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Abstract

Background: Lung macrophages are major participants in the pulmonary innate immune response. In the cystic
fibrosis (CF) lung, the inability of lung macrophages to successfully regulate the exaggerated inflammatory response
suggests dysfunctional innate immune cell function. In this study, we aim to gain insight into innate immune cell
dysfunction in CF by investigating alterations in DNA methylation in bronchoalveolar lavage (BAL) cells, composed
primarily of lung macrophages of CF subjects compared with healthy controls. All analyses were performed using
primary alveolar macrophages from human subjects collected via bronchoalveolar lavage. Epigenome-wide DNA
methylation was examined via Illumina MethylationEPIC (850 K) array. Targeted next-generation bisulfite sequencing
was used to validate selected differentially methylated CpGs. Methylation-based sample classification was performed
using the recursively partitioned mixture model (RPMM) and was tested against sample case-control status.
Differentially methylated loci were identified by fitting linear models with adjustment of age, sex, estimated
cell type proportions, and repeat measurement.

Results: RPMM class membership was significantly associated with the CF disease status (P = 0.026). One hundred
nine CpG loci were differentially methylated in CF BAL cells (all FDR ≤ 0.1). The majority of differentially methylated loci
in CF were hypo-methylated and found within non-promoter CpG islands as well as in putative enhancer regions and
DNase hyper-sensitive regions.

Conclusions: These results support a hypothesis that epigenetic changes, specifically DNA methylation at a multitude
of gene loci in lung macrophages, may participate, at least in part, in driving dysfunctional innate immune cells in the
CF lung.
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Background
The role of the innate immune system in the pathogenesis
of cystic fibrosis (CF) lung disease has been an emerging re-
search focus [1–3]. The inability to regulate both the
chronic infections and an excessive inflammatory response
suggests that the innate immune system is dysfunctional in
CF [1]. Studies have revealed numerous physiologic defects
associated with CF macrophages including dysregulation of
phagocytic/signaling receptors [4], hyper-responsiveness to
microbial stimuli [5–7], and impairment in removal of
apoptotic cells [8, 9]. Additionally, increased levels of in-
flammatory mediators, typically secreted from macro-
phages, in sputum and bronchoalveolar lavage (BAL) fluid
have been described in CF patients [10–12].
The multitude of biological processes seemingly affected

in CF macrophages begs the following question: is there a
broader epigenetic mechanism influencing a myriad of bio-
logical functions in CF macrophages? Epigenetics is the
study of heritable changes in gene function caused by
mechanisms other than changes in the underlying DNA se-
quence [13]. The most widely studied of the epigenetic
modifications is DNA methylation [14]. Epigenetic mecha-
nisms have emerged as modulators of host defenses that
can lead to a more prominent immune response and shape
the course of inflammation in the host, both driving the
production of specific inflammatory mediators and control-
ling the magnitude of the host response [15].
To examine possible underlying epigenetic mecha-

nisms related to dysregulation of innate immunity in CF,
we initiated an epigenome-wide DNA methylation pro-
filing study from primarily lung macrophages isolated
from BAL fluid in subjects with and without CF.

Results
Subject characteristics
BAL samples were sequentially taken from the right
upper lobe (RUL) and right lower lobe (RLL) of heathy
(n = 4) and CF subjects (n = 4). Subject characteristics
are listed in Table 1.

Gender and age distribution were as follows: two male
and two female CF subjects with a mean age of
22.0 + 4.90 years; healthy subjects (three females/one
male) had a mean age of 26.0 + 5.35 years. Three CF indi-
viduals were genotype F508del/F508del, and one partici-
pant had genotype F508del/Y1092X. Forced expiration
volume (FEV1) measurement range was 77–96% across
the CF study group. The lung microbiology based on
standard BAL culture was recorded for each CF patient.
Three subjects cultured positive for Staphylococcus aur-
eus, and two cultured positive for Achromobacter xylosoxi-
dans. Three CF subjects were on antibiotic and/or
modulator therapy including one or more of the following:
inhaled aztreonam, inhaled colistimethate, oral doxycyc-
line, inhaled tobramycin, or ivacaftor/lumacaftor.

DNA methylation landscape between CF and healthy
individuals
We determined methylation subclasses with an unsuper-
vised, model-based method, recursively partitioned mix-
ture model (RPMM, Fig. 1). RPMM clustering of the
10,000 CpG sites with the highest variance in DNA
methylation revealed greater adjacency of CF samples, as
well as the clustering of healthy samples. In addition, CF
subjects which showed pronounced heterogeneity
(Fig. 1a). Subsequently, we formally tested BAL sample
disease status against DNA methylation cluster member-
ship. All BAL samples predicted to be in RPMM cluster
L were from healthy subjects, and the majority of BAL
samples in RPMM cluster R were from CF subjects
(Fig. 1b, P = 0.026, two-tailed Fisher’s exact test).

Cellular composition and heterogeneity profiling
To assess the potential contribution of BAL sample cell
type heterogeneity on DNA methylation, we utilized an
approach to cell type deconvolution that does not re-
quire a reference library of differentially methylated loci
for specific cell types [16]. Across all samples, the
reference-free cell type deconvolution identified two

Table 1 Subject characteristics

Patient number Status Age Sex Genotype FEV1 (%) Microbiology Antibiotic and/or modulator therapy

1 CF 18 Male F508del/Y1092X 77 S. aureus many mixed None

2 CF 24 Male F508del/F508del 96 S. aureus Aztreonam, colistimethate, doxycycline,
ivacaftor/lumacaftor

3 CF 28 Female F508del/F508del 91 A. xylosoxidans moderate mixed Colistimethate, tobramycin

4 CF 18 Female F508del/F508del 88 S. aureus many mixed
A. xylosoxidans, moderate mixed

Colistimethate, tobramycin, ivacaftor
/lumacaftor

5 Healthy 26 Female

6 Healthy 33 Male

7 Healthy 25 Female

8 Healthy 20 Female

S. aureus Staphylococcus aureus, A. xylosoxidans Achromobacter xylosoxidans
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putative cell types (Fig. 2a). Putative cell type 1 propor-
tions were higher in healthy subjects compared to CF
subjects (Fig. 2b, P < 0.05), and putative cell type 2 pro-
portions were lower in healthy controls compared to CF
subjects (P < 0.05). To confirm cell-type heterogeneity in
CF subjects, cytospins were performed on RUL BAL
cells isolated from a second group of healthy subjects
and a second group of CF subjects (n = 3) genotypes

(E60X/A455E, R1162X/W1282G, and F508del/F508del).
BAL cells from healthy subjects have characteristic lung
macrophage “fried egg” or monocytoid appearance with
reniform nuclei and ample cytosol (Fig. 3a, open arrow),
with this cell phenotype comprising > 95% of the total
cell population. The majority of BAL cells from CF sub-
jects were similar to the macrophages seen in healthy
subjects. However, the CF subjects had subpopulations

Fig. 1 DNA methylation landscape in CF versus healthy controls. Recursively partitioned mixture model (RPMM) of the 10,000 CpGs (rows) with greatest
sample variance across subjects. Individual samples 1–16 are shown in columns with sample status bar at the top: black (CF) and gray (healthy). Blue color
represents increased sample methylation (a). RPMM determined the similarity of methylation among subjects resulting in two methylation classes L and R
(b). Methylation class membership was associated with class status; inset contingency table depicts subject distribution in each class via a two-tailed
Fisher’s exact test (P= 0.026)
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of macrophages that were phenotypically diverse in size
and appearance (Fig. 3b), as previously demonstrated in
other respiratory disease states [17].

Epigenome-wide association analysis reveals differentially
methylated loci
Next, we investigated the relationship between DNA
methylation and CF disease status in BAL samples.

Because we identified differential proportions of putative
cell types in CF subjects compared with controls, to
identify differential methylation independent of cell type,
we fit linear mixed effects models comparing methyla-
tion of the 26,733 most variable CpG sites with CF dis-
ease status, adjusted for subject age and sex, and
included a term to account for repeat measurements
from the same subject (RUL, RLL). We identified 109

Fig. 2 Cellular composition and heterogeneity profiling. Heat map illustrates reference-free deconvolution (RefFreeEWAS) of putative cell type and size
proportions across the n = 16 samples included in this study (a). Healthy subjects had higher proportions of putative cell type/size 1 (P = 0.014), and CF
subjects had a higher proportion of cell type/size 2 (P = 0.018) (b)

A B

Fig. 3 Bronchoalveolar lavage cell cytospins. Bronchoalveolar lavage (BAL) samples were obtained from tertiary airways in the right upper lobe of subjects.
BAL cells were isolated and prepared as cytospins as described in the “Methods” section. BAL cells from healthy subjects are a mostly homogeneous
population of cells (lung macrophages (LM)) with oval to reniform nuclei and abundant cytosol (open arrow) (a). Cytospins of BAL cells from CF subjects
(CD15-depleted) (b) show a majority population of LMs (open arrow) as well as smaller roundish cells with darker staining nuclei and less cytosol (blue
arrowheads) and cells containing variably shaped and stained nuclei (black arrowheads). Images shown are representative of multiple subjects

Chen et al. Clinical Epigenetics          (2018) 10:152 Page 4 of 10



differentially methylated CpGs, of which 51 are
hyper-methylated and 58 are hypo-methylated in CF
cases compared with controls (FDR-adjusted P < 0.1,
|log2FCM value| ≥ 3.50, Fig. 4a). There is a 31.6% median
increase and 27.2% median reduction in the proportion
of methylated alleles (beta-values) for differentially
hyper- and hypo-methylated loci, respectively. The top
five hypo- and hyper-methylated CpGs associated with
known genes are shown in Additional file 1: Table S1.

We utilized targeted next-generation bisulfite sequencing
(tNGS) for the validation of the EPIC methylation array.
Genes that showed some of the greatest Δ-beta values, in-
cluding CD6, HOOK2, LSP1, RGS12, SH3PXD2A, and
UPP1, were selected to compare CpG methylation in CF vs.
healthy subjects. Δ-Beta methylation values were consistent
between the array and the sequencing approaches to meas-
ure DNA methylation (Table 2). Additionally, an example
of tNGS assay design is shown for LSP1 in Additional file 2:

Fig. 4 Epigenome-wide differential methylation in CF. Comparative analysis of DNA methylation in CF and healthy subjects identified 109 differentially
methylated CpGs (FDR P< 0.1, a). CpG hyper-methylated in CF compared to controls (green) and hypo-methylated CpGs (blue) are plotted as log2 fold
increase or decrease in methylation M value (x-axis) versus log10 FDR-adjusted P value (y-axis). Statistically significant CpGs associated with specific genes
are labeled, and unlabeled points represent CpGs associated with no known gene at that location. Enrichment of differentially methylated CpGs to
genomic and transcriptional context is shown in forest plots (b), illustrating that hypo-methylated CpGs in CF BAL are enriched for enhancer regions and
CpG islands and that hyper-methylated CpGs in CF BAL are under-represented for gene promoter regions
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Figure S1, and detailed information about the tNGS assays
performed including chromosomal location, number of
CpG sites, average sample reads, and Δ-beta values across
the entire assay is shown in Additional file 3: Table S2.
Next, we investigated the distribution of differentially

methylated loci in CF subjects versus controls by genomic
and transcriptional context. Among the hypo-methylated
CpGs, enhancer regions and CpG islands were enriched (all
OR > 1 and P < 0.05), and promoter-associated loci were
significantly depleted in the hyper-methylated loci (OR =
0.25, P < 0.05) (Fig. 4b and Additional file 4: Table S3).
Unique genes associated with the top 5% (1337/

26,377) most significant hyper-methylated and hypo-
methylated CpGs were used as separate inputs for Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis against the 8515-gene universe associated with
the 26,733 background loci (Additional file 5: Table S4).
In addition, we noted that 34.8% (38/109) differentially

methylated loci do not track to any known genes.
Compared to all CpGs tested for differential methyla-
tion, these “gene-less” CpG sites were over twice as
likely as to co-occur with known single nucleotide
polymorphisms (SNPs) (OR = 2.60, 95% CI = 1.27–
5.18, P = 5.09E−3, Fisher’s exact test). We have pro-
vided the complete list of DMPs with FDR < 0.05 as
Additional file 6: Table S5.

Discussion
The primary objective of this study was to examine
DNA methylation changes in CF BAL cells, primarily
lung macrophages to gain mechanistic insight into in-
nate immune regulation in cystic fibrosis. Our study is
the first, which we are aware of, to report DNA methyla-
tion differences from lung macrophages isolated from
CF subjects compared to healthy controls. One study
has previously shown altered DNA methylation at a se-
lect number of lung modifier genes in nasal epithelial
cells and whole blood of CF subjects [18]. Other studies
have focused only on either histone-based macrophage
epigenome profiling associated with macrophage pheno-
type [19–21] or the mapping of the lung proteome in

cystic fibrosis [22]. However, no investigation to date has
used epigenome-wide DNA methylation profiling to
study cystic fibrosis BAL cells. Our cell collection meth-
odology (flexible bronchoscopy) is a rare approach used
in CF research studies and affords us a unique oppor-
tunity to analyze innate immune cells isolated directly
from the airway and alveolar space.
Our initial strategy was to collect BAL cells of both CF

and healthy subjects to analyze epigenome-wide DNA
methylation patterns. DNA methylation profiling revealed
a distinct clustering pattern associated with CF subjects as
compared to healthy subjects. Additionally, we identified
109 differentially methylated CpGs, of which 51 are
hyper-methylated and 58 are hypo-methylated.
Hyper-methylated CpGs included those associated with
genes such as TNFSF8 and RUNX3. TNFSF8, also known
as CD30L, has been suggested to contribute to
pro-inflammatory immune response in a cross-talk role
between innate and adaptive immune cells [23] and has
noted to be expressed at high levels in alveolar macro-
phages from sarcoid subjects [24]. The transcription factor
RUNX3 has been shown to regulate chemokines CCL5,
CCL19, and CXCL11, chemotactic molecules with the po-
tential to recruit various leukocytes into inflammatory
sites [25, 26]. Hypo-methylated CpGs in CF patients com-
pared to controls included those associated with genes
such as S100A14, LSP1, and OSCAR. S100A14 is a mem-
ber of a S100 family of proteins, a family of calcium-bind-
ing cytosolic proteins composed of 25 known members
that have a broad range of intracellular and extracellular
functions including regulating calcium balance, cell apop-
tosis, migration, and proliferation [27, 28]. Studies demon-
strate that when released into extracellular space, S100
proteins have crucial activities in the regulation of im-
mune homeostasis, post-traumatic injury, and inflamma-
tion [28]. Another hypo-methylated CpG is associated
with the gene for leukocyte-specific protein 1 (LSP1).
LSP1 is an actin-associated protein expressed in macro-
phages, neutrophils, and endothelial cells and has been lo-
calized to nascent phagocytic cups during Fcγ receptor-
mediated phagocytosis, where it displays the same spatial
and temporal distribution as actin filaments. Downregula-
tion of LSP1 severely reduces phagocytic activity of mac-
rophages, clearly indicating a crucial role for this protein
in Fcγ receptor-mediated phagocytosis [29]. OSCAR, an
immuno-receptor for surfactant protein D (SP-D), has
been found in alveolar macrophages and together with
SP-D contributes to lung homeostasis and innate mucosal
defense [30]. In humans, OSCAR has been reported to be
expressed on monocytes, macrophages, neutrophils, and
dendritic cells [31] and shown to enhance the pro-inflam-
matory response of monocytes [31, 32].
Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis of the top 10 pathways for 803 unique genes

Table 2 Comparison of % methylation changes in CF subjects
at gene-specific CpGs: EPIC Δ-beta vs targeted NGS Δ-beta
value

Gene Location EPIC
Δ-beta value

tNGS
Δ-beta value

CD6 cg26427109 (−) 0.42 (−) 0.344

HOOK2 cg11738485 (−) 0.32 (−) 0.32

LSP1 cg18723409 (−) 0.44 (−) 0.292

RGS12 cg03132824 (+) 0.40 (+) 0.291

SH3PXD2A cg06888746 (−) 0.28 (−) 0.184

UPP1 cg10317717 (+) 0.24 (+) 0.263
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associated with the top 5% CpGs based on P value re-
vealed pathways such as biosynthesis of unsaturated fatty
acids, glycerolipid metabolism, Fc gamma R-mediated
phagocytosis, and Fc epsilon RI signaling as the top
CpG-gene-associated pathways likely affected in CF sub-
jects based on changes in DNA methylation pattern.
We were able to identify enrichment of hyper- or

hypo-methylated loci to specific genomic contexts sug-
gesting their importance for gene regulation. Hypo-
methylated CpGs in CF subjects were enriched for puta-
tive enhancer regions and in CpG islands, regions of
high frequency of CpG sites [33]. Interestingly, enhancer
regions are classically defined as cis-acting DNA se-
quences that can increase the transcription of genes.
They generally function independently of orientation
and at various distances from their target promoter (or
promoters). Furthermore, they do not necessarily act on
the respective closest promoter but can bypass neighbor-
ing genes to regulate genes located more distantly along
a chromosome [34]. In some cases, individual enhancers
have been found to regulate multiple genes [35].
Myeloid regulatory cells (MRC) have come into focus

recently in lung disease including cystic fibrosis [36, 37]
and in bacterial infections [38, 39]. Our observation of
multiple cell sizes/types (CD15 (−)) in our CF popula-
tion suggests that subpopulations of macrophages or
even MRCs could be contributing to the observed differ-
ences in putative cell types in BAL between CF subjects
and controls. To control for this, we performed a
reference-free deconvolution of putative cell type pro-
portions from the EPIC DNA methylation data set.
Semi-supervised reference-free methods allow estimating
proportions of cell types in the absence of a known or
reliable reference of purified cell types [40]. Specifically,
RefFreeEWAS first regresses out the effect of the pheno-
type of interest on the data and then uses a singular
value decomposition on an augmented matrix based on
the estimated regression and residual variation matrix
[16]. Unlike other reference-free methods, RefFreeEWAS
does not assume that the top components of data vari-
ation are associated with cell-type composition. Instead,
it assumes that the top components in the regression
and residual variation space are the cell types present in
the bio-specimen. While it is possible that the putative
cell types identified using reference-free deconvolution
may represent distinct terminally differentiated cell
types, it is also possible that cells with different activa-
tion states or in different stages of differentiation are
captured by one or more putative cell types. With the
apparent identification of more than one cell subtype in
the DNA methylation data, we conducted follow-up
studies on additional CF subjects for confirmation. We
performed cytospins to visualize BAL cells before and
after CD15 negative selection on CF and healthy subject

BAL fluid and noticed a heterogeneous cell population
isolated from CF subjects. This observation is consistent
with our previous work suggesting a size range of
CD206(+) CF lung macrophages as identified by forward
scatter height using flow cytometry [41]. Additionally, a
recent study in COPD identifies “small” and “large” cells
from alveolar spaces and lung interstitium in lung resec-
tion tissue of COPD subjects [17]. Although our study
suggests the presence of these macrophage subpopula-
tions in the CF lung, it is beyond the scope of this work
to specifically identify these subpopulations and will be
the focus of future studies.
Although our study has a limited sample size, this is

the first study to report differential DNA methylation as-
sociated with cystic fibrosis using a whole-genome ap-
proach. In CF BAL cells, we identified a substantial
number of differentially methylated CpGs after adjusting
for potential confounders. Further, the extent of ob-
served differential methylation was quite high and high-
lights their biological relevance. Taken together, the
differential methylation status of these genes might indi-
cate differential gene expression and imply a unique
biology of the CF lung microenvironment.

Conclusions
Through the use of epigenome-wide DNA methylation
profiling, we have identified 109 differentially methylated
CpG loci in CF BAL cells. In addition, unsupervised
DNA methylation cluster membership was significantly
associated with the CF disease status. These observations
support a hypothesis that epigenetic changes, specifically
DNA methylation in lung macrophages, may participate,
at least in part, in driving dysfunctional innate immune
cells in the CF lung.

Methods
Study population
This study was approved by the Committee for the Pro-
tection of Human Subjects at the Geisel School of Medi-
cine at Dartmouth (#22781). All subjects provided
written informed consent and were clinically stable and
in their baseline state of health. CF subjects had not had
a pulmonary exacerbation within the preceding 4 weeks.
All subjects were non-smokers.

Bronchoalveolar lavage and macrophage isolation
Subjects underwent flexible bronchoscopy following local
anesthesia with lidocaine to the posterior pharynx and
intravenous sedation. A bronchoscope was inserted transo-
rally and advanced through the vocal cords. BAL fluid was
obtained from tertiary airways in the right upper and lower
lobes (RUL and RLL, respectively). BAL was performed se-
quentially in the RUL and RLL with 20 ml of sterile saline
followed by 10 ml of air, and this was repeated for a total of
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five times per airway. Lung macrophages were isolated as
previously described [41, 42]. Briefly, BAL fluid was filtered
through a two-layer gauze, centrifuged, and washed twice
in 0.9% NaCl. Cells were counted with a T10-automated
cell counter (Bio-Rad, Hercules, CA).
CF BAL cells were incubated with CD15 microbeads

and run over an LD column on the QuadroMACS mag-
net (Miltenyi Biotec, Auburn, CA), according to the
manufacturer’s instructions, to deplete neutrophils. Our
previous work [41] and the current routine cytospin cell
monitoring indicate a final neutrophil population
post-negative selection of less than 2% of total BAL cells.
Cytospins were performed using a Shandon Cytospin 3
centrifuge (ThermoFisher Scientific, Waltham, MA).
Briefly, 75,000 cells resuspended in 200 μl of 0.9% NaCl
were loaded into a cytology funnel (Fisher Scientific,
Pittsburgh, PA) and centrifuged for 10 min. Cells were
allowed to air dry and processed for viewing via Hema 3
Stat pack (Fisher). Imaging was done on an Olympus
(Waltham, MA) BX41 microscope with DP2-BSW soft-
ware (version 2007).

DNA methylation array
Epigenome-wide DNA methylation profiling was per-
formed via the Infinium Methylation EPIC Bead Chips
(Illumina Inc., San Diego, CA) for the determination of
methylation levels of more than 850,000 CpG sites as pre-
viously described [43]. Briefly, DNA was extracted from
bronchoalveolar lavage-derived cells via Qiagen (German-
town, MD) DNeasy Blood and Tissue Kit. DNA was quan-
titated on a Qubit 3.0 Fluorometer (Life Technologies,
Carlsbad, CA). Bisulfite conversion of DNA was carried
out with the Zymo EZ DNA methylation kit (Zymo Re-
search, Irvine, CA), and EPIC array hybridization and
scanning were performed at the University of Southern
California Molecular Genomics Core.

DNA methylation array data processing
Raw intensity data files (IDATs) from the MethylationE-
PIC BeadChips were processed by the minfi R/Biocon-
ductor analysis pipeline (version 1.21) [44] with
annotation file version ilm10b3.hg19. Probes associated
with known SNPs, non-CpGs and sex chromosomes, as
well as those failing to meet a detection P value of 0.05
in ≥ 20% samples, were excluded. This pre-processing
procedure left 813,096 CpGs with high-quality methyla-
tion data in the final data set.

Targeted, next-generation bisulfite sequencing and data
analysis
tNGBS was performed by EpigenDx Inc. (Hopkinton,
MA) on the same eight BAL cell specimens as in the
EPIC DNA methylation array. Briefly, DNA bisulfite
modification was done using EZ-96 DNA methylation

kit (Zymo, Irvine, CA) followed by multiplex PCR with
Qiagen (Gaithersburg, MD) HotStar Taq and products
purified with QIAquick PCR purification kit. Libraries
were prepared using the KAPA Library Preparation Kit
for Ion Torrent platforms and Ion XpressTM Barcode
Adapters (ThermoFisher, Waltham, MA). Library prod-
ucts were purified using Agencourt AMPure XP beads
(Beckman Coulter, Indianapolis, IN) and quantified
using the Qiagen QIAxcel Advanced System. Barcoded
samples were then pooled in an equimolar fashion be-
fore template preparation and enrichment were per-
formed on the Ion ChefTM system (ThermoFisher)
using Ion 520TM and Ion 530TM Chef reagents.
Enriched, template-positive library products were se-
quenced on the Ion S5TM sequencer using Ion 530TM
sequencing chips (ThermoFisher). FASTQ files from the
Ion Torrent S5 server were aligned to the local reference
database using open-source Bismark Bisulfite Read Map-
per with the Bowtie2 alignment algorithm. Methylation
levels were calculated in Bismark by dividing the number
of methylated reads by the total number of reads.

Statistical analysis
Unsupervised hierarchical clustering with the Euclidean
distance and complete linkage (default) was performed
on CpG loci with greatest sample variances. At different
variance thresholds, clustering structure appeared to be
stable. The recursively partitioned mixture model
(RPMM) [45] assuming two terminal clusters was ap-
plied to 10,000 most variable CpGs. RPMM was imple-
mented in the RPMM R package (version 1.25). A
two-sided Fisher’s exact test was used to test the relation
of supervised RPMM cluster membership with
case-control status. A P value of 0.05 was used as the
threshold for statistical significance.
The distribution of methylation beta-value variances

was examined prior to statistical analysis: 26,733 CpGs
with beta-value variance exceeding 0.01 were selected
for further investigation. To account for the repeat mea-
surements from a single subject, the correlation coeffi-
cient (= 0.762) for the 26,733 CpG beta-values among
eight unique subjects (including four cases and four con-
trols) was first calculated by the duplicateCorrelation
function in the limma R/Bioconductor package
(v.3.34.9). Differential methylation analysis was carried
out by passing logit-transformed beta-values (i.e., M
values), matched pairs, and associated correlation coeffi-
cient into the lmFit and eBayes functions in limma,
with adjustment of subject age and sex as fixed effects
and subject as a random effect in the model, such
that Y = β0 + βCF XCF + βage Xage + βsex Xsex + Rando-
mEffect(Subject), where Y is the methylation beta-values,
β0 is the intercept, X is a given covariate, and β is the
respective model coefficient.
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To assess the contribution of cell type heterogeneity to
differential methylation, we reconstructed a linear model
adjusting for the presence of putative cell types. Briefly,
the RefFreeEWAS algorithm (R package version 2.1) [16]
was applied to 10,000 most variable CpGs across all
samples. The proportion of putative cell types were cal-
culated iteratively for the number of such cell types K
from 2 to 10. The optimal number of putative cell types
K = 2 was selected as it minimized the variance of the
bootstrapped deviance. The difference between cell type
proportions were determined by a linear mixed effects
model adjusting for age, sex, and repeat measurement,
implemented in R packages lme4 (version 1.1.17) and
lmerTest (version 2.0.36).
Genomic contexts (Open Sea and Island) were pro-

vided in the Illumina EPIC annotation file. The “pro-
moter” transcriptional context was defined as having
either a “TSS200” or “TSS1500” annotation, or both in
the column UCSC_RefGene_Group (TSS, transcription
start site). Likewise, the “gene body” transcriptional con-
text was defined as having a “Body” annotation. The “en-
hancer” context was defined as having a FANTOM4/5
enhancer record or Illumina array enhancer annotation.
For each genomic or transcriptional context, odds ratios
(OR) for the significant loci relative to the input loci
were determined by a two-sided Fisher’s exact test. A P
value ≤ 0.05 was the threshold for statistical significance.
To demonstrate outputs from two different linear
models that were similar, a test for enrichment using the
Kyoto Encyclopedia of Genes and Genomes (KEGG) was
performed using the WebGestalt tool [46]. The differen-
tially methylated CpG loci were used as the input and
compared to genes associated with the universe set of
CpGs. A pathway was considered significant if the path-
way has a Benjamini-Hochberg FDR < 0.05, at least five
genes up to a maximum of 2000 genes.

Code availability
Data processing, statistical analysis, and data visualization R
code can be found at github.com/Christensen-Lab-Dart-
mouth/CF_Epigenetics.

Additional files

Additional file 1: Table S1. Top hypo- and hyper-methylated CpGs in
CF that are associated with known genes. (DOCX 17 kb)

Additional file 2: Figure S1. Human leukocyte-specific protein-1 (LSP1)
gene targeted next-generation sequencing (tNGS) assay region. A tNGS
assay was designed for LSP1 surrounding EPIC cg18723409 located in intron
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