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Abstract

Background: DNA methylation is an essential epigenetic mark, controlled by DNA methyltransferase (DNMT) proteins,
which regulates chromatin structure and gene expression throughout the genome. In this study, we describe a family
with adult-onset autosomal dominant cerebellar ataxia with deafness and narcolepsy (ADCA-DN) caused by mutations
in the maintenance methyltransferase DNMT1 and assess the DNA methylation profile of these individuals.

Results: We report a family with six individuals affected with ADCA-DN; specifically, patients first developed hearing
loss and ataxia, followed by narcolepsy, and cognitive decline. We identified a heterozygous DNMT1 variant, c.1709C>T
[p.Ala570Val] by Sanger sequencing, which had been previously reported as pathogenic for ADCA-DN and segregated
with disease in the family. DNA methylation analysis by high-resolution genome-wide DNA methylation array identified
a decrease in CpGs with 0–10 % methylation and 80–95 % methylation and a concomitant increase in sites with
10–30 % methylation and >95 % methylation. This pattern suggests an increase in methylation of normally unmethylated
regions, such as promoters and CpG islands, as well as further methylation of highly methylated gene bodies and
intergenic regions. Furthermore, a regional analysis identified 82 hypermethylated loci with consistent robust
differences across ≥5 consecutive probes compared to our large reference cohort.

Conclusions: This report identifies robust changes in the DNA methylation patterns in ADCA-DN patients, which
is an important step towards elucidating disease pathogenesis.
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Background
DNA methylation represses genomic expression through
allosteric inhibition of transcription factors and transcrip-
tional machinery, while serving as a recognition site for a
host of repressive factors [1]. This mark is applied by
the DNMT proteins: DNA methyltransferase 1 (DNMT1)
is a maintenance methyltransferase, while DNMT3a and
DNMT3b are de novo methyltransferases. There is a great

deal of research aimed at understanding the role of DNA
methylation in human health. To date, defects in DNA
methylation have been identified as causative or con-
tributing in numerous cancers, developmental syndromes,
genetic disorders, and complex conditions (reviewed in
[2–6]). Further research is required to fully understand
the impact of altered methylation on human health and to
utilize this knowledge for the development of effective
therapeutics.
Autosomal dominant cerebellar ataxia with deafness and

narcolepsy (ADCA-DN, OMIM 604121) is a degenerative
disease caused by mutations in the DNA-targeting domain
of the maintenance methyltransferase DNMT1 [7–9]. This
adult-onset condition (onset in the second to fourth
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decade) is characterized by hearing loss, narcolepsy/
cataplexy, and cerebellar ataxia; there are also reports
of sensory neuropathy and psychiatric and behavioural
manifestations. Interestingly, a second condition, her-
editary sensory neuropathy with dementia and hearing
loss (HSAN1E), is also caused by mutations in DNMT1.
While once classified as distinct disorders, we now
recognize that HSAN1E and ADCA-DN patients demon-
strate significant overlap in clinical features, suggesting
that these are likely the same condition with clinical vari-
ability depending on location and type of mutation and an
individual’s genetic background [10]. Molecular profiling
of HSAN1E patient cells has uncovered both global
DNA hypomethylation and site-specific hypermethylation
[11, 12]. It remains to be seen if these methylation changes
are consistent or different between HSAN1E and ADCA-
DN and how they might contribute to the aforementioned
phenotypes. Additionally, further studies are required to
inform the phenotypic spectrum of this condition.

Methods
Clinical specimens
A family with six affected individuals presented to the
Medical Genetics Service and was enrolled in the
Care4Rare Canada study due to the absence of a molecu-
lar diagnosis. Approval of the study design was obtained
from the institutional research ethics board (Children’s
Hospital of Eastern Ontario) and informed consent
obtained from all participants.

Methylation array
DNA methylation array was performed on blood DNA
using the Infinium HumanMethylation450 BeadChip
(Illumina) on five individuals according to standard
protocol (Genetic and Molecular Epidemiology Labora-
tory, McMaster University). Methylation data (beta value)
was converted to .idat files using the Genome Studio Soft-
ware and imported into the Partek Genomics Suite (PGS)
software for statistical analysis. Statistical analyses were
performed using PGS, comparing the patient cohort (5
individuals) with 361 normal controls (reference cohort).
Our controls included individuals that were previously
preselected from a larger cohort of about 1000 individuals
across the broad range of age, sex, and ethnicity distribu-
tion. The methylation analysis of these individuals was
performed in the same facility as patients, and the same
data processing pipeline was used. Based on the individual
analysis (1 sample versus cohort), these reference controls
showed no significant changes in DNA methylation rela-
tive to the entire reference cohort. This analysis takes into
account the fact that significant portion of genomic DNA
methylation is hyper-variable across individuals (including
age-related hyper-variable regions). Such regions with the
normal inter-individual and/or age-related methylation

variability would not produce significant p values when
comparing an individual or a patient cohort to a reference.
Data analysis was performed using modifications of the
protocol previously described by Schenkel et al. [13].
Briefly, an ANOVA test was performed to generate
probe-level statistics and regions with significant DNA
methylation patterns which had (1) a minimum of five
consecutive probes with probe-level p < 0.01, (2) mean
F-value across the region >50, and (3) estimate value
(methylation difference between groups) higher than 0.20
(+/−). This approach focuses on identification of gen-
omic regions with significant methylation differences
encompassing multiple immediately adjacent probe sets
using multilayered statistical criteria including the p value,
F-value, and estimate (mean methylation difference) across
a region encompassing at least five contiguous probes.
Significant regions were mapped against the CpG islands
and gene promoter regions using human reference genome
Hg19. Data was visualized using the PGS genomic browser.

Pathway analysis
The top differentially methylated genes identified were
assessed using the pathway analysis tool in the PGS.
Briefly, statistical analysis included Fisher exact test and
restriction to functional groups containing at least two
genes. Results show the enrichment p value (p value of
the Fisher exact test reflective of the number of the genes
in versus not in the list or functional group) and the
enrichment score (ES; negative log of the enrichment
p value; a high score indicates that the genes in the
functional group are overrepresented in the gene list).

Bisulfite mutagenesis
Genomic DNA isolated from blood of patients and
age-matched controls was sodium bisulfite treated using
the EZ DNA Methylation-Direct Kit (Zymo Research)
according to the manufacturer’s instructions. DNA was
amplified by nested PCR and the resulting products li-
gated into the pCR2.1 vector using a TOPO-TA cloning
kit (Invitrogen). Positive clones were sequenced with Ap-
plied Biosystem 3730xl DNA Analyzer technology (Centre
for Applied Genomics, McGill University). Clones were
accepted at ≥95 % conversion. Non-converted cytosine
residues and mismatched base pairs were used to en-
sure all clones originated from unique template DNA.

Results
Family description
A family of six affected individuals presented to the
Genetics Service at the Children’s Hospital of Eastern
Ontario over two decades. Individuals demonstrated a
wide phenotypic spectrum; prominent clinical symptoms
included progressive narcolepsy, length-dependent sensory
neuropathy, ataxia, optic atrophy with cognitive decline,
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and personality changes such as impulsivity. Symptoms
began in the second to fourth decade of life. Additionally,
most members presented with hearing loss in the third and
fourth decades. Marked lymphedema and urinary urgency
were also prominent in the three female patients.
These patients were recognized as sharing significant

clinical features with those described by Winkelman
et al. with DNMT1 mutations [7]. As such, we se-
quenced the DNMT1 gene and identified a variant,
NM_001130823.1:c.1709C>T [p.Ala570Val], which was
one of the originally reported mutations [7]. This variant
segregated with the disease within the family. These find-
ings led us to conclude that this heterozygous variant is
likely disease-causing and to further investigate the mo-
lecular phenotype of these patients.

Identification of a unique DNA methylation signature for
ADCA-DN
Given the well-documented function of DNMT1, com-
bined with previous cellular phenotyping descriptions in

HSAN1E patients [11, 12], we chose to investigate glo-
bal DNA methylation signatures in this ADCA-DN
family. We performed a genome-wide assessment of
DNA methylation using the high-resolution Infinium
HumanMethylation450 BeadChip, which assesses 480,000
methylation sites across unique (non-repetitive) DNA se-
quences, including 96 % of CpG islands and 99 % of
RefSeq genes, with an average of 17 CpGs per gene. This
analysis identified global methylation changes in the pa-
tients relative to controls (Fig. 1). Specifically, there was a
decrease in hypomethylated probes (0–10 % methylation)
and an increase in probes with 10–30 % methylation. This
pattern suggests increased methylation in normally
unmethylated regions, most of which are located in pro-
moters and CpG islands. We also identified a number of
hypermethylated regions, signified by a decrease in probes
with 80–95 % methylation and an increase in probes
with >95 % methylation. Hypermethylation normally
occurs in gene bodies and intergenic regions, suggesting
further methylation of these sites. A regional analysis (≥5

Fig. 1 Histogram of genome-wide DNA methylation array data showing frequency of methylation levels across the genome in patients with ADCA-DN
(black) and controls (grey). Patients with ADCA-DN showed a lower frequency of CpGs with 0–10 % methylation and 80–95 % methylation and a
concomitant increase in sites with 10–30 % methylation and >95 % methylation. This pattern suggests an increase in methylation of normally
unmethylated regions, such as promoters and CpG islands, as well as further methylation of normally hypermethylated gene bodies and intergenic regions
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Fig. 2 (See legend on next page.)
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consecutive probes) revealed 82 regions with significant
methylation changes. All of these sites were hypermethy-
lated in ADCA-DN patients and were distributed across
different chromosomes. Of these 82 regions, 45 over-
lapped CpG islands in gene promoters, 20 were located in
CpG islands outside of genes, 11 were located in CpG
shores or shelves, and 6 were located in intergenic non-
CpG island locations (Additional file 1: Table S1).
Many of the genes identified in the methylation array

are associated with important developmental process, and
disruption of their expression by altered DNA methylation
may play a role in disease pathogenesis. Pathway analysis
of the 82 differentially methylated regions revealed an
enrichment for cellular developmental processes (includ-
ing 30 genes, ES = 24, p < 0.01) and anatomical structure
development (including 29 genes, ES = 20, p < 0.01).
To confirm our methylation array findings, we performed

bisulfite mutagenesis and sequencing at the GPR176 pro-
moter region (Fig. 2). Methylation array at this region
showed hypermethylation in ADCA-DN patients (Fig. 2),
with average methylation of five adjacent probes at 8 % and
32 % in controls and patients, respectively. Using bisulfite
mutagenesis, we detected an overall 1.75-fold increase in
methylation of this sequence (controls 7.35 % versus pa-
tients 12.83 %). These findings confirm the accuracy and
specificity of the DNA methylation array data.

Discussion
Previous studies have identified DNMT1 mutations in
ADCA-DN and HSAN1E. While once described as dis-
tinct disorders, these are now recognized as the same
condition which presents along a clinical spectrum [10].
In this study, the family’s presentation is most similar to
the ADCA-DN end of the spectrum. Mounting evidence
highlights the importance of DNA methylation for proper
neurological development and function. For example,
changes in the methylome have been identified in condi-
tions such as brain cancer, autism, intellectual disability
syndromes, Alzheimer and Parkinson diseases, amyotrophic
lateral sclerosis, epilepsy, multiple sclerosis, and now
ADCA-DN/HSAN1E [3–5, 7]. While these conditions
differ greatly in their clinical presentations, including cen-
tral and peripheral nervous system involvement, they
highlight the importance of the neuronal methylome.
Using the Infinium HumanMethylation450 array plat-

form, we identified increased methylation in normally

unmethylated promoters and CpG islands, as well as fur-
ther methylation of hypermethylated gene bodies and
intergenic regions in ADCA-DN patients. These findings
are highly similar to those of previous studies on HSAN1E
patients which have demonstrated hypermethylated re-
gions using low-resolution Infinium HumanMethylation27
arrays, global hypomethylation using non-site-specific li-
quid chromatography-electrospray ionization tandem mass
spectrometry, and specific sites of hypomethylation and
hypermethylation at a very high resolution by genome-
wide bisulfite sequencing [11, 12]. Note that mass spec-
trometry analysis would include repetitive elements which
carry a significant portion of genomic methylation, while
methylation arrays and bisulfite sequencing are restricted
to unique sequences and thus do not assess global methy-
lation status. Taken together, it is likely that mutations in
DNMT1 cause similar hypomethylation at repetitive ele-
ments and hypermethylation at specific gene/promoter/
CpG islands in both HSAN1E and ADCA-DN. Import-
antly, we identified 82 hypermethylated regions with robust
methylation changes in at least five consecutive probes and
propose that the methylation profile of these 82 regions
should be further investigated with regard to implications
for disease pathogenesis.

Conclusions
Overall, our methylation findings expand the understand-
ing of ADCA-DN molecular pathogenesis a critical first
step on the long journey to development of an effective
therapy. While there are phenotypic differences through-
out the spectrum of HSAN1E and ADCA-DN patients,
we observe the same general methylation trends. Further
study is required to elucidate the underlying disease
mechanisms and to determine if and how these methyla-
tion changes contribute to disease pathogenesis.

Additional file

Additional file 1: Significant regions detected by methylation array in
ADCA-DN versus control individuals.
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(See figure on previous page.)
Fig. 2 a Methylation visualization of significantly altered gene GPR176 in ADCA-DN patients (black) and controls (grey) identified by methylation
array. Figures were generated using genomic browser viewer (Partek) and show methylation levels 0 (not methylated) and 1 (100 % methylated)
among controls and ADCA-DN patients. Location of CpG islands and genes are also represented. b Bisulfite mutagenesis and sequencing analysis
of the GPR176 promoter region confirms effects seen by methylation array analysis. Twenty alleles from each sample were analysed, and individual
alleles are represented as a string of CpGs. The total percent methylation for each sample is indicated. Unmethylated CpGs are represented as
empty circles and methylated CpGs as filled circles
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