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Abstract 

Objectives: Neural networks are a powerful statistical tool that use nonlinear regression type models to obtain 
predictions. Their use in the Lifeways cross-generation study that examined body mass index (BMI) of children, among 
other measures, is explored here. Our aim is to predict the BMI of children from that of their parents and maternal 
and paternal grandparents. For comparison purposes, linear models will also be used for prediction. A complicating 
factor is the large amount of missing data. The missing data may be imputed and we examine the effects of different 
imputation methods on prediction. An analysis using neural networks (and also linear models) that uses all available 
data without imputation is also carried out, and is the gold standard by which the analyses with imputed data sets are 
compared.

Results: Neural network models performed better than linear models and can be used as a data analytic tool to 
detect nonlinear and interaction effects. Using neural networks the BMI of a child can be predicted from family mem-
bers to within roughly 2.84 units. Results between the imputation methods were similar in terms of mean squared 
error, as were results based on imputed data compared to un-imputed data.

Keywords: Body mass index, Child, Neural networks, Multiple imputation, Multiple imputation by chained equations, 
Principal components, Reduction method, Lifeways
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Introduction
Increasing levels of body mass index (BMI) present a 
problem, particularly in children. Determining possible 
pathways of familial transmission is important, both for 
prevention and management intervention. In the Life-
ways cross-generation cohort study, expectant moth-
ers were recruited initially in 2001–2003 [1]. Height and 
weight at age 5 were recorded for 567 children. Where 
available from either baseline or follow-up, BMI meas-
urements of their parents, maternal grandmother (mgm) 
and grandfather (mgf), paternal grandmother (pgm) and 
grandfather (pgf ) were also recorded. The extent to which 
the BMI of the child can be predicted from their parents, 
maternal and paternal grandparents is of interest. Neural 
networks (NN) have emerged as a major field of statistics 
and data analysis where the goal is to create reliable and 

flexible predictive models. They are described in many 
books, for example Ripley [2].

As is a common problem in epidemiological studies 
the Lifeways study has missing data. Multiple imputa-
tion (MI) was developed to address the limitations of a 
complete case analysis [3]. Different imputation models 
are used here and both NN’s and linear models are fitted 
to the imputed data. Results are compared to a reduction 
method where no imputations are done, but predictions 
are made based on complete data models for the different 
patterns of missing data.

Main text
Methods
Neural networks
Neural networks are fitted to these data in order to pre-
dict child BMI from (possibly) non-linear functions of 
the covariates and their interactions. This is not eas-
ily done using a linear model, as the number of possible 
non-linear and higher-order interaction terms is large. 
We experiment with fitting multi-layer neural networks 
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using the backpropagation algorithm of [4] in which one 
fits the unknown weight parameters in a neuron using a 
gradient search method. The networks we use had one 
or more layers of sigmoidal units with a single sigmoidal 
output layer. The choice of how many neurons and how 
many layers is determined by leave-one-out cross valida-
tion i.e. one observation is left out at a time and predicted 
by a NN fit to the remainder of the data. The error-differ-
ence between actual and predicted is computed, squared 
and the average taken over all observations. This will be 
referred to as mean squared error (mse). The network 
that minimizes this error is chosen. MSE is also used as a 
criterion to assess goodness-of-fit of the model. Different 
starting weights may give different NN’s and thus differ-
ent mse. Therefore we fit each NN with 3 repetitions and 
the minimum error for each observation is taken. Non-
linearity in the model is also explored using a general-
ized additive model (GAM) in which the linear predictor 
is given by a sum of smooth functions of the covariates 
[5]. It’s main difference from a NN model is that inter-
action terms are not automatically included. It is known 
GAM models underestimate p-values and they are not 
our main interest.

Multiple imputation
A complete case analysis of these data would involve very 
few families (< 15) and statistically more powerful analy-
ses can be done by including individuals with incomplete 
data. The MI methods used to do this require the missing 
at random assumption to produce unbiased estimates [6]. 
An investigation into the pattern of missing data in [7] 
did not demonstrate any systematic variability and these 
data were found to be missing completely at random.

MI is a two-stage process. In stage 1, the incomplete 
data set is replicated multiple times, and missing values 
are replaced by plausible values drawn from a posterior 
distribution according to a suitable imputation model 
based on the observed data. In stage 2, the target analysis 
is performed on each of the imputed data sets with the 
resulting parameter estimate and corresponding stand-
ard error of each data set, combined into a single esti-
mate (and standard error) using Rubin’s rules [3]. For 
stage 1, we use an imputation model based on principal 
component analysis (PCA) due to [8] that is fit using their 
R package missMDA. The first step consists in imput-
ing the missing entry with an initial value, then PCA is 
performed on the imputed data set. Then, the value fit-
ted by PCA is used to predict a new value for the missing 
one. On the new completed data set, the same procedure 
is applied and these two steps are repeated until con-
vergence. To prevent over-fitting when there are many 
missing values a regularized version of the algorithm is 
available.

We also use a fully conditional specification (FCS), 
also known as multiple imputation by chained equations 
(MICE), that fits separate univariate models to each vari-
able with missing values, iteratively cycling through the 
univariate models. Univariate imputation models con-
sidered here are Bayesian linear regression (NORM) 
and predictive mean matching (PMM). For NORM as 
described in [9], we assume that z is a variable whose 
missing values we wish to impute from other (complete) 
variables x = (x1, . . . , xk), including an intercept term. 
Let nz be the number of individuals with observed z val-
ues. We assume z|x;β ∼ N (βx, σ 2) . Let β̂ and V be the 
set of estimated regression parameters and correspond-
ing covariance matrix from fitting this model. Let β∗ be 
a random draw from the posterior distribution given by 
β∗ ∼ MVN (β̂ ,V ) . Imputations for z are drawn from the 
posterior predictive distribution of z using β∗.

PMM reduces the impact of model mis-specification, 
or non-normality [9]. In PMM, using a perturbed param-
eter vector β∗ as above, for each missing value zi with 
covariates xi, the q individuals with the smallest values of 
|β̂xh − β∗xi| (h = 1, . . . , nz) are identified. One of these 
q closest individuals, say i′ , is chosen at random, and the 
imputed value of zi is zi′ . We use q = 3 , which performed 
well in a simulation study [9].

The R package mice [10] is used to carry out these pro-
cedures. There is no mechanism at present that allows 
imputation to be done using a NN model, as a NN model 
is not identifiable.

Gold standard‑network reduction method
All patterns of missing data were identified and a NN and 
a linear model fit to each data set with those variables 
that are present [11].

Statistical analysis
Summary statistics for these data including an analy-
sis involving pairwise correlations and univariate linear 
regression models may be seen in [7].

The imputation methods PCA, PMM and NORM are 
carried out on the data and 10 imputed data sets obtained 
for each method. Each imputed data set is fit using a NN 
and a linear model.

Neural net fitting is done using two layers, the first with 
two neurons and the second with one, as this provided 
close to the best fit in terms of mse and had a low com-
putation time. This is done using the neuralnet package 
in R [12]. As computing leave-one-out mse involves 567 
NN fits, and 3 replications for each fit are carried out, the 
number of data sets imputed for each imputation method 
was set to ten. The linear models regress child BMI on a 
linear combination of family member’s BMI.
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For the reduction method, since the data set contain 63 
patterns of missing values, 63 NN and also 63 linear mod-
els are fitted. To provide comparison with other methods, 
each NN is trained on 80% of the available data and the 
test set is the remaining 20%. The mse is computed and 
then the average mse over the 63 NN’s computed. A simi-
lar procedure is conducted for the linear model. Compu-
tations are carried out in R [13].

The GAM model is fit using the mgcv package in R 
with the default options [14].

Results
The fraction of missing data for each family mem-
ber is child  =  0.0, mother  =  0.012, father  =  0.579, 
mgm = 0.561, mgf = 0.716, pgm = 0.679 and pgf = 0.774. 
The root mse in the NN models is roughly 1.45 units of 
BMI. Thus the BMI of a child can be predicted from fam-
ily members to within ± 1.96× 1.45 = ± 2.84 . The fol-
lowing can be inferred from Tables 1 and 2:

• MSE is smallest on data imputed using MICE and 
PMM, followed by MICE with Bayesian linear regres-
sion and worst for data imputed with PCA. This is 
also true for the linear models fit.

• The neural net gave a smaller mse than the linear 
model for each imputation method indicating some 
non-linearity and interaction terms in the linear 
model.

• Imputing with MICE and PMM and fitting with a 
neural net gave a slightly smaller mse than the reduc-
tion method fit with neural net but the reverse is 
true for linear models. The standard deviation of mse 
for the reduction method linear models (63 in all) is 
large. This is as expected as some of the data sets fit-
ted are quite small e.g. data sets with 6 or 7 family 
members.

• The important predictors in the linear model 
( p < 0.05 ) are mother, father and mgm for all impu-

tation methods, except PCA where the mgm is bor-
derline significant.

It is not possible to identify the important predictors for a 
NN with any data or the linear model reduction method. 
For a NN the weights for any particular neuron are not 
identifiable. The linear model reduction method involves 
63 linear models, each with different predictors, with no 
obvious way of combining the results. The R2 value was 
available for each model via the mse.

The results of the GAM fit to one data set imputed by 
PMM are shown in Fig.  1. This shows clearly non-line-
arity in the response of the child with father, mgm and 
pgf. We also note, results not shown, that mse for GAM 
models in Table  2 are between those for linear models 
and NN’s, as is expected. The R2 for a GAM model fit-
ted to data imputed by MICE and PMM was 19.70%, con-
siderably less than the neural net value in Table  2. This 
indicates interaction terms (not automatically included in 
GAM models) are important in the prediction.

Table 1 Estimates (s.e.) and p-values for each family member in a linear model

* Using prediction rules for the imputed data sets

Member Imputation by PCA* Imputation by MICE and PMM Imputation by MICE and Norm

Estimate s.e. p-value Estimate s.e. p-value Estimate s.e. p-value

Mother 0.0614 0.0178 0.0006 0.0519 0.0191 0.0065 0.0549 0.0190 0.0038

Father 0.0563 0.0232 0.0155 0.0900 0.0263 0.0006 0.0716 0.0355 0.0438

Mgm 0.0325 0.0183 0.0757 0.0493 0.0216 0.0224 0.0441 0.0157 0.0049

Mgf 0.0413 0.0267 0.1212 0.0379 0.0325 0.2430 0.0275 0.0383 0.4703

Pgm 0.0142 0.0247 0.5635 0.0073 0.0192 0.7023 0.0074 0.0205 0.7171

Pgf 0.0094 0.0202 0.6424 − 0.0028 0.0528 0.9582 − 0.0155 0.0324 0.6327

Table 2 Leave-one-out mse (sd) for  different models 
for the 10 imputed and the reduction data sets

R
2 is the percentage of variation explained

Imputation method Prediction rule 
mse

Mse sd R
2

Neural network

 PCA 2.3271 0.0854 22.23

 MICE and PMM 2.1106 0.1181 29.46

 MICE and NORM 2.2938 0.0965 23.34

 Reduction method 2.1662 1.0207 27.60

Linear model

 PCA 2.7083 0.0467 9.50

 MICE and PMM 2.5674 0.0980 14.20

 MICE and NORM 2.6367 0.0780 11.88

 Reduction method 2.3033 0.9625 23.02
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Fig. 1 Typical relationships between child and family members using a GAM model. The figure shows the component smooth functions for each 
covariate that make up the GAM fit, on the scale of the linear predictor, with associated confidence bands
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Discussion
NN’s give the best predictions of the methods consid-
ered. They also provide a measure of the degree of non-
linear and interaction effects in the data that can aid in 
identifying suitable models.

The advantages of this study is that it uses data from 
three generations of one family. To our knowledge no 
other study has attempted to predict child BMI from 
the two previous generations.

In [7] univariate linear regression models were con-
ducted and a maximum R2 of 4% was observed between 
child and mother. That between child and mgm was 
also 4%. However one of the main aims of that study 
was to model associations between family members 
and to understand the underlying process generating 
the data. Here the aim is to establish how well child 
BMI can be predicted from that of family members.

De Silva et al. [15] evaluated the performance of dif-
ferent MI methods including NORM for handling up 
to 50% of missing data when assessing the association 
between childhood obesity and sleep problems. They 
also conducted a simulation study and observed slight 
gains in precision for all MI methods when compared 
with a complete case analysis. Our results are in agree-
ment with this in terms of comparing imputed data 
models with a high percentage of missing data with 
reduction methods. There is little difference between 
analyses conducted on imputed data and analyses con-
ducted on reduced data—where no imputation is done.

The network reduction method is computationally 
intensive to implement but its use as a gold standard 
to compare imputed methods is a useful technique in 
studies such as this, where large amounts of data are 
imputed.

Our results represent valuable information regarding 
protocol and data collection in relation to this and simi-
lar studies. They indicate that studies based on incom-
plete data where missing data is imputed can give reliable 
results.

Limitations

• The NN architecture used is relatively simple. Slightly 
better results can be obtained for more complicated 
NN’s as exploratory analyses revealed.

• There is no mathematical theory to justify MICE and 
PCA imputation methods in general and no simula-
tion can study all the possibilities. We used real data 
to assess deviations from observations and results are 
limited to these data.
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