-dense
regions, which are not necessarily relevant in auto-
immune disease [22].
We compared ACPA-positive vs ACPA-negative asymp-

tomatic subjects using custom methylC-capture sequen-
cing (MCC-Seq) [22, 23], a next-generation sequencing
capture approach. This comprehensive MCC-Seq panel
encompasses ~ 5 million CpGs [22], representing regula-
tory regions in peripheral leukocytes as well as hypo-
methylated regions in whole blood. This allows study of
potentially disease-associated CpGs in distal regulatory
elements and eliminates direct interference by genetic var-
iants. We identified novel ACPA/RA-associated CpGs and
regions and replicated our findings in an independent RA
sample. Moreover, we demonstrated DMR-associated
genes enriched in pathways related to viral infections and
immune response.

Methods
Patients
General population subjects
Our analyses were based within the CARTaGENE plat-
form (https://cartagene.qc.ca/), made of 19,995 general
population subjects (aged 40 to 69) across four census
metropolitan areas: Montreal, Quebec City, Sherbrooke,
and Saguenay-Lac-Saint-Jean, all in the province of
Quebec, Canada. Participants were randomly selected
from the provincial health insurance registries (fichier
administratif des inscriptions des personnes assurees de
la Regie de l’assurance maladie du Quebec, RAMQ).
This excluded residents of First Nations reserves or
long-term health care facilities or prisons. The partici-
pants were selected according to the age distribution in
the four areas, to obtain a representative sample.
Using bio-banked sera from a random subset (N = 3600)

of CARTaGENE subjects, we performed Inova enzyme-
linked immunosorbent assay (Quanta Lyte, CCP3 IgG:
Inova Diagnostics Inc., San Diego, CA) and identified 69
ACPA-positive subjects (1.9%). Among them, 18 were
highly positive (ACPA > 60 optical density, OD units) and
the rest were low or medium positive (20–60 OD), all but
one had ACPA > 40 OD). ACPA-positive patients were

matched for age, sex, and smoking status to ACPA-
negative (ACPA ≤ 20 OD) CARTaGENE subjects (N = 68).
Whole blood from ACPA-positive and ACPA-negative pa-
tients (n = 137) was used to extract DNA for the current
analyses. Among the 137 subjects, 8 samples had self-
reported RA, 6 of whom were ACPA-positive and 2
ACPA-negative. Proportions of circulating cell sub-types
(standard cell count and differential), including monocyte,
lymphocyte, neutrophil, eosinophil, and basophil, were
available at the time of the sampling.

Rheumatoid arthritis patients
Nine new-onset (symptom duration < 1 year) treatment-
naïve RA patients and 13 control subjects were used to
validate the epigenome-wide association study (EWAS)
analysis from the CARTaGENE cohort. These subjects
were recruited from the Jewish General Hospital and
McGill University Health Centre arthritis clinics. Forty
milliliters of blood was collected from each subject, and
CD4+ T cell-positive selection (anti-CD4 microbeads,
MiltenyiBiotec, and auto-MACS) was performed. Samples
with purity > 95% (using flow cytometry) were sequenced.

Methylation sequencing
Methylation capture sequencing (MCC-Seq) was performed
as previously described [22, 23]. DNA methylation of each
CpG was measured by the number of methylated reads
over the total number of sequenced reads. Details are pro-
vided in Additional file 1. This immune panel covers the
majority of human gene promoters, methylation footprint
regions [24] observed in blood, blood-cell-lineage-specific
enhancer regions, CpGs from Illumina Human Methylation
450 Bead Chips, and published autoimmune-related SNPs
as well as SNPs in their LD regions with r2 > 0.8.
Overall, it covers 4,861,805 CpGs [22].

Statistical analyses
To look for associations between DNA methylation and
ACPA levels in CARTaGENE subjects, we built general-
ized linear regression models (GLM) using the methyla-
tion proportion inferred from the combination of
methylated reads and unmethylated reads as a binomially
distributed response variable, and ACPA status (e.g., posi-
tive or negative) as a predictor, with sex, age, and smoking
status as covariates. Here we used the R function glm()
and the binomial family to fit each model and calculated p
values for variables of interest with Wald-type tests. Dose
effects were considered in a similar model with ACPA sta-
tus as an ordinal variable (ACPA negative, medium posi-
tive, and high positive as 0, 1, and 2, respectively). A third
analysis compared CARTaGENE subjects with self-
reported RA to the non-RA CARTaGENE subjects
(ACPA-positive and ACPA-negative). All analyses were
adjusted for blood cell-type composition, by adding the
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proportion of each blood cell subtype (i.e., monocyte,
lymphocyte, neutrophil, eosinophil, and basophil) to the
models as additional covariates. DNA methylation mea-
sures on the X and Y chromosomes from EWAS analysis
were excluded. From the distribution of p values obtained
for the autosomal CpGs, false discovery rate q values were
estimated using the R package q values [25, 26]; q values
less than 0.01 were considered significant. Non-variable
CpGs (standard deviation = 0) were removed to reduce
the multiple testing burden. For some CpGs, the number
of individuals with sufficient sequencing coverage (≥ 15×)
was low (e.g., < 30 samples); these CpGs were removed
from our analyses, to minimize the impact of low meas-
urement accuracy. To assess potential regional clustering
of significant CpGs, we selected CpGs with differential
methylation (DMCs) for ACPA-positive vs ACPA-negative
CARTaGENE subjects and created a candidate region
around these sites of up to 200 bp both upstream and
downstream. Within these candidate regions, all consecu-
tive CpGs with methylation changes in the same direction
(with nominal p value < 0.01) were merged. Regions with
at least 3 CpGs fulfilling these criteria were considered dif-
ferentially methylated regions (DMRs, Additional file 2:
Figure S1A). For the analysis of the CD4+ T cells of RA
cases and controls, we fit a simpler binomial regression
model without including additional covariates for smok-
ing, cell types, or sex, due to the sample size available.
To investigate genetic effects on DNA methylation,

methylation quantitative trait locus (meQTLs) analyses
were performed (Additional file 2: Figure S1B). Genotypes
were inferred directly from the MCC-Seq data using
BisSNP [27] with an additional step fetching the genotype
of homogenous reference alleles from the aligned BAM
files. Bi-allelic SNPs were retained for analysis where SNPs
had at least a read depth ≥ 10× and where more than 70%
of the subjects had genotype calls. CpGs measured in more
than 68 individuals (i.e., > 50% of all individuals) and with
large variance (i.e., variance in the top 50% of all CpGs)
were selected for this analysis. By considering possible SNP
cis-effects within 250 kb of a CpG (i.e., a 500-kb window),
meQTLs were calculated using MatrixEQTL with default
parameters [28], correcting p values using the false dis-
covery rate approach [29]. For genotype adjustment
of the models, the genotypes of identified significant

meQTLs (q value < 0.01) within the 500-kb window
were added into the binomial regression models.

Genome features and enrichment analysis
Genome feature files and annotation tables, including
transcription start sites (TSSs), 3’UTRs, 5’UTRs, first
exons, exons, introns, and transcription end sites (TESs),
were downloaded from the UCSC genome browser ver-
sion of hg19. The promoter regions were defined as
TSS1500 (1500 bp from TSSs). CpG islands (CGI) were
defined as per the UCSC genome browser. CGI shores
were defined as the 2-kb flanking sequences on either
side of CGIs; shelves were defined as the 2-kb flanking
sequences beyond the shores. Genome feature enrich-
ment analyses of RA-associated DMRs were performed
using Fisher’s exact test for significance where the back-
ground set included all testable CpGs. The closest genes
for DMRs were annotated using homer [30] (version
4.9.1). Pathway enrichment analyses were also performed
using homer [30]. Gene sets detected from the immune
panel were used as the background set.

Results
CARTaGENE subjects
Table 1 characterizes the sampled 137 CARTaGENE
subjects included in this study (63 ACPA-positive and
66 ACPA-negative without self-reported RA, and 8
females with self-reported RA).
Average sequence genome coverage in targeted regions

was 15×. Over 6 million CpGs captured in at least one
sample and consisting of the targeted CpGs and flanking
CpGs within 500 bp of the targeted panel, underwent
downstream analysis. When restricting attention to
CpGs with good coverage in at least 30 samples, 5 mil-
lion CpGs remained for analysis. See Additional file 3:
Figure S2 for details on read and sample coverage.

Genome-wide analysis of DNA methylation in ACPA
healthy and RA subjects
In EWAS comparisons of ACPA-positive and ACPA-
negative subjects (excluding the 8 self-reported RA pa-
tients), we identified 2047 DMCs (q value ≤ 0.01); 668
were hypomethylated and 1379 hypermethylated (model I,
see Table 2 for a summary of all models fit and the

Table 1 CARTaGENE subjects: ACPA-positive, ACPA-negative, and RA

All subjects (N = 137) ACPA-positive (N = 63) ACPA-negative (N = 66) Self-reported RA (N = 8)

Mean age (range) 55.2 (40.4–69.9) 55.6 (40.4–69.9) 54.9 (41.7–69.2) 54.6 (45.4–69.8)

Female, N (%) 89 (64.9%) 39 (61.9%) 42 (63.6%) 8 (100%)

Smoker, N (%)

Current 28 (20.5%) 14 (22.2%) 13 (19.7%) 1 (12.5%)

Past 58 (42.3%) 27 (42.9%) 27 (40.9%) 4 (50%)

Never 51 (37.2%) 22 (34.9%) 26 (39.4%) 3 (37.5%)
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number of DMCs and DMRs identified). After adjusting
for blood cell heterogeneity (model II), 1295 (63.3%)
of the methylation differences remained significant
and 614 new DMCs were identified, leading to a final
identification of 1909 DMCs (679 hypomethylated and
1230 hypermethylated). The genome-wide distribution
of significant CpG sites for model II is shown in Fig. 1
and Additional file 5: Table S1. At a q value < 0.1
(from the cell composition adjusted model), 85.3% of
the DMCs in model I remained significant in model
II (Additional file 4: Figure S3). Unless stated specific-
ally, all downstream models were based on cell-type
adjusted results.
After performing regional clustering of significant DMCs

from model II, we defined 509 DMRs when comparing
ACPA-positive vs. ACPA-negative subjects (158 hypo-
methylated and 351 hypermethylated, see the “Methods”
section). The majority (N = 281, 55%) of DMRs had an
absolute mean methylation level difference of at least 5%
(details in Additional file 5: Table S2).
We then compared DNA methylation differences be-

tween the 8 subjects with self-reported RA and all
other sampled CARTaGENE subjects with measured
ACPA (positive or negative). In models including blood
cell-type adjustments (model III), there were 955 DMCs

(435 hypomethylated and 520 hypermethylated) (Add-
itional file 5: Table S3). These DMCs could be grouped
into 249 DMRs (81 hypomethylated and 168 hyper-
methylated). Comparing with the identified DMCs from
the comparison of ACPA-positive vs. ACPA-negative
subjects, only 104 DMCs were shared; 94.5% of ACPA-
positive vs. ACPA-negative DMCs and 89.1% of self-
reported RA vs. healthy DMCs were specific (Fig. 2a).
Similarly, only 27 DMRs out of 509 ACPA-positive vs.
ACPA-negative DMRs and 29 out of 249 self-reported
RA vs. healthy DMRs were shared (Fig. 2b).

Dose-dependent DNA methylation
Considering the results of models II and III and the sug-
gestion of trends in methylation levels, our next analysis
explored “dose effects” of DNA methylation on ACPA sta-
tus. The ACPA variable was grouped into three categories:
negative, low-/medium-positive, and high-positive, and fit
an ordinal model (see the “Methods” section) called
“dose-effect model” hereinafter (model IV in Table 2).
This resulted in 4475 DMCs (termed as ACPA-associated
DMCs) and 1303 DMRs (termed as ACPA-associated
DMRs). These DMRs included 455 genes and 315 inter-
genic regions (Additional file 5: Table S4). Next, the
ACPA-associated DMCs were filtered to identify those

Table 2 Summary of differentially methylated CpGs from different models

Models Phenotype groups #CpG
tested

#DMCs #hypoDMCs #hyperDMCs #DMRs #hypoDMRs #hyperDMRs

I ACPA-positive vs. ACPA-negative 4,733,057 2047 668 1379 623 210 413

II ACPA positive vs. ACPA-negative with cell type
adjustment

4,635,909 1909 679 1230 509 158 351

III Self-reported RA vs. ACPA healthy with cell type
adjustment

4,109,916 955 435 520 249 81 168

IV ACPA ordinal (negative/medium/high) with cell type
adjustment

4,049,218 4475 869a 761 1303 62a 60

V T cell RA patient vs. controls 3,262,817 1595 868 727 502 202 300
aThe number of hypo/hyper DMCs/DMRs were calculated based on the directional changes of DNA methylation across ACPA-negative, ACPA-medium-positive,
and ACPA-high-positive

Fig. 1 Genome-wide distribution of significant CpG sites from EWAS analysis. a qq-plot of the p values from the EWAS associations between
ACPA-positive and ACPA-negative after adjustment for cell-type heterogeneity. Genomic control value lambda = 1.05 indicates no obvious inflation.
The x-axis indicates the expected −log10 (p values), whereas the y-axis shows the observed −log10 (p values). b Manhattan plot of the p values from
the EWAS associations. The x-axis indicates genomic locations of the CpGs, and the y-axis shows −log10 (p values) of the associations
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where the methylation changes demonstrated an ordinal
pattern (i.e., a directional effect) across the ACPA levels,
and then further filtered to find DMCs where the RA pa-
tients demonstrated the same directional trend. In this
manner, 869 hypodirectional DMCs and 761 hyperdirec-
tional DMCs were defined from the ordinal model, to-
gether with 62 hypodirectional and 60 hyperdirectional
DMRs. Among these sites, RA patients showed methyla-
tion levels that followed the same direction of change for
134 hypodirectional and 103 hyperdirectional DMCs
(Additional file 5: Table S5). Moreover, 12 hypo and 6
hyperdirectional DMRs were identified in a similar

manner. For example, a CpG located at chr6:31275580 (up-
stream of HLA-C region) is one of the top hypomethylated
CpGs showing a directionally consistent decrease in DNA
methylation levels (> 10%) when comparing ACPA-negative
individuals, medium-positive individuals, high-positive indi-
viduals, and then RA patients (Fig. 2c). Furthermore, four
DMCs around this site formed a DMR region (Fig. 2d).
We then explored the enrichment of ACPA-associated

DMRs in different genomic contexts. There were fewer
of these associated DMR TSS regions and UTR regions
than would be expected (e.g., fold change, FC = 0.56, 0.3,
and 0.58 in TSS 1500 bp, 5’ UTR and 3’ UTR regions,

A C

B

D

Fig. 2 EWAS analysis in ACPA-measured subjects, self-reported RA patients, and dose-dependent DNA methylation analysis. a Venn diagram of
DMCs inferred from ACPA-positive vs. ACPA-negative and self-reported RA vs. non-RA healthy. b Venn diagram of DMRs inferred from ACPA-
positive vs. ACPA-negative and self-reported RA vs. non-RA healthy. c Three groups were analyzed in an ordinal model relating ACPA level to
methylation (ACPA-negative, ACPA-medium-positive, and ACPA-high-positive). A CpG site located at HLA region (e.g., chr6: 31275580) from the
ACPA-associated DMRs shows a hypomethylated pattern where methylation decreases from left to right. Methylation level profiles of self-
reported RA were also added but not included in the three-group analyses. Dot size represents the sequencing read coverage of the given CpG
site per sample. d USCS track browser for the corresponded DMR region associated with the site in c

Shao et al. Clinical Epigenetics          (2019) 11:110 Page 5 of 11



respectively). However, ACPA-associated DMRs showed
enrichment in CGI-associated regions, especially for the
CGIs and CGI-shore regions (up to FC = 1.4 reaching
enrichment p value = 1.2e−154) (Fig. 3a). Meanwhile, we
did not see any enrichment of these DMRs in various
regulatory elements including DNA accessibility regions
and histone modification peak regions (Fig. 3b). How-
ever, interestingly, these DMRs were highly enriched in
the auto-immune SNP-associated regions (FC = 1.96, p
value = 4e−4). These auto-immune SNP-associated re-
gions are defined as 200 bp up- and downstream from
SNPs identified from genome-wide association studies of
auto-immune disease, as well as SNPs in linkage disequi-
librium with these key SNPs with r2 > 0.8 [31]. In path-
way enrichment analyses of genes in the vicinity of
significant CpGs, there was enrichment of several viral
infection (Epstein-Barr virus, EBV, herpes simplex, influ-
enza A), MAPK signaling, T cell activation, and osteo-
clast differentiation pathways (Fig. 3c).

meQTLs and ACPA-associated DMRs
Given the substantial enrichment of ACPA-associated
DMRs in auto-immune SNP-associated regions, we ex-
amined the overlap between these DMRs and previously
reported RA-associated SNPs from GWAS analyses [32].
In 74 (5.7%) of the 1303 ACPA-associated DMRs found
with model IV, there was an RA-associated SNP within
500 kilobases (kb). For instance, one DMR on chr22

(chr22:39747459-39747832) aligns with SNP rs909685
(associated with SYNGR1), which is located within the
DMR. When looking only at the 122 directional ACPA-
associated DMRs, RA-SNP associations had been previ-
ously observed for 9 regions (7.4%). Hence, genotypes
may be underlying confounders for some of our identi-
fied ACPA-methylation associations. We therefore per-
formed local meQTLs analyses and then aligned the
associated DMCs/DMRs to the identified meQTLs. Briefly,
we tested for associations at 2,258,466 SNP-CpG pairs
located no more than 250 K from each other: this analysis
included 1,001,116 CpGs and 67,399 SNPs. Among
these tests, 61,260 CpG-SNP pairs showed significance
(at p value < 5e−8, covering 22,657 independent CpGs
and 11,069 unique SNPs). The 11,069 SNPs form the
genome-wide significant set of meQTLs for further analyses.
Of the 4475 ACPA-associated DMCs identified through

ordinal model analyses in model IV, there were 3127 CpGs
where an appropriate SNP was available that was therefore
included in the meQTL analysis above. Accordingly, 1068
of 1303 ACPA-associated DMRs have testable genetic
influences. Reanalysis of the ACPA-methylation associa-
tions for these 3127 DMCs and those involved in 1068
DMRs was therefore undertaken including the identified
lead meQTL SNP for the CpG in the model. After adjust-
ment for lead meQTL genotype, many of the ACPA-
methylation associations lost strength; however, 381
DMCs and 227 DMRs remained statistically significant (at

A C

B

Fig. 3 Results of genomic element enrichment analysis of ACPA-associated DMRs. a Genome feature enrichment analysis. b Regulatory element
enrichment analysis. c KEGG pathway enrichment analysis for DMRs. **p value < 0.001
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Bonferroni multiple testing q value < 0.01). Therefore, we
further categorized the 1068 ACPA-associated DMRs into
two groups, genetically influenced DMRs (gDMRs) and
non-genetically influenced DMRs (ngDMRs), based on
whether or not they remained significant after genotype
adjustment. That is, there were 841 (78.7%) gDMRs and
227 (21.3%) ngDMRs. Extracted from the full list of
gDMRs and ngDMRs in Additional file 5: Table S4, Table 3
lists the top 10 most significant DMRs with absolute mean
methylation difference between ACPA high-positive and
negative group ≥ 10%, separated as just described, with
their associated genes.

Replication in an independent RA cohort
To further validate the MCC-Seq-based EWAS analysis,
methylomes of CD4+ T cells from 9 RA cases and 13
healthy controls without RA were sequenced using the
same panel. Here, similar binomial regression model
(model V), but without additional covariates due to the
small sample size, was applied. Results from this analysis
were compared to results from the CARTaGENE discov-
ery cohort. In this RA cohort, 3,262,817 CpGs had suffi-
cient coverage to be tested. At a p value < 0.05, 116
(15.6%) of 743 DMCs also tested in the CARTaGENE

data showed evidence of replication, as defined by the
same direction in DNA methylation change. Compared
to the DMCs set (n = 321,036) from tested CpGs in the
RA cohort, and showing EWAS q value < 0.05, 12.2-fold
enrichment (with p value = 4.9e−14) of overlapping sig-
nificant DMCs was observed. Even at nominal signifi-
cance cutoff for smaller RA cohort, significant
enrichment for DMCs with overlapping associations was
observed (fold change of 1.5 and p value ≤ 1.2e−5) (Add-
itional file 5: Table S6). After adjusting these 116 DMCs
by cis-genotype information, the strength of association
was reduced (to non-significant) in 36 (30%), indicating
that genetic effects might be inducing some of the
methylation-phenotype associations in both datasets.
Finally, replication of results between this validation

cohort and our analysis of self-reported RA in the
CARTaGENE subjects was assessed. Of the 249 DMRs
observed in the latter (model III, Table 2), 208 re-
gions also met the criteria for analysis in the valid-
ation T cell cohort. Among these 208 common tested
regions, we were able to replicate 38% by finding stat-
istical significance at overlapping DMCs with a nom-
inal p value < 0.05. These 80 DMRs are listed in
Additional file 5: Table S7.

Table 3 Results of top ACPC-associated DMRs separated into those where there was a SNP influencing methylation levels nearby
(gDMRs) and those where a nearby associated SNP (ngDMRs) was not found

#chr Start End #DMC q values, mean Methdiff, mean Distance to TSS Gene name

gDMRs

chr10 43140840 43140878 4 4.68E−06 12 − 6574 ZNF33B

chr13 114579169 114579173 4 6.20E−06 15 7288 LINC00454

chr19 13874993 13875015 4 5.42E−05 − 12 − 324 MRI1

chr4 185189026 185189056 4 0.000174 24 − 49,927 ENPP6

chr12 42539166 42539215 8 6.22E−04 11 − 518 GXYLT1

chr12 124858272 124858284 4 1.03E−03 − 11 − 36,490 MIR6880

chr12 11699957 11700234 22 0.00154 − 14 − 868 LINC01252

chr6 26755655 26755778 6 1.98E−03 12 − 95,737 ZNF322

chr5 171203344 171203485 14 2.31E−03 11 − 9461 SMIM23

chr15 91474603 91474621 4 0.00294 − 10 1187 HDDC3

ngDMRs

chr13 114579169 114579173 4 6.20E−06 15 7288 LINC00454

chr14 24944437 24944579 10 8.84E−05 − 12 32,349 LOC101927045

chr2 1370435 1370661 24 4.05E−04 11 − 46,685 TPO

chr12 42539166 42539215 8 6.22E−04 11 − 518 GXYLT1

chr20 29523738 29524187 27 1.42E−03 − 14 46,400 LINC01598

chr2 91850066 91850070 4 1.71E−03 − 16 − 2093 LOC654342

chr6 26755655 26755778 6 1.98E−03 12 − 95,737 ZNF322

chr7 93996387 93996403 6 2.69E−03 − 11 − 27,478 COL1A2

chr15 91474603 91474621 4 0.00294 − 10 1187 HDDC3

chr14 106865983 106866072 4 3.05E−03 − 10 − 72,417 LINC00221
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Discussion
This is the first genome-wide sequencing-based DNA
methylation association analysis of ACPA-positive and
ACPA-negative subjects. Distinct DNA methylation loci
are present in ACPA-positive vs. ACPA-negative individuals
and in RA vs. ACPA-positive subjects without RA. Com-
mon directional loci were found across ACPA-negative,
ACPA-low/medium-positive, ACPA-high-positive, and RA
patients. The findings of altered DNA methylation in
ACPA-positive subjects without RA and the directional
methylation changes support the existence of possible
causal pathways between epigenetic abnormalities and RA.
We rigorously adjusted the EWAS models with mea-

sured blood cell proportions using known differential
counts and observed that the majority of significant sig-
nals were maintained (e.g., 85% of the ACPA-negative
vs. ACPA-positive DMCs remained significant after
blood composition correction). In fact, blood cell pro-
portion corrections are essential for EWAS studies using
whole blood samples [33]. If measured blood cell pro-
portions are not available, computational approaches are
available to deconvolute the compositions and include
those as covariates in models [34–39].
The high-density results highlighted genes showing

ACPA-associated DMRs involved in several viral infec-
tions, with the most significant being the EBV infection
pathway. EBV has previously been suggested to be impli-
cated in the etiology of RA [40]. A meta-analysis study
showed the risk of RA after EBV infection [41]. More re-
cently, Harley et al. suggested that EBNA2, the product
of EBV, directly modulates gene expression in auto-
immune disease loci [42]. This DNA methylation analysis
thus provides support for the hypothesis that environmen-
tal triggers including EBV contribute to the pathophysi-
ology of RA prior to the onset of clinical disease. This is
consistent with the “multi-hit” theory [43, 44] whereby
complex autoimmune diseases like RA arise as a conse-
quence of underlying risk factors (that may be genetic),
but which lead to disease only in the presence of other
events, such as viral infections. We hypothesized that al-
tered DNA methylation prior to disease onset may be par-
ticularly relevant for environmental triggers. Consistent
with this hypothesis, we observed methylation changes
already present in ACPA-positive subjects, prior to the
onset of disease, that were enriched in regions and genes
related to viral infections.
The genes involved in immune-related pathways include

CARD11, CSF2, MAP3K7, NFATC1, PAK4, NFKBIA,
MAPK9, IFNAR2, FCGR2A, and SOCS3. Interestingly,
most of them except CSF2 and FCGR2A were not
associated with reported RA GWAS loci (CSF2 and
FCGR2A were reported to associate with RA GWAS loci
rs657075 and rs72717009, respectively [32]). Nevertheless,
our meQTLs results revealed DMRs related to CSF2,

NFATC1, NFKBIA, and MAPK9 that contained DMCs
affected by some genetic effects. These results suggest that
these DMRs might be a consequence of long-range haplo-
type effects of genetic variants on methylation, which is
consistent with the results from Liu et al. where they
found five out of nine DMCs were mediated by genetic
variants [6].
Of note, MAP3K7 (TAK1), which is associated with an

ngDMR (co-localized at a low-methylated region [24]
which typically implies an enhancer-like regulatory
element), is a kinase known to activate MAPK8/JNK and
MAP2K4/MKK4 and plays a role in the cell response to
environmental stresses. It has recently been reported as
a new therapeutic target in RA [45, 46]. CARD11, an es-
sential adaptor protein that activates the nuclear factor
(NF)-κB signaling pathway, is reported to be involved in
the pathogenesis of RA and could also be a potential
therapeutic target [47]. IFNAR2 is one of the type I
interferon receptors, which are currently considered as
key factors in the development and regulation of auto-
immune diseases such as RA [48, 49]. SOCS3, a member
of the family of cytokine signaling proteins, was reported
to show increased gene expression level changes in RA
patients compared with healthy participants [50] and
was a key signaling molecule in bone cell-mediated in-
flammatory responses [51–53]. These results highlighted
the potential of our new sequencing-based technique to
detect RA-relevant targets. In addition, RA-associated
DMRs were enriched in enhancer-like regions. Future
work will include integrating HiC-Seq [54, 55] data to
detect the physical intersections between enhancers and
promoters to identify the regulated genes.
In the pairwise comparisons, around 15.6% of RA-

specific DMCs and nearly 38% of RA-specific DMRs
were well replicated in an independent data set of RA
patients and controls, where CD4+ T cells were avail-
able. Among them, IRF9, showing hypomethylation in
the RA patients, has been reported to activate the JAK-
STAT signaling pathway, which further triggers the in-
duction of type I interferon response genes (IRG). JAK
inhibitors are approved for the treatment of RA [56].
Given the limited sample size of (self-reported) RA pa-
tients in our study, current replication rates provide
promising results regarding identifying RA-specific DNA
methylation signals.
In contrast to the earlier study by Gomez-Cabrero et

al. [57] where monozygotic (MZ) twins were analyzed
with the HM450K technology, and with a smaller num-
ber of subjects, we employed a platform designed on
known regulatory elements in human circulating leuko-
cytes. Our panel captured more than 4 million CpGs for
analysis, which is roughly 10-fold larger than the
HM450K and 6-fold larger than the Human Methylation
EPIC (EPIC) Bead Chips (Illumina, CA, USA) [58],
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providing the potential for discovering novel signals at
an unprecedented level of resolution. We observed that
64.1% of the ACPA-positive and ACPA-negative DMRs
contain CpGs not found on the Illumina EPIC array
probes (and this proportion rises to > 70.2% for the Infi-
nium HM450K array probes). In addition, by comparing
with Gomez-Cabrero et al.’s 18 candidate DMRs, none
of them overlapped with our DMR list and only 5 of
them replicated with at least one CpG showing nominal
p value < 0.05 in our analysis. This low replicate rate
might be due to the overall low overlap rate between
our DMC set and the HM450K probes (e.g., when over-
lapping our hits for model IV with HM450K, only ob-
served 7% of them overlapped). Meanwhile, these
differences could also be due to sampling variations,
differences in platforms/methods, and/or differences in
the demographics of the population.
We observed around 79% of the ACPA-associated

DMRs or RA-associated DMCs were influenced by cis-
regulatory SNPs. These SNPs were extracted from the
MCC-Seq data directly, once again showing the advan-
tages of a sequencing-based technique over array-based
platforms by generating CpG methylation and neighbor-
ing SNPs simultaneously. Consequently, our approach
can address both genetically and environmentally medi-
ated DNA methylation changes related to the disease.

Conclusions
This is the first bisulfite sequencing-based EWAS study
in autoimmune disease using a population-based blood
sampling for individuals at elevated risk for RA. After
controlling for known confounding of blood cell sub-
types in EWAS, this study uncovered both genetically
mediated and putatively environmentally induced signals
functionally linking viral infections to ACPA positivity.
This data also supports the hypothesis of a causal link
between epigenetic abnormalities and RA.
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