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Abstract

Background: Exposure to cigarette smoking can increase the risk of cancers and cardiovascular and pulmonary
diseases. However, the underlying mechanisms of how smoking contributes to disease risks are not completely
understood. Epigenome-wide association studies (EWASs), mostly in non-Asian populations, have been conducted
to identify smoking-associated methylation alterations at individual probes. There are few data on regional
methylation changes in relation to smoking. Few data link differential methylation in blood to differential gene
expression in lung tissue.

Results: We identified 108 significant (false discovery rate (FDR) < 0.05) differentially methylated probes (DMPs) and
87 significant differentially methylated regions (DMRs) (multiple-testing corrected p < 0.01) in current compared to
never smokers from our EWAS of cotinine-validated smoking in blood DNA from a Korean chronic obstructive
pulmonary disease cohort (n = 100 including 31 current, 30 former, and 39 never smokers) using Illumina
HumanMethylation450 BeadChip. Of the 108 DMPs (FDR < 0.05), nine CpGs were statistically significant based on
Bonferroni correction and 93 were novel including five that mapped to loci previously associated with smoking. Of
the 87 DMRs, 66 were mapped to novel loci. Methylation correlated with urine cotinine levels in current smokers at
six DMPs, with pack-years in current smokers at six DMPs, and with duration of smoking cessation in former
smokers at eight DMPs. Of the 143 genes to which our significant DMPs or DMRs annotated, gene expression levels
at 20 genes were associated with pack-years in lung tissue transcriptome data of smokers (Asan Biobank, n = 188).

Conclusions: Our study of differential methylation in Koreans confirmed previous findings from non-Asian
populations and revealed novel loci in relation to smoking. Smoking-related differential methylation in blood is
associated with gene expression in lung tissue, an important target of adverse health effects of smoking,
supporting the potential functional importance of methylation in smoking-related disease.

Keywords: DNA methylation, Smoking, Epigenome-wide association study, Cotinine, Duration of smoking cessation,
Gene expression

Background
Smoking is well-known for its adverse health effects [1];
however, between 10 and 35 % of people still smoke
daily worldwide [2]. Despite established evidence of the
causal relationships between smoking and elevated risk
of diseases including cancers [3] and pulmonary [4] and

cardiovascular diseases [5], the underlying mechanisms
are not completely understood. One proposed mechan-
ism is through DNA methylation.
DNA methylation, a type of epigenetic modification,

plays a key role in regulating gene expression [6]. Unlike
DNA sequence, methylation has cell-type and tissue-
specific characteristics. DNA methylation can be impacted
by age [7], gender [8], and exposures such as obesity [9]
and smoking [10].
At least 16 epigenome-wide association studies (EWASs)

of the association between smoking and blood DNA
methylation in adults have been published [11–26]. Only
one study was conducted in an East Asian population [26];
most have been conducted in populations of European
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ancestry with others in African American, Arab, and South
Asian populations. There is no study in Koreans. There are
few data where reported smoking has been biochemically
validated [11, 21, 25] or where methylation has been
evaluated in relation to quantitative biomarkers of smoking
[21, 27], pack-years, or duration of smoking cessation
[22–25]. Only one EWAS correlated differential methyla-
tion in blood with gene expression in lung tissue, and only
one locus was examined in 10 individuals [19].
The published EWASs of smoking have identified indi-

vidual differentially methylated probes (DMPs) rather than
differentially methylated regions (DMRs). Identification of
DMRs associated with an exposure can provide stronger
evidence for causality than single DMPs [28]. In addition,
DMR analysis is statistically more powerful for detection
of association with disease traits or exposures [29].
To identify both DMPs and DMRs in relation to

smoking, we conducted an EWAS in 100 adults from a
Korean chronic obstructive pulmonary disease (COPD)
cohort using the Infinium HumanMethylation450 Bead-
Chip (450k). For the DMPs of genome-wide significance,
we investigated their relationship with smoking intensity
(urine cotinine) and cumulative smoking (pack-years) in
current smokers and duration of smoking cessation in
former smokers. As a replication look-up, we also evalu-
ated association between methylation and smoking at
previously published probes in our data. For the loci to
which significant DMPs or DMRs mapped, we examined
differential transcriptome profiles in relation to pack-
years in lung tissue from a separate population—188
smokers from the Asan Biobank [30].

Methods
Study participants and exposure to cigarette smoking:
the Korean COPD cohort
We aimed to compare methylation in current and
former smokers separately to never smokers. For this
purpose, we measured DNA methylation in 100 of 190
participants in a Korean COPD cohort [31]. Of the 100
participants, 60 had COPD and 40 were without COPD.
The breakdown by smoking was 39 never, 30 former,
and 31 current smokers. Subjects were recruited from a
rural area in Korea. Having available clinical informa-
tion, computed tomography (CT) data, survey question-
naire, and blood/urine samples were used for sample
selections of methylation profiling. Additional approxi-
mate frequency matching on age and smoking status
was applied. Details of the COPD cohort have been pub-
lished [31]. All study participants completed a question-
naire and provided both blood and urine samples. Urine
samples were collected at the time of participants’ base-
line visits. Fresh morning urine samples were obtained
from subjects at the time similar with blood sampling.
Urine samples had been frozen at −70 °C. Height (cm)

and weight (kg) were measured twice for each partici-
pant using a body composition analyzer IOI 353 (Aarna
Systems., Udaipur, India); the average value of two mea-
surements was used for further analyses. Body mass
index (BMI, kg/m2) was calculated by dividing the
weight (kg) by the square of the height (m2).
Self-reported smoking status—current, former, and

never smoking—was obtained from the questionnaire, and
the current status of non-smoking versus smoking was
confirmed by urine cotinine levels (nmol/L) measured by
immunoassay (Immulite 2000 Xpi; Siemens, NY, USA).
One self-reported never smoker was re-assigned to
current smoker based on a urine cotinine level of
16,909 nmol/L, higher than our cut-point for current
smoking status of 283 nmol/L [32]. Smokers provided the
duration (years) and amount (cigarette packs) of cigarette
smoking. Pack-years were calculated by multiplying the
number of smoked cigarette packs per day by the number
of years smoked. Duration of smoking cessation (years)
was reported by former smokers.

Genomic DNA preparation and DNA methylation profiling
We used blood DNA samples from participants’ baseline
visits for methylation profiling. The DNA quality was
checked with a spectrophotometer (NanoDrop® ND-
1000 UV-vis), and genomic DNA was diluted to 50 ng/
μl using Quant-iT PicoGreen (Invitrogen, Carlsbad, CA,
USA). Bisulfite-conversion using EZ DNA methylation
kit (Zymo Research, Irvine, CA, USA) was carried out
according to the manufacturer’s protocols.
The Infinium HumanMethylation450 BeadChip (Illu-

mina, Inc., San Diego, CA, USA) was used for our genome-
wide methylation profiling. The methylation value (β)—a
ratio between methylated probe intensity and total probe
intensity—is interpreted as the proportion of methylation
and ranges between 0 (unmethylated) and 1 (methylated).
The signal extraction and normalization using Beta MIx-
ture Quantile dilation (BMIQ) [33] were conducted in
ChAMP [34]. The ComBat [35] method was applied to ad-
just for batch effects. Cell-type composition was estimated
by Houseman’s algorithm [36] in minfi [37]. Cytosine-
phosphate-guanine (CpG) probe filtering criteria [38] were
applied to eliminate sources of possible false positive re-
sults, excluding probes that had a detection p value above
0.01 in any sample; had a bead-count less than 3 in 5 % or
more of samples; were non-CpG probes; or were non-
specific probes [39]. To minimize the effects of extreme
outliers at each probe on association results, methylation
values outside three times the interquartile range (IQR)
from the first and third quartiles were removed from the
analyses. Of all beta values across all participants, 75,549
(0.19 %) were removed. Probes mapping to the X or Y chro-
mosomes were removed [40]. Therefore, a total of 402,508
CpG probes were used in our EWAS.
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Statistical approach
We used methylation β values because they are more
easily interpretable as methylation changes than M
values [41]—the log2 ratio of methylated probe intensity
and unmethylated probe intensity. To identify smoking-
associated DMPs, we tested methylation levels (re-
sponse) for association with smoking exposure status
(predictor) using robust linear regression. We adjusted
for COPD status because of the selection subjects and
for age, sex, BMI, and estimated cell-type composition.
Never smokers served as the reference group. The re-
gression analysis and empirical Bayes approach was done
using Linear Models for Microarray data (limma) [42].
For genome-wide significance, we set the threshold of
false discovery rate (FDR) [43] adjusted p < 0.05. All re-
sults in this study are methylation differences in current
smokers compared to never smokers unless otherwise
noted.
In addition to association analyses at individual

probes, we applied two different methods—DMRcate
[44] and comb-p [45]—to detect regional methylation al-
terations. These methods can identify significant DMRs
even when there is a lack of genome-wide significance at
individual probe level. A DMR does not need to contain
a DMP of genome-wide significance. DMRs were calcu-
lated based not on raw methylation data but the associ-
ation results.
The DMR methods work in slightly different ways.

DMRcate identifies DMRs using tunable kernel smooth-
ing of association signals across the human genome. We
used the “dmrcate” function in the DMRcate R package
with an input file containing regression coefficients,
standard deviations, and unadjusted p values for each
probe from our EWAS of current smoking. In detail,
DMRcate re-calculates p values at individual CpGs after
modeling the Gaussian smoothing using Satterthwaite
[46] method within a predefined bandwidth (the length
of a distance), corrects p for multiple-testing, and com-
bines information from nearby significant CpGs within
the bandwidth. In contrast, comb-p identifies re-
gional enrichments of low p values from unevenly
spaced p values. It utilizes only unadjusted p values and
chromosomal locations at each probe. It performs the
Stouffer-Liptak-Kechris (slk) correction to adjust for adja-
cent p values after calculating auto-correlation, identifies
regions of enrichment, generates Stouffer-Liptak region-
corrected p values for each region, and performs Sidak
[47] multiple-testing correction.
We defined significant DMRs (1) containing at least

two probes, (2) combining information from probes res-
iding within 1000 basepairs (bp), and (3) having
multiple-testing corrected p < 0.01 (FDR for DMRcate
and Sidak p for comb-p). These two values—the mini-
mum number of CpGs in a region and the minimum

length of a distance—were the defaults in DMRcate [48],
so we used the same values for comb-p to compare re-
sults from two approaches. One DMR study using
comb-p set the minimum number of probes to 2 and re-
ported DMRs (Sidak p < 0.05) [49]. We used a more
strict cutoff for multiple-testing correction (adjusted p <
0.01) for statistical significance because these methods
have been updated and there is no consensus of the
threshold. Relevant parameters for DMR calling can be
found in Additional file 1: Table S2. We considered that
the same region was identified as differentially methyl-
ated by the two methods if the start (bp) or end (bp) site
was the same or a region identified by one of the two
method resided inside a region identified by the other.
We evaluated whether the genome-wide significant

(FDR < 0.05) differential methylation patterns seen in
current smokers relative to never smokers were also
seen in former compared to never smokers. Therefore,
in the former smokers, we adjusted for 108 tests to de-
termine look-up level replication (FDR < 0.05). In
addition, we examined the dose-response relationships
between methylation levels and quantitative indexes of
smoking exposure: urine cotinine levels (nmol/L), pack-
years in current smokers, and time since smoking cessa-
tion (years) in former smokers by using the Spearman
correlation. For the dose-response analyses, we used
nominal statistical significance (unadjusted p < 0.05) to
report our findings.
We also examined the association with current smok-

ing for the 192 CpGs reported more than once in the 16
published studies based on either Illumina Infinium
HumanMethylation27 BeadChip or 450k array. Of these
192, 178 CpGs were checked for association after probe
filtering in our data. The cutoff for statistical signifi-
cance was set to FDR adjusted p < 0.05 after correct-
ing for 178 tests.
All statistical analyses were performed in R (version

3.0.2) [50] except for comb-p [45]. The gene annotation
for each probe was based on the manufacturer’s annota-
tion file [51].
We used coMET [52] to visualize regional methylation

patterns in the top four DMRs (adjusted p < 1.0E−10 at
both analyses). In addition to gene names and regulatory
elements of the region from ENSEMBLE, Digital DNaseI
Hypersensitivity Clusters from ENCODE (DNase Clus-
ter) and chromatin state segmentation by HMM from
ENCODE/Broad (Broad ChromHMM) were added
(Additional file 2: Figure S2).

Enrichment and functional network analysis
We performed an enrichment analysis to examine
whether the significant DMPs (FDR < 0.05) were over-
or under-represented, compared to all probes from the
450k array, in several biological features from the
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Illumina annotation file. The hypergeometric test (two-
sided doubling mid-p) was used for the evaluation of en-
richments or depletions.
For biological insights into differential methylation

changes in relation to current smoking, we implemented
a functional network analysis. Genes annotated from se-
lected DMPs (FDR < 0.10) were included in the analysis.
We used a core analysis of Ingenuity Pathway Analysis
(Ingenuity Systems, Inc., Redwood City, CA, USA).

Transcriptome analysis: Asan Biobank
Transcriptome profiles from the lung tissues of 188 male
smokers from the Asan Biobank were used in this ana-
lysis. Details of transcriptome profiles using RNA-seq
(HiSeq 2000 system, Illumina, Inc., San Diego, CA,
USA) have been published [30]. Data was available at
NCBI Gene Expression Omnibus (GEO) (accession
number of GSE57148). To exclude potential impact of
extreme values, we filtered gene expression values out-
side of three times the IQR from the first and third quar-
tiles of each gene transcript. Of all gene expression
values across all participants, 35,607 (1.1 %) were re-
moved. We calculated pack-years from duration (years)
and amount (cigarette packs) of cigarette smoking.
To identify differentially expressed genes in relation to

smoking intensity (pack-years), we applied a robust lin-
ear regression model and empirical Bayes approach by
using limma [42]. For robust linear regression, gene ex-
pression levels were the response and pack-years the
predictor. We presented nominally significant results to
provide a clue to understand relationships between
methylation in blood and gene expression in lung tissue.

Results
The descriptive characteristics of the study populations
are shown in Table 1. The study participants were aged
53 to 84 years. There were 39 never, 30 former, and 31
current smokers. Among the never smokers, 6 were
male and 33 were female. The former smokers were all
male. There was one female current smoker. Individuals
diagnosed with COPD were represented in each smoking
group as follows: 19 in never, 20 in former, and 21 in
current smoking group. The average BMI was 23.2 kg/
m2 for never smokers, 23.5 kg/m2 for former smokers,
and 22 kg/m2 for current smokers. The duration of
smoking cessation in former smokers ranged 7 to
40 years. There were no significant differences in age,
BMI, and proportion of COPD cases across smoking
groups in our EWAS data.
We identified 108 significant DMPs in current smokers

compared to never smokers (FDR < 0.05) (Table 2,
Additional file 3: Table S1, and Additional file 4: Table S3).
Of these, nine were significant after Bonferroni correction
(unadjusted p < 1.2E−07 correcting for 402,508 tests). Of

the FDR-significant DMPs, 93 of these were novel and 15
were previously reported in EWASs of smoking.
Decreased methylation in current smokers was observed
at 85 % of the significant DMPs. The methylation differ-
ences between current and never smokers at significant
CpGs ranged from −20.3 to 15.6 %. Among the top five
probes, the most highly statistically significant was a CpG
well-known for its association with smoking: cg05575921
(FDR = 2.6E−07) in aryl-hydrocarbon receptor repressor
(AHRR). Among the remaining four probes in the top
five, three were novel—cg10664184 (FDR = 1.80E−05)
in DDA1; cg20723792 (FDR = 6.40E−05) in FAM53B;
and cg24780263 (FDR = 0.001) in ALDOA—except for
cg05951221 (FDR = 8.50E−04) located 12,850 base pair
(bp) apart from ALPPL2. At five loci, more than one
DMP at genome-wide significance was identified: AHRR
(3 probes), 2q37.1 near ALPPL2 (2 probes), MYO1G (2
probes), NKX2-3 (2 probes), and FAM82A2 (2 probes).
The genomic inflation factor (lambda) was 1.25.
Manhattan plot and QQ plot are provided (Additional
file 5: Figure S1).
For our 108 significant DMPs, we found enrichment

of probes mapping to CpG island shores (35 versus 23 %
overall from the array, p = 0.002) and enhancer (29 ver-
sus 21 % overall from the array, p = 0.04). No significant
over- or under-representation of probes in promoter-
associated regions (19 versus 19 % overall, p > 0.05) or
DNase hypersensitivity sites (18 versus 12 % overall, p >
0.05) were detected.
From the two different DMR analyses, we discovered

249 significant (FDR < 0.01) DMRs from DMRcate, 102
significant (Sidak p < 0.01) DMRs from comb-p, and 87
significant based on both approaches (Table 3). Of these
87 significant using both methods, 66 regions were
novel, meaning never reported in previous EWASs of
smoking in adults, including 7 that contained one of our
genome-wide significant individual DMPs. Among those
87 DMRs, the most significant one (chromosome:start
position-end position) from DMRcate was chr5:373378–
374425 (FDR = 4.6E−17) in AHRR and this region con-
tains five probes—cg05575921, cg22103736, cg08714121,
cg04141806, and cg22356527—including our top-ranked
DMP. AHRR differential methylation was also observed
from comb-p with two probes—cg05575921 and
cg22103736—in slightly shorter length (chr5:373378–
373887; Sidak p = 4.8E−05) than that from DMRcate.
The most significant DMR overall from comb-p was
chr6:149805995–149806732 (Sidak p = 1.9E−14) in
ZC3H12D and the exact same region, meaning the
same start, end, and number of probes, was also observed
from DMRcate (FDR = 2.3E−15) (Table 3). This region did
not contain a genome-wide significant DMP. Among
novel DMRs, the top two regions from both analyses were
chr4:81117647–81119473 (FDR = 6.7E−13 from DMRcate;
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Sidak p = 2.9E−13 from comb-p) at PRDM8 including 11
probes and chr4:103940711–103941300 (FDR = 6.8E−14
from DMRcate; Sidak p = 2.7E−10 from comb-p) at
SLC9B1 including 11 probes. Details of the top five DMRs
from each software are in Additional file 6: Table S4.
Those regions contain either one or two highly significant
CpGs or tightly spaced CpGs of nominal statistical signifi-
cance. The average (standard deviation, SD) of distances
of nearby CpGs in those regions was 147 (153) bp for
DMRcate and 158 (169) bp for comb-p.
Among the 108 significant DMPs from the comparison

of current to never smokers, 104 were also significant in
the former to never smoker comparison (FDR <0.05,
look-up level replication) and had effects in the same
direction (Additional file 7: Table S5). The attenuation
in effect size in former compared with current smokers
ranged from −12.3 to 4.3 %. The top-ranked DMP in
former smokers compared to never smokers was
cg20723792 (FDR = 1.3E−2) in FAM53B at which no re-
lationship with smoking exposures in terms of DNA
methylation has been previously reported.
We examined dose-response relationships between

methylation levels and quantitative measures of smoking
exposure (urine cotinine levels and pack-years in current
smokers and duration of smoking cessation in former
smokers) for the 108 significant DMPs identified in our
EWAS of current smoking (Table 4). There was no signifi-
cant finding after FDR multiple-testing correction. Urine
cotinine levels were positively correlated at nominal levels
of significance (uncorrected p < 0.05) with methylation
levels at a probe in MTNR1A and negatively correlated
with methylation levels at five probes from five different
loci: GNG12; GPR15; AHRR; FAM82A2; and F2RL3. Pack-
years in current smokers showed positive correlation at
five loci and negative correlation with methylation levels
at one locus. Duration of smoking cessation in former
smokers was positively correlated at nominal significance
(p < 0.05) with methylation levels at seven loci and nega-
tively correlated with methylation at one locus.
Our analysis of differential gene expression in lung tis-

sue was conducted in 188 male smokers from a separate
study, the Asan Biobank. The average age was 64.2 (SD =
8.7) years and average pack-years was 42.0 (SD = 20.6)
(Table 1). Of the 174 genes to which the 108 DMPs or 87
DMRs that were significantly differentially methylated
were annotated, we had gene transcript profiles for 143.
Of these, 20 genes, annotated from 17 DMPs or eight
DMRs, showed nominally significant differential gene ex-
pression profiles (p < 0.05) in relation to pack-years
(Table 5). Fourteen of the 20 genes were novel loci for ef-
fects of smoking on methylation and six—GPR15, AHRR,
ELMO1, SNED1, LPP, and GNA12—were previously re-
ported in EWASs of smoking. No significant results were
observed after FDR multiple-testing correction.

In current smokers compared to never smokers, there
were lower methylation levels at 17 DMPs (Table 5). Of
those, four CpGs were located in enhancer regions and
their corresponding lung tissue gene expression values
were positively associated with pack-years in smokers,
regardless of whether or not they were located in a CpG
island. Four of the 17 were at DNase I hypersensitivity
sites (DHS). Three of these were outside of CpG islands
and showed a positive association with pack-years in
smokers. The remaining site, located on a shelf region of
a CpG island, was negatively associated. At four
promoter-associated CpGs, we did not find any relation-
ships between methylation levels and gene expression
values.
Our functional network mapping involving 221 genes

annotated from probes in our EWAS (FDR < 0.10) iden-
tified four overrepresented pathways (Additional file 8:
Table S6). Top three networks were “gene expression,
cellular movement, and embryonic movement,” “cancer,
cellular development, organismal injury, and abnormal-
ities,” and “hematological, metabolic, and cardiovascular
disease.”
From a replication look-up of 178 CpGs, selected

based on significant findings in at least two published
EWASs of smoking, we confirmed differential methyla-
tion at 70 CpGs (Table 6). Of these, all CpGs showed
same direction of association compared to that in previ-
ous reports. Among these 178 probes from previous
EWASs, 83 (47 %) showed nominal (p < 0.05) association
in our analysis of current smokers which is much higher
expected by chance (Kolmogorov p < 2.2E−16). There
were also significant differential methylation changes in
former smokers at 24 CpGs in 17 loci (Table 6).

Discussion
This is the second EWAS for smoking exposure in an
East Asian population and the first which links differen-
tial methylation changes in blood to large-scale differen-
tial transcriptome profiles in lung tissue at multiple loci.
We discovered novel smoking-associated DMRs as well
as DMPs and confirmed previous findings mostly from
non-Asian populations. We identified nominally signifi-
cant correlations in DNA methylation in relation to
quantitative measures of smoking: urine cotinine levels,
pack-years, and duration of smoking cessation. Differen-
tially expressed genes in relation to smoking intensity in
lung tissue support the potential utility of our findings
as blood DNA methylation biomarkers for smoking
exposure.
We discovered 108 significant DMPs and 87 signifi-

cant DMRs in relation to current smoking. Fourteen loci
were significant from both approaches; nine of which
were novel: CALML4, CCND1, FOXK2, LINC01019,
NKX2-3, NT5C1A, PRDM8, SPAG17, and SYNGR1. It
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has been reported that genetic variants in CCND1 and
smoking exposure are associated with gastric carcino-
genesis [53], nasopharyngeal carcinoma [54], and lung
cancer [55] and useful for lung cancer prediction [56].
PRDM8 encodes a protein which belongs to a conserved
family of histone methyltransferases regulating transcrip-
tion negatively.
Of the 87 significant DMRs, in 32 all CpGs were of

nominal (p < 0.05) statistical significance. On average,
78 % of CpGs in each identified DMR were nominally
significant. Although a DMR does not need to include a
genome-wide significant DMP in the region, 14 DMRs
contained FDR-significant DMPs. In our analysis of dif-
ferentially methylated regions, the most highly signifi-
cant DMRs consist of either one or two highly
significant DMPs or closely spaced neighboring CpGs of
only nominal statistical significance in the region
(Additional file 6: Table S4). Although it has been re-
ported that two methods that we used to identify DMRs
can correct for irregular spacing of probes across the
genome [44, 45], we cannot conclude whether these are
reflecting true differential methylation or false discovery
driven by array-design.
Our EWAS identified 104 DMPs from the analysis of

current smokers that were also seen in former smokers
compared to never smokers; 93 of which were novel.
The methylation differences in current and former
smokers compared to never smokers were only slightly
attenuated. The persistence of blood DNA methylation
changes in former smokers, even after 7 to 40 years of
smoking cessation, is notable. Our analysis of duration
of smoking cessation in former smokers showed positive
correlations at seven loci—IFI16, CLASP1, KTELC1,
SPEF2, ACOT13, BSPRY, and FAM82A2—which has not
been previously reported in EWASs. We also found a

negative correlation at cg25799109 in ARHGEF3, a
known smoking-associated CpG [12].
Although there are biomarkers of current smoking,

including nicotine and its metabolite cotinine levels in
urine, blood, or saliva, biomarkers reflecting past smok-
ing have been lacking. Interestingly, we found that most
of the signals for current smoking remained for past
smoking. Recent studies suggest that methylation sig-
nals are promising biomarkers for both current and life-
time smoking [57] that are related to mortality [58].
Significant methylation alterations in former smokers
compared to never smokers from our study can contrib-
ute to development of biomarkers for past smoking.
For urinary cotinine, we confirmed previous findings of

differential methylation at GNG12, GPR15, F2RL3 [27],
and AHRR [21, 27] at nominal statistical significance (p <
0.05) and negative directions of association were also
consistent. We also identified novel positive and negative
correlations with methylation levels at MTNR1A and
FAM82A2, respectively. Gene-environment interactions of
variants in MTNR1A and smoking have been reported in
relation to oral cancer [59]. In studies without cotinine
measured, differential methylation at loci correlated with
cotinine could serve as objective biomarkers to confirm the
self-reported current level of smoking. For pack-years, we
found correlations with DNA methylation at NT5C1A,
ZBTB9, HPX, CCND1, and RNF160 which were have not
been reported in previous EWASs. Although cg19134728 in
JAKMIP3 was previously shown to be differentially methyl-
ated in smokers compared to non-smokers [15], its relation-
ship with pack-years in current smokers was never studied.
To gain some biological insight into the differential

methylation from our EWAS, we linked our genome-
wide significant results to large-scale transcriptome pro-
files in lung tissues. We discovered differential gene

Table 1 Descriptive characteristics of the study population

Characteristics (mean ± standard
deviation or n (%))

Genome-wide methylation analysis in blood DNA (the Korean COPD cohort) Transcriptome analysis in
lung tissue (Asan Biobank)Never smoker (N = 39) Former smoker (N = 30) Current smoker (N = 31)

Male 6 (15.4) 30 (100) 30 (96.8) 188 (100)

Female 33 (84.6) 0 (0) 1 (3.2) 0 (0)

Age, years 72.9 ± 6.1 74.1 ± 7.4 71.5 ± 5.3 64.2 ± 8.7

Body mass index, kg/m2 23.2 ± 3.0 23.5 ± 2.7 22 ± 2.8 NA

Pack-year NAc 28.9 ± 19.6 35.7 ± 19.1 42.0 ± 20.6

Duration of smoking cessation, years NA 17.6 ± 7.5 NA NA

Urine cotinine, nmol/L 88.4 ± 3.2d 167.6e 29421 ± 21947 NA

Undetectablea 36 (92.3) 29 (96.7) 0 (0) NA

COPDb 19 (48.7) 20 (66.7) 21 (67.7) 98 (51.9)
aUrine cotinine levels ≤56.8 nmol/L are marked as “undetectable” from the measurement using IMMULITE 2000 Immunoassay System (Siemens Healthcare
Diagnostics Inc., Tarrytown, NY, USA)
bChronic obstructive pulmonary disease
cNot available
dUrine cotinine levels in three never smokers were detectable
eUrine cotinine level in only one former smoker was detectable and the level was 167.6 nmol/L
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expressions in relation to pack-years at 20 genes which
were mapped from 17 DMPs and 8 DMRs. Our findings
include six genes—GPR15, AHRR, LPP, GNA12,
CYB561, and SNED1—known for their association with
smoking in previous EWASs, but none of these has been
identified in transcriptome analyses of pack-years in lung
tissue. Only one previous EWAS included smoking-
associated differential gene expression at AHRR; that

study included lung tissue samples from five smokers
and five non-smokers [19].
Our finding of enrichment of significant DMPs in

CpG island shore (regions within 2000 bp within a CpG
island) is consistent with previous findings of variable
DNA methylation in the regions [60], suggesting methy-
lation in shore regions is more susceptible to environ-
mental factors including smoking.

Table 2 Top 30 CpGs differentially methylated in blood DNA in relation to current smoking compared to never smoking (FDR
< 0.05, ordered by chromosomal location)

Chra Gene Distance to geneb Probe Positionc Coefd SEe Pf

2 CCDC104 cg21597209 55746709 −0.009 0.002 6.2E−07

DGUOK cg19394739 74154363 −0.012 0.002 3.5E−07

CLASP1 cg22346073 122402890 −0.056 0.010 5.1E−08

SATB2 cg21136715 200322252 −0.035 0.006 2.1E−07

ALPPL2 12,850 cg05951221g 233284402 −0.088 0.014 8.4E−09

3 GPR15 cg19859270g 98251294 −0.027 0.005 1.0E−07

5 AHRR cg05575921g 373378 −0.203 0.025 6.5E−13

cg25648203g 395444 −0.079 0.015 6.2E−07

LINC01019 −239,389 cg11405538 3177877 0.124 0.022 1.3E−07

SOX30 cg06995810 157079468 0.048 0.009 1.0E−06

7 TSPAN13 cg05848863 16794078 −0.024 0.004 3.6E−07

PLEKHA8 cg09762120 30108301 0.040 0.007 2.8E−08

ADCYAP1R1 cg20165074 31091813 −0.008 0.002 6.7E−07

10 FAM53B cg20723792 126360669 −0.097 0.014 4.8E−10

11 IRF7 cg27271532 612762 −0.035 0.006 3.8E−07

E2F8 cg15604507 19263433 −0.021 0.004 5.7E−07

CCND1 cg09520904 69462943 −0.036 0.007 7.5E−07

DIXDC1 cg11471799 111807548 −0.023 0.004 6.2E−07

12 CDK2AP1 cg13421247 123756945 −0.058 0.011 9.8E−07

14 CFL2 −44,147 cg23429457 35135441 −0.040 0.007 2.0E−07

EXOC3L4 −20,369 cg04884342 103546112 0.020 0.004 5.6E−07

15 CALML4 cg00388154 68498857 −0.058 0.011 2.9E−07

CORO2B cg18765659 69018349 −0.053 0.010 7.4E−07

TLE3 cg06730438h 70355664 −0.016 0.003 4.9E−07

16 ALDOA cg24780263 30064201 −0.011 0.002 1.8E−08

KIAA0182 cg26723054 85650522 −0.038 0.007 7.2E−07

19 F2RL3 cg03636183g 17000585 −0.128 0.021 2.0E−08

DDA1 cg10664184 17420304 −0.028 0.004 9.2E−11

CD33 cg06861672 51727798 −0.036 0.007 3.3E−07

21 MIR155HG cg03872783 26934885 −0.008 0.001 9.7E−07
aChromosome
bDistance to transcription start site of the mapped gene (basepair)
cPhysical position (basepair, National Center for Biotechnology Information human reference genome assembly Build 37.3)
dRegression coefficient from statistical model
eStandard error of regression coefficient
fStatistical significance from statistical model
gProbe identified in previous epigenome-wide association studies (EWASs) of smoking
hProbe mapped to genes identified in previous EWASs of smoking
DMPs ordered by p values can be found in Additional file 10
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Table 3 Differentially methylated regions in blood DNA in relation to current smoking compared to never smoking (multiple-testing
corrected p < 0.01 at DMRcate and comb-p, ordered by chromosomal location)

Chra Gene Distance
to geneb

DMRcate Comb-p Minimum
PiStart (bpc) End (bp) FDRd #CpGse Start (bp) End (bp) Sidak Pf #CpGs

1 MXRA8 −812 1286917 1287259 0.002 2(2) 0.002 2.2E−04

CASZ1 −600 10695686 10696066 8.7E−04 2(2) 0.009 1.5E−05

AHDC1 27929092 27929260 2.2E−04 2(2) 0.006 1.5E−04

NT5C1A 40137636g 40138402 3.2E−06 6(3) 0.001 5.5E−06

ACOT11h −58,441 54954187 54955366 0.002 7(4) 54953632 0.009 8(4) 6.1E−04

GNG12h 68298816g 68299511 7.0E−07 7(5) 68299057 0.001 6(5) 1.4E−06

GFI1h 92946700 92947961 1.1E−04 6(4) 1.2E−04 8.1E−05

SPAG17 118727658g 118728226 1.3E−04 10(2) 0.005 7.1E−06

ZNF697 120173989 120174570 0.006 4(4) 120174873 0.006 6(4) 0.002

GALNT2 230415343 230416101 0.002 6(3) 230414987 230417096 1.2E−04 12(4) 0.005

SCCPDH −26,962 246859889 246860416 7.0E−04 5(4) 2.6E−04 0.002

2 PAX8 113992762 113993313 0.005 8(6) 0.004 0.011

ALPPL2h 11,458 233283010g 233285607 8.0E−15 8(5) 1.5E−13 8.4E−09

SNED1h 241975756 241976244 1.9E−06 4(4) 3.8E−06 1.4E−04

3 KRBOX1 11 42977777 42978180 9.7E−04 7(5) 0.003 4.1E−04

GPR15h 98250723g 98251294 6.2E−07 2(1) 98249859 6.2E−04 4(2) 1.0E−07

ZBTB38 141086820 141087363 0.006 6(4) 0.005 0.005

LPPh 187870621 187871538 1.5E−05 11(5) 0.001 1.1E−04

C3orf43 21,882 196255632 196256223 9.7E−04 5(3) 0.004 1.8E−04

4 PCGF3 737005 738199 0.002 8(2) 736328 0.001 12(4) 2.5E−05

FGFRL1 −1776 1003208 1003834 1.5E−04 3(2) 0.002 2.0E−04

PRDM8 81117647g 81119473 6.7E−13 11(10) 2.9E−13 6.7E−06

NHEDC1 103940711 103941300 6.8E−14 11(10) 2.7E−10 6.2E−05

CFI 110724358 110724834 0.006 2(2) 0.009 4.4E−04

5 AHRRh 373378g 374425 4.6E−17 5(2) 373887 4.8E−05 2(1) 6.5E−13

392920g 393366 5.8E−08 3(3) 3.9E−08 4.7E−06

LPCAT1 1494980 1495356 0.001 5(4) 0.003 0.001

LINC01019 −236,319 3180918 3180947 0.006 2(2) 3182108 6.0E−04 5(4) 5.7E−04

FLJ44606 126408756 126409553 7.0E−07 13(11) 1.9E−06 0.001

ADAMTS2 178548229 178548700 0.002 3(3) 0.003 8.5E−04

6 IER3h 9104 30720080 30720491 1.2E−06 8(4) 0.002 1.7E−05

LY6G6E 31683051 31683352 5.4E−05 6(5) 1.2E−04 0.002

HLA-DPB1 33047944 33049505 2.5E−09 20(15) 4.8E−08 0.002

SYNGAP1h 33400477 33401542 6.9E−06 9(7) 33400021 2.2E−05 10(7) 2.7E−04

CRISP2 49681178 49681774 5.5E−06 9(8) 5.5E−06 1.8E−04

UTRN −4373 144607399 144608500 0.004 7(4) 144607074 0.010 8(4) 2.6E−04

ZC3H12Dh 149805995 149806732 2.3E−15 10(10) 1.9E−14 8.7E−05

TIAM2h 155537595 155538155 1.6E−05 8(5) 3.7E−05 7.6E−04

THBS2 169653612 169654719 9.5E−04 11(4) 169654842 7.0E−04 12(4) 5.3E−04

7 GNA12h 2768988 2770410 4.7E−06 5(5) 2769253 7.4E−05 4(4) 3.0E−05

TRG-AS1h −29,710 38350464 38351468 2.0E−06 7(6) 1.1E−05 1.7E−04

MYO1Gh 45001765g 45002919 5.5E−14 6(5) 5.7E−09 2.7E−06
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Table 3 Differentially methylated regions in blood DNA in relation to current smoking compared to never smoking (multiple-testing
corrected p < 0.01 at DMRcate and comb-p, ordered by chromosomal location) (Continued)

INSIG1 61,195 155150681 155151427 0.007 4(3) 0.002 0.003

8 DEFA4 6795162 6796618 2.0E−04 4(4) 6794872 1.7E−05 5(4) 4.0E−05

EPB49h 21915184 21915510 0.004 2(2) 21914287 21916853 5.3E−05 11(6) 0.002

TRAPPC9 141057285 141057827 3.7E−06 5(5) 2.1E−06 2.0E−04

GLI4 144358043 144359316 0.001 5(5) 1.5E−05 0.002

9 CD72 35609853 35610380 0.002 2(2) 0.007 1.1E−04

CIZ1 130955135 130956057 0.001 4(3) 130955436 0.004 3(3) 0.001

10 SNCG 88717926 88718393 5.5E−04 5(5) 3.8E−04 0.003

SLC16A12h 91296252 91296457 1.6E−04 3(3) 0.004 4.4E−04

LGI1 95517382 95517895 6.3E−04 7(4) 0.002 5.6E−04

NKX2-3 −4844 101287381g 101287846 8.2E−06 5(3) 1.3E−04 7.4E−06

GRK5 121171859 121172898 6.4E−04 5(4) 2.4E−04 4.1E−04

11 C11orf21h 2321770 2322674 1.2E−05 18(7) 2323938 1.3E−04 33(8) 5.9E−04

C11orf41 33562503 33563377 7.0E−04 4(4) 33563946 2.3E−04 5(4) 5.4E−04

NEAT1h 4664 65194933 65196227 2.2E−05 7(7) 65196696 3.0E−05 10(7) 4.9E−04

ACY3 67418045 67418405 1.1E−09 12(11) 8.7E−08 1.3E−04

CCND1 69462660g 69463323 2.4E−06 6(3) 1.7E−04 7.5E−07

AMICA1h 118084920 118085736 0.005 4(4) 0.002 0.003

12 IFFO1 6657744 6658945 2.7E−04 10(5) 6659524 2.2E−04 12(5) 8.1E−05

MGP 15038440 15039432 9.5E−04 4(3) 3.5E−05 9.3E−05

KRT7 52638005 52638592 0.002 3(2) 0.005 1.5E−04

ZNF385A 54778312 54779175 0.002 4(3) 0.008 0.001

RP11-474D1.3 36,620 130554977 130555091 1.8E−04 3(3) 9.4E−04 1.7E−04

STX2 −73,033 131199848 131201112 7.2E−04 10(4) 131198873 131201268 0.008 12(5) 6.5E−05

14 LGMN 93170710 93170970 0.002 3(3) 0.008 6.6E−05

EVL 100610071 100610667 9.8E−05 6(4) 1.9E−04 4.0E−04

RIN3 92981121 92981666 1.6E−05 3(3) 2.1E−05 1.8E−04

15 CALML4 68498251g 68499367 2.6E−06 5(2) 68497992 0.002 6(2) 2.9E−07

16 PRR25 854168 854640 0.002 4(3) 855449 0.002 6(4) 7.7E−04

BCL7C 30906810 30907246 0.001 2(2) 30907560 8.0E−04 3(3) 9.0E−04

17 ALOX15B 7942137 7942743 1.1E−04 6(5) 2.4E−04 3.9E−04

NTN1 9018806 9019336 2.0E−05 5(4) 5.5E−04 5.3E−04

SLFN12L −13,916 33787402 33788026 0.003 4(4) 0.001 8.8E−04

CYB561 61511069 61511829 4.9E−04 4(4) 9.3E−05 5.2E−04

CCDC57 80076338 80076378 1.1E−04 2(2) 0.002 2.2E−05

FOXK2 80545020g 80545869 8.1E−08 11(6) 2.6E−04 5.5E−06

TBCD 80870107 80870923 0.001 5(3) 80871405 0.002 7(4) 1.8E−04

18 C18orf1 13611370 13611824 0.007 6(4) 0.009 0.003

19 GNG7 2543602 2544100 0.008 5(2) 2542837 0.002 6(3) 6.4E−04

MAN2B1 12758416 12759546 0.004 7(4) 0.001 0.002

LAIR1 54876446 54876795 1.8E−04 5(4) 8.1E−04 2.3E−04

20 C20orf27 3745817 3746315 0.002 2(2) 0.004 8.8E−05
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Table 3 Differentially methylated regions in blood DNA in relation to current smoking compared to never smoking (multiple-testing
corrected p < 0.01 at DMRcate and comb-p, ordered by chromosomal location) (Continued)

22 SYNGR1 39759864g 39760267 1.2E−07 5(5) 1.2E−06 2.5E−06

SHISA8 −978 42304331 42304580 1.4E−04 2(2) 6.9E−04 2.3E−05

ODF3B 50970943 50971140 4.2E−04 3(3) 0.002 1.6E−04

Empty cells in “Start,” “End,” and “#CpGs” for comb-p represent the same regional information compare to results in DMRcate. DMRs ordered by p values can be
found in Additional file 11
aChromosome
bMinimum distance to transcription start site of the mapped gene (basepair)
cPhysical position (basepair, National Center for Biotechnology Information human reference genome assembly Build 37.3)
dFalse discovery rate
eNumber of probes in the region (number of CpGs of nominal statistical significance)
fP of Sidak multiple-testing correction
gRegion including significant (FDR <0.05) differentially methylated probes from our epigenome-wide association study (EWAS)
hGene identified in previous EWASs of smoking
iMinimum p values among unadjusted p values of CpGs in each region

Table 4 CpGs differentially methylated in relation to smoking status also related to quantitative measures of smoking (p correlation <0.05,
ordered by chromosomal location)

Chra Gene Distance
to geneb

Probe Epigenome-wide association study ρd Pρ

Coefc p

Urine cotinine in current smokers (N = 31)

1 GNG12 cg25189904e,f −0.134 1.4E−06 −0.40 0.027

3 GPR15 cg19859270e,f −0.027 1.0E−07 −0.56 0.001

4 MTNR1A cg22261866 −0.063 1.6E−06 0.37 0.041

5 AHRR cg05575921e,f −0.203 6.5E−13 −0.43 0.016

15 FAM82A2 cg19440278 0.007 7.0E−06 −0.43 0.016

19 F2RL3 cg03636183e,f −0.128 2.0E−08 −0.56 0.001

Pack-year in current smokers (N = 31)

1 NT5C1A cg00990022 −0.04 5.5E−06 0.39 0.036

6 ZBTB9 cg03945003 −0.023 3.9E−06 0.40 0.031

10 JAKMIP3 cg19134728e −0.023 1.2E−05 0.37 0.045

11 HPX cg25426350 −0.03 2.5E−06 0.44 0.016

11 CCND1 cg09520904 −0.036 7.5E−07 −0.44 0.015

21 RNF160 cg13662262 −0.01 9.2E−06 0.44 0.015

Time since quit smoking in former smokers (N = 30)

1 IFI16 −9970 cg19707735 −0.035 1.0E−04 0.47 0.009

2 CLASP1 cg22346073 −0.052 8.0E−07 0.43 0.017

3 ARHGEF3 cg25799109e −0.076 4.4E−05 −0.44 0.016

3 KTELC1 cg16958524 −0.029 6.9E−06 0.39 0.033

5 SPEF2 cg08534016 −0.050 0.001 0.42 0.021

6 ACOT13 16438 cg09447457 −0.010 1.2E−05 0.39 0.034

9 BSPRY cg02003202 −0.049 9.5E−06 0.44 0.015

15 FAM82A2 cg21580007 −0.049 9.0E−04 0.47 0.009

Results for current and former smokers showed regression coefficients and p values from EWAS for current and former smokers, respectively
aChromosome
bDistance to transcription start site of the mapped gene (basepair, based on National Center for Biotechnology Information human reference genome assembly
Build 37.3)
cRegression coefficient from statistical model
dSpearman correlation (rho) was used for urine cotinine and pack-years in current smokers and time since quit smoking in former smokers. The methylation values
were adjusted for age, sex, body mass index, chronic obstructive pulmonary disease status, and estimated cell composition
eProbe identified in previous epigenome-wide association studies (EWASs) of smoking
fProbe identified in one previous EWAS of serum cotinine

Lee et al. Clinical Epigenetics  (2016) 8:103 Page 10 of 17



Our replication look-up confirmed 70 DMPs in the
same direction of methylation changes from previous
EWASs at strict look-up level significance. Of these, 51
were replicated in one EWAS [26] from a Chinese popu-
lation. Nineteen were never replicated in an East Asian

population. We could not replicate the novel findings
identified from the EWAS in Chinese [26].
We had only one female current smoker and six male

never smokers. Because of this imbalance, our adjust-
ment for gender may not eliminate potential bias in the

Table 5 Differential methylation in relation to current smoking for genes with transcripts differently expressed (p < 0.05) in relation
to smoking pack-years (ordered by chromosomal location)

Differentially methylated probes in relation to current smoking compared to never
smoking (the Korean COPD cohort)

Gene (distance to
genec)

Differentially expressed genes
in relation to pack-years in lung
tissue (Asan Biobank)

Differentially methylated probe

Chra Probe Coef b P Genomic features CpG island Transcript Coef P

1 cg20388635 −0.013 1.3E−05 TSS200, promoter Island YTHDF2 NM_001173128 −0.019 0.047

2 cg22346073 −0.056 5.1E−08 5′UTR Shelf CLASP1 NM_015282 0.019 7.2E−04

cg19394739 −0.012 3.5E−07 Body, promoter Shore DGUOK NM_080916 −0.079 0.003

cg09059267 −0.099 4.2E−06 Island DNPEP (−15098) NM_012100 −0.021 0.037

3 cg01870865 −0.045 1.0E−05 TSS200, promoter TREX1 NM_033629 −0.018 0.023

cg19859270d −0.027 1.0E−07 1st exon GPR15e NM_005290 0.013 3.0E−04

5 cg05575921d −0.203 6.5E−13 Body, enhancer Shore AHRRe NM_001242412 0.004 0.047

cg14817490d −0.078 4.7E−06 Body, promoter, DHS

cg25648203d −0.079 6.2E−07 Body, enhancer, DHS

6 cg23164938 −0.016 9.5E−06 TSS1500 Shore ESR1 NM_000125 0.005 0.012

7 cg05383910 −0.042 2.1E−06 5′UTR, enhancer ELMO1e NR_038121 0.017 0.031

cg20663219 −0.054 9.4E−06 Body, DHS Shelf STX1A NM_001165903 −0.003 0.045

10 cg20723792 −0.097 4.8E−10 Body, enhancer, DHS FAM53B NM_014661 0.009 0.042

11 cg25426350 −0.030 2.5E−06 TSS200 HPX NM_000613 −0.003 0.024

13 cg17058676 −0.028 2.5E−06 Body Shore CENPJ NM_018451 0.003 0.035

14 cg16579351 −0.017 1.2E−05 Body BRF1 NM_001242788 −0.012 0.041

17 cg13521620 −0.052 1.2E−05 5′UTR Shore YPEL2 NM_001005404 0.019 0.023

Differentially methylated region

Chr Region #CpGs FDR Genomic features CpG island

1 230415343–230416101 6 0.002 3′UTR Island,
shore

GALNT2 NM_004481 0.033 0.018

2 241975756–241976244 4 1.9E−06 Body, promoter, DHS island SNED1e NM_001080437 0.017 0.014

3 98250723–98251294 2 6.2E−07 TSS200, 1st exon GPR15e NM_005290 0.013 3.0E−04

3 187870621–187871538 11 1.5E−05 TSS1500, TSS200 Shore,
island

LPPe NM_005578 0.019 0.018

5 373378–374425 5 4.6E−17 Body, enhancer Shore,
island

AHRRe NM_001242412 0.004 0.047

5 392920–393366 3 5.8E−08 Body, promoter, DHS

7 2768988–2770410 5 4.7E−06 3′UTR, enhancer GNA12e NM_007353 0.022 0.019

17 61511069–61511829 4 4.9E−04 3′UTR, body,
enhancer

Shore,
island

CYB561 NM_001017916 −0.056 0.005

Genomic features were based on Illumina’s Annotation file and those for DMRs were based on CpGs at start and end position of each region. Categories for the
features includes (1) Body, gene body; (2) 5′UTR, 5 prime untranslated region; (3) 3′UTR, 3 prime untranslated region; (4) TSS200, 200 basepair within transcription
start site; (5) TSS1500, 1500 basepair within transcription start site; and (6) DHS, DNase I hypersensitivity site
aChromosome
bRegression coefficient from statistical model
cDistance to transcription start site of the mapped gene (basepair, National Center for Biotechnology Information human reference genome assembly Build 37.3)
dProbe identified in previous epigenome-wide association studies (EWASs) of smoking
eGene identified in previous EWASs of smoking
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Table 6 Look-up in the Korean COPD cohort of CpGs reported at least two epigenome-wide association studies (70 CpGs at FDRg < 0.05,
ordered by chromosomal location)

Chra Gene Distance
to geneb

Probe Coefc Pd Referencese

1 GNG12 cg25189904f −0.134 1.4E−06 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Elliott et al. 2014 [16];
Zeilinger et al. 2013 [22]; Tsaprouni et al. 2014[18]; Zhu et al. 2016 [26].

cg26764244 −0.055 0.010 Guida et al. 2015 [12]; Harlid et al. 2014[17].

GFI1 cg12876356f −0.049 8.9E−04 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Dogan et al. 2014[15];
Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

cg18316974 −0.014 0.006 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zeilinger et al. 2013 [22].

cg09935388 −0.106 8.1E−05 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Dogan et al. 2014[15];
Elliott et al. 2014 [16]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

AVPR1B cg08709672f −0.058 1.1E−06 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Elliott et al. 2014 [16];
Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

cg20295214 −0.068 3.5E−04 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Tsaprouni et al. 2014[18];
Zeilinger et al. 2013 [22].

PSEN2 −55213 cg03547355 −0.034 0.016 Guida et al. 2015 [12]; Tsaprouni et al. 2014[18]; Zeilinger et al. 2013 [22].

2 LINC00299 195809 cg23079012f −0.023 3.8E−04 Besingi and Johansson 2014 [14]; Tsaprouni et al. 2014[18]; Zeilinger et al. 2013
[22]; Zhu et al. 2016 [26].

NFE2L2 cg26271591f −0.061 8.3E−04 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zeilinger et al. 2013 [22].

GPR55 cg19827923 −0.022 0.012 Guida et al. 2015 [12]; Zhu et al. 2016 [26].

ALPP cg23667432 −0.027 0.013 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22].

ECEL1P2 −90 cg27241845 −0.081 4.1E−04 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zeilinger et al. 2013 [22];
Tsaprouni et al. 2014[18].

ALPPL2 11777 cg03329539f −0.064 3.9E−05 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Dogan et al. 2014[15];
Elliott et al. 2014 [16]; Tsaprouni et al. 2014[18]; Zeilinger et al. 2013 [22]; Zhu et al.
2016 [26].

12850 cg05951221f −0.088 8.4E−09 Allione et al. 2015 [11]; Guida et al. 2015 [12]; Besingi and Johansson 2014 [14];
Dogan et al. 2014[15]; Harlid et al. 2014[17]; Elliott et al. 2014 [16]; Tsaprouni et al.
2014[18]; Shenker et al. 2013[19]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

13382 cg01940273 −0.090 1.4E−06 Allione et al. 2015 [11]; Guida et al. 2015 [12]; Besingi and Johansson 2014 [14];
Dogan et al. 2014[15]; Elliott et al. 2014 [16]; Tsaprouni et al. 2014[18]; Shenker et al.
2013[19]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

13737 cg13193840f −0.027 1.1E−04 Guida et al. 2015 [12]; Tsaprouni et al. 2014[18]; Zeilinger et al. 2013 [22]; Zhu et al.
2016 [26].

SNED1 cg26718213 0.091 0.005 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14].

3 GPX1 cg18642234 −0.042 0.005 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

GPR15 cg19859270 −0.027 1.0E−07 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Dogan et al. 2014[15];
Harlid et al. 2014[17]; Elliott et al. 2014 [16]; Tsaprouni et al. 2014[18]; Sun et al.
2013[20]; Zeilinger et al. 2013 [22]; Wan et al. 2012[24]; Breitling et al. 2011[25];
Zaghlool et al. 2015[13]; Zhu et al. 2016 [26].

CPOX cg02657160 −0.030 1.8E−04 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Dogan et al. 2014[15];
Harlid et al. 2014[17]; Tsaprouni et al. 2014[18]; Zeilinger et al. 2013 [22].

5 AHRR cg11554391 −0.043 2.5E−04 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

cg12806681f −0.015 0.009 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Dogan et al. 2014[15];
Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

cg23916896f −0.063 0.006 Guida et al. 2015 [12]; Dogan et al. 2014[15]; Zeilinger et al. 2013 [22]; Zhu et al.
2016 [26].

cg01899089f −0.054 0.003 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Dogan et al. 2014[15];
Zeilinger et al. 2013[22].

cg05575921f −0.203 6.5E−13 Allione et al. 2015 [11]; Guida et al. 2015 [12]; Besingi and Johansson 2014 [14];
Dogan et al. 2014[15]; Harlid et al. 2014[17]; Elliott et al. 2014 [16]; Tsaprouni et al.
2014[18]; Shenker et al. 2013[19]; Zeilinger et al. 2013 [22]; Zaghlool et al. 2015[13];
Philibert et al. 2012[23]; Philibert et al. 2013[21]; Zhu et al. 2016 [26].
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Table 6 Look-up in the Korean COPD cohort of CpGs reported at least two epigenome-wide association studies (70 CpGs at FDRg < 0.05,
ordered by chromosomal location) (Continued)

cg14817490 −0.078 4.7E−06 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Elliott et al. 2014 [16];
Tsaprouni et al. 2014[18]; Zeilinger et al. 2013 [22]; Zaghlool et al. 2015[13]; Zhu
et al. 2016 [26].

cg17287155 −0.023 1.8E−04 Guida et al. 2015 [12]; Dogan et al. 2014[15]; Zhu et al. 2016 [26].

cg04551776 −0.038 1.3E−04 Guida et al. 2015 [12]; Elliott et al. 2014 [16]; Zhu et al. 2016 [26].

cg25648203 −0.079 6.2E−07 Allione et al. 2015 [11]; Guida et al. 2015 [12]; Besingi and Johansson 2014 [14];
Dogan et al. 2014[15]; Elliott et al. 2014 [16]; Zeilinger et al. 2013 [22]; Tsaprouni
et al. 2014[18]; Zhu et al. 2016 [26].

cg24090911 −0.039 0.009 Guida et al. 2015 [12]; Tsaprouni et al. 2014[18]; Zeilinger et al. 2013 [22]; Zhu et al.
2016 [26].

6 IER3 9104 cg06126421 −0.101 2.6E−04 Allione et al. 2015 [11]; Guida et al. 2015 [12]; Besingi and Johansson 2014 [14];
Dogan et al. 2014[15]; Elliott et al. 2014 [16]; Tsaprouni et al. 2014[18]; Shenker
et al. 2013[19]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

9132 cg14753356f −0.062 1.7E−05 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zeilinger et al. 2013 [22];
Zhu et al. 2016 [26].

9227 cg24859433 −0.037 0.003 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Dogan et al. 2014[15];
Tsaprouni et al. 2014[18]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

9233 cg15342087 −0.030 0.009 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Tsaprouni et al. 2014[18];
Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

7 GNA12 cg18446336 −0.074 0.011 Guida et al. 2015 [12]; Zhu et al. 2016 [26].

MYO1G cg19089201 0.056 3.5E−05 Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

cg22132788 0.092 2.7E−06 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Elliott et al. 2014 [16];
Zeilinger et al. 2013 [22]; Philibert et al. 2012[23]; Philibert et al. 2013[21]; Zhu et al.
2016 [26].

cg04180046 0.103 2.3E−05 Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

cg12803068 0.156 4.8E−06 Allione et al. 2015 [11]; Guida et al. 2015 [12]; Besingi and Johansson 2014 [14];
Elliott et al. 2014 [16]; Zeilinger et al. 2013 [22]; Philibert et al. 2012[23]; Philibert
et al. 2013[21]; Zhu et al. 2016 [26].

CNTNAP2 cg21322436 −0.026 0.016 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

cg25949550 −0.026 5.2E−05 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zeilinger et al. 2013 [22];
Zhu et al. 2016 [26].

8 MYST3 cg14316231 −0.029 0.007 Guida et al. 2015 [12]; Zhu et al. 2016 [26].

9 SLC44A1 −1580 cg01692968f −0.038 0.004 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zeilinger et al. 2013 [22];
Zhu et al. 2016 [26].

10 ZMIZ1 cg03450842f −0.041 0.004 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14].

11 KCNQ1OT1 cg01744331 −0.030 8.4E−04 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22].

cg07123182f −0.031 1.1E−05 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Elliott et al. 2014 [16];
Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

cg16556677f −0.051 6.7E−04 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

cg26963277f −0.043 6.2E−04 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zeilinger et al. 2013 [22];
Zhu et al. 2016 [26].

LRP5 cg21611682 −0.045 0.005 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zeilinger et al. 2013 [22];
Tsaprouni et al. 2014[18]; Zhu et al. 2016 [26].

cg10420527 −0.031 0.013 Guida et al. 2015 [12]; Zhu et al. 2016 [26].

cg14624207f −0.040 0.002 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

ARRB1 cg01901332 −0.057 0.008 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zeilinger et al. 2013 [22].

PRSS23 cg23771366 −0.062 0.002 Guida et al. 2015 [12]; Elliott et al. 2014 [16]; Zeilinger et al. 2013 [22]; Zhu et al.
2016 [26].

12 ETV6 cg07986378f −0.069 3.6E−04 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zhu et al. 2016 [26].
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smoking results. We identified one EWAS of gender
using Illumina’s 450k array [13] in blood DNA (n = 123).
In their supplementary table, they presented 274 gender-
associated CpGs of genome-wide significance (p < 1.07E
−07) located in autosomes. None of our 108 smoking
DMPs (FDR < 0.05) were among those suggesting that
our top findings do not reflect the gender imbalance.
In our EWAS, we used COPD status as a covariate.

The disease status could be a confounding factor. For
108 FDR-significant DMPs related to current smoking,
we checked the association between COPD status and
DNA methylation under two statistical models. Model 1
included covariates of age, sex, height, and estimated
cell-type compositions; model 2 contained additional co-
variates of smoking status and pack-years. None of our
DMPs were statistically significantly associated with
COPD under either model (FDR ≤0.05 after correcting for
108 tests). Sixteen CpGs were nominally related to COPD
at uncorrected p < 0.05 (Additional file 9: Table S9).
There are limitations and strengths in this study. First,

these data were cross-sectional which limits causal infer-
ence regarding resolution of effects with cessation of
smoking. Second, we do not have a replication dataset
from an independent Korean, or similar, population.

Therefore, there is a chance of false positives among our
novel findings. Third, the study population was drawn
from a COPD cohort. Although we adjusted for the dis-
ease status in the regression models, the possibility of
some type of selection bias could be raised. Fourth, we
used blood DNA methylation to examine effects of smok-
ing. The use of blood DNA methylation changes can be
limited due to cell- and tissue-specific characteristics of
methylation. However, our findings of differential methy-
lation were adjusted for estimated cell-type proportions.
We also confirmed differential transcriptome patterns in
relation to pack-years in lung tissue at multiple loci.
Our study also has strengths. This is one of the few

studies in Asian populations and the first in Koreans.
We verified self-reported non-smoking status with urine
cotinine values. Underreporting of smoking status in sur-
veys occurs [61] and the nondifferential misclassification
could distort association results. We also implemented
two DMR approaches to provide significant DMRs in our
EWAS. The methodologies for the discovery of DMRs
have been developed and revised over several years, and it
has been reported that the performance of DMRcate and
comb-p were superior to those of others [44]. We were
also able to examine whether genes with differential

Table 6 Look-up in the Korean COPD cohort of CpGs reported at least two epigenome-wide association studies (70 CpGs at FDRg < 0.05,
ordered by chromosomal location) (Continued)

14 C14orf43 cg01731783 −0.025 0.009 Guida et al. 2015 [12]; Dogan et al. 2014[15]; Elliott et al. 2014 [16]; Zeilinger et al.
2013 [22].

ITPK1 cg05284742 −0.055 2.5E−05 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zeilinger et al. 2013 [22];
Zhu et al. 2016 [26].

15 SEMA7A cg00310412 −0.036 0.008 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zeilinger et al. 2013 [22].

ANPEP cg23161492 −0.055 0.001 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14]; Zeilinger et al. 2013 [22];
Zhu et al. 2016 [26].

16 XYLT1 cg16794579f −0.039 0.004 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14].

FBRS −4029 cg07069636 −0.023 0.006 Guida et al. 2015 [12]; Zhu et al. 2016 [26].

17 LOC100130933 cg07251887f −0.070 2.4E−04 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22].

19 CIRBP −1591 cg00073090 −0.031 0.002 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

MOBKL2A cg15187398 −0.048 0.013 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

MIR23A 3767 cg05339037 −0.025 0.008 Guida et al. 2015 [12]; Zhu et al. 2016 [26].

F2RL3 cg03636183f −0.128 2.0E−08 Allione et al. 2015 [11]; Guida et al. 2015 [12]; Besingi and Johansson 2014 [14];
Dogan et al. 2014[15]; Harlid et al. 2014[17]; Elliott et al. 2014 [16]; Tsaprouni et al.
2014[18]; Shenker et al. 2013[19]; Sun et al. 2013[20]; Zeilinger et al. 2013 [22]; Wan
et al. 2012[24]; Breitling et al. 2011[25]; Zaghlool et al. 2015[13]; Zhu et al. 2016 [26].

PPP1R15A cg03707168 −0.034 0.009 Guida et al. 2015 [12]; Besingi and Johansson 2014 [14].

20 ATP9A cg07339236 −0.039 1.0E−04 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].

21 NCRNA00114 cg06595162f −0.034 0.005 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22].

22 NCF4 cg02532700 −0.049 0.003 Guida et al. 2015 [12]; Zeilinger et al. 2013 [22]; Zhu et al. 2016 [26].
aChromosome
bDistance to transcription start site of the mapped gene (basepair, National Center for Biotechnology Information human reference genome assembly Build 37.3)
cRegression coefficient from statistical model
dStatistical significance from statistical model
eArticles reporting CpGs as smoking-associated differential methylation sites at genome-wide level
fProbe differentially methylated in both current and former smokers compared to never smokers in our epigenome-wide association study
gCorrection for 18 tests at the look-up
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methylation in relation to smoking also showed differen-
tial transcription in relation to smoking in lung tissue, an
important target for smoking related pathology.

Conclusions
Our study in Koreans, we discovered novel smoking-
associated DNA methylation changes in blood and also
confirmed many previous findings mostly identified in
Caucasians. Observed correlations between methylation
levels and quantitative measures of smoking exposures
support the utility of blood DNA methylation biomarkers
for smoking intensity and history. Our evaluation of differ-
ential gene expression profiles of corresponding genes in
lung tissues supports the potential functional importance
of our methylation findings.
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