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Uninterrupted monitoring of drug effects 
in human‑induced pluripotent stem cell‑derived 
cardiomyocytes with bioluminescence Ca2+ 
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Abstract 

Objective:  Cardiomyocytes derived from human-induced pluripotent stem cells are a powerful platform for high-
throughput drug screening in vitro. However, current modalities for drug testing, such as electrophysiology and 
fluorescence imaging have inherent drawbacks. To circumvent these problems, we report the development of a 
bioluminescent Ca2+ indicator GmNL(Ca2+), and its application in a customized microscope for high-throughput drug 
screening.

Results:  GmNL(Ca2+) gives a 140% signal change with Ca2+, and can image drug-induced changes of Ca2+ dynam-
ics in cultured cells. Since bioluminescence requires application of a chemical substrate, which is consumed over 
~ 30 min we made a dedicated microscope with automated drug dispensing inside a light-tight box, to control 
drug addition. To overcome thermal instability of the luminescent substrate, or small molecule, dual climate control 
enables distinct temperature settings in the drug reservoir and the biological sample. By combining GmNL(Ca2+) 
with this adaptation, we could image spontaneous Ca2+ transients in cultured cardiomyocytes and phenotype their 
response to well-known drugs without accessing the sample directly. In addition, the bioluminescent strategy dem-
onstrates minimal perturbation of contractile parameters and long-term observation attributable to lack of phototox-
icity and photobleaching. Overall, bioluminescence may enable more accurate drug screening in a high-throughput 
manner.
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Introduction
For decades, a major bottleneck in drug development 
has been limited availability of patient-derived tissues 
or cells. This changed with the establishment of human-
induced pluripotent stem cells (hiPSC) [1, 2], which can 
now be differentiated into virtually all cell types in vitro. 
Patient derived disease-specific hiPSCs recapitulate 
many disease phenotypes in culture, which may therefore 

serve as a valuable platform for drug discovery or toxi-
cology testing [3]. This is especially true for the hiPSC-
derived cardiomyocytes (hiPSC-CMs) which may enable 
a paradigm shift in toxicity testing [4]. However thus far 
they have failed to completely recapitulate established 
real-world patient based toxicology results in contempo-
rary platforms [5, 6].

Drug-induced changes in hiPSC-CMs can be 
detected by many methods including classical and 
automated electrophysiology or established fluores-
cence imaging modalities [7, 8]. However, the inherent 
low-throughput of electrophysiological techniques and 
physiological perturbation arising from phototoxicity 
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of fluorescence excitation may introduce limitations 
such as recording duration (precluding chronic toxic-
ity studies), or artefacts.

By contrast biocompatibility of bioluminescence 
emission is robustly demonstrated in many eukaryotic 
phyla, and as such may provide a better short or long 
term imaging solution. Bioluminescent proteins (BPs) 
generate detectable emissions by catalyzing a chemical 
reaction which consumes a bioluminescent substrate 
while releasing a photon in the process. This makes 
them totally independent of external light, reducing 
phototoxicity. Recent developments of bright BPs such 
as Nano-lantern, a chimera of Renilla luciferase (Rluc) 
variant and a fluorescent protein (FP), enable biolu-
minescence imaging with high signal-to-noise ratio 
comparable to fluorescence imaging [9, 10]. How-
ever, performing bioluminescence imaging at scale is 
still limited. The faint light associated with biolumi-
nescence requires placement inside an opaque box in 
order to exclude background light. This factor makes 
it difficult to test the enormous chemical libraries in a 
high-throughput manner.

Here we develop a new bioluminescent Ca2+ indica-
tor GmNL(Ca2+) for hiPSC-CM imaging together with 
a customized light-tight box which contains a liquid 
dispenser and regional temperature control and can 
easily be installed on existing fluorescence micros-
copy. Combining GmNL(Ca2+) with the environmental 
modifications we demonstrate prolonged visualization 
of Ca2+ transients is improved by bioluminescence 
compared to fluorescence imaging. Consequently this 
strategy in hiPSC-CMs may bring value to drug devel-
opment, particularly in chronic toxicology studies 
where there is an unmet need.

Main text
Materials and methods
Gene construction of GmNL(Ca2+)
General molecular biology experiments were con-
ducted as described [11]. The sequences of all the 
oligonucleotides (Hokkaido System Science, Hok-
kaido, Japan) used in this study are provided in 
Additional file  1. Each of the cDNAs of C-terminally 
deleted Gamillus [12] mutants (ΔC8–11) were ampli-
fied by PCR and digested with BamHI and KpnI. The 
digested PCR fragments were cloned in-frame into the 
KpnI/EcoRI sites of Nano-lantern(Ca2+)_600/pRSETB 
(Addgene#51976) for bacterial expression. To express 
the GmNL(Ca2+) in mammalian cells, PCR-amplified 
GmNL(Ca2+) genes were inserted into a pcDNA3 
mammalian expression vector using BamHI and EcoRI 
sites.

Protein purification and characterization
Recombinant Gamillus-based NL(Ca2+)_variant proteins 
with N-terminal polyhistidine tags were expressed in E. 
coli. (JM109(DE3)), purified, and spectroscopically char-
acterized as described [11].

Adeno‑associated virus (AAV) production
For the Adeno associated virus expression system, 
pHelper and pAAV-DJ were obtained from Cell Biolabs, 
Inc. (San Diego, CA, USA). The cDNA of GmNL(Ca2+) 
was replaced with ArchT-GFP sequence in pAAV-CAG-
ArchT-GFP (Addgene#29777). AAV production followed 
the manufacturer’s protocol. The titer of AAV vector 
was determined by fluorescence titration assay. Briefly, 
HEK293T cells were transduced with a range of dilutions 
of AAV encoding GmNL(Ca2+). 48 h post transduction, 
the percentage of infected cells were assayed with fluo-
rescence of Gamillus moiety inside GmNL(Ca2+) using 
fluorescence microscopy. To ensure a single infection 
event per cell, the dilution with less than 40% fluores-
cent-positive cells was adopted for calculation of titer. 
The virus titer was approximately 1 × 108 Infectious units 
(IFU)/ml.

Customized bioluminescence microscopy
A bespoke assay environment for bioluminescence imag-
ing was developed for a Ti-E microscope (Nikon Cor-
poration, Tokyo, Japan) equipped with a x10PlanFluor 
(NA 0.3) objective lens and a stage modified for onstage 
environmental control (Tokai Hit., Co, Ltd., Shizuoka, 
Japan). Drug addition and medium exchange was carried 
out using PROcellcare 5030 and PPPump 2010 MiMEDA 
enclosed in light-tight box manufactured for this study 
(Tokai Hit., Co, Ltd.). Fluorescence and bioluminescence 
images were acquired with an EMCCD camera iXon-3 
(Andor Technology, Belfast, Northern Ireland) using the 
image acquisition software NIS-Elements 4.60 (Nikon 
Corporation).

hiPSC‑CM culture and imaging
iCell® Cardiomyocytes (Cellular Dynamics Interna-
tional, Madison, WI, USA) were purchased, and aggre-
gates of hiPSC-CMs were prepared as spheroids. 
hiPSC-CMs were treated with 10 μl of crude AAV solu-
tion (1 × 106  IFU per aggregates of hiPSC-CMs) for 
1–5 weeks before observation. The cells were incubated 
at 37  °C, 5% CO2 and culture medium replaced every 
3 days. Just before observation hiPSC-CMs were washed 
with Tyrodes solution (Sigma-Aldrich, St. Louis, MO, 
USA) and exchanged for 20 μM coelenterazine-h (Wako 
Pure Chemical Industries, Osaka, Japan) containing 
Tyrode solution. For Ca2+ imaging using Fluo4, 5.0  μM 
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Fluo4-AM (Thermo Fisher Scientific, Waltham, MA, 
USA) was loaded onto hiPSC-CMs in Tyrode solution 
supplemented with 1xPowerLoad (provided with Fluo4-
AM) for 1 h at 37 °C. Fluo4 imaging was conducted with 
an FESH0700 IR cut-off filter (Thorlabs, Newton, NJ, 
USA) and LED505-C-FL (Nikon Corporation) including 
Ex500/20 excitation filter, DM515 dichroic mirror and 
EM535/30 emission filter. The images of GmNL(Ca2+) 
were acquired with 50 or 30 ms exposure times for com-
parison with Fluo4 or drug screening, respectively. For 
bioluminescence, 8 × 8 binning was applied to increase 
photon counts for each pixel.

For drug studies, the basal Ca2+ transients of hiPSC-
CM were recorded, followed by drug incubation for 
10 min, and repeated recording of the Ca2+ transient. To 
preserve drug activity, they were initially kept at 4 °C on 
one side of the chamber and just before use, the tempera-
ture was quickly raised to 37 °C to prevent thermal drift. 
The information of all the drugs used in this study are 
provided in Additional file 2.

Results
Development and characterization of a bioluminescent Ca2+ 
indicator
In Nano-lantern, the excited energy produced by an 
Rluc variant is efficiently transferred to the adjacent FP 
by FRET. Since the FP has a higher quantum yield (QY) 
the emitted photon number increases. It was possible to 

introduce a calcium sensor domain into Nano-lantern 
to form Nano-lantern(Ca2+), but this reduced bright-
ness significantly [9]. To restore brightness we explored 
fusions to the recently characterized green FP Gamillus 
[12] which has the highest QY among reported GFPs. We 
first swapped Venus from Nano-lantern(Ca2+) with vari-
ous C-terminal truncated Gamillus (Δ8–11) constructs 
to improve FRET efficiency. The resultant fusion pro-
teins are designated as Gamillus-based NL(Ca2+)_vari-
ants hereafter (Fig.  1a). Of the tested Gamillus-based 
NL(Ca2+)_variants, we found that the Δ9 deletion mutant 
exhibited a 140% signal change with comparable bright-
ness to YNL(Ca2+) when Ca2+-bound (Fig.  1b). Ca2+ 
titration revealed that the dissociation constant (Kd) for 
Ca2+ was 240 nM. To compare the performance of these 
Ca2+ indicators to a known standard, we expressed each 
Gamillus-based NL(Ca2+)_variant in HeLa cells. Upon 
stimulation with histamine, an acute Ca2+ spike fol-
lowed by Ca2+ oscillations with smaller amplitudes were 
detected with sampling rates up to 10  Hz (Additional 
file 3).

Customized bioluminescence microscopy
Figure 2a shows an inverted microscope customized for 
drug screening using bioluminescence imaging. The sys-
tem is made of a stage-top incubator, and an automatic 
dispenser inside a light-tight box, enabling drug prepara-
tion, drug addition, and medium exchange (Fig. 2b). This 
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incubator itself has two spaces to hold an 8 well chamber 
slide for cell observation and eight holes acting as drug 
reservoirs (Fig. 2c). Temperature can be controlled inde-
pendently for cell observation (25–50 °C) and drug stor-
age (4–50  °C). Since beating parameters of hiPSC-CMs 
exhibit thermal dependence, the temperature inside the 
chamber overall should be constant. To validate the per-
formance of the incubator, Ca2+ transients of hiPSC-CMs 
were recorded by Fluo4, a commonly used fluorescent 
chemical indicator for Ca2+, at 32, 37 and 42  °C. Fig-
ure 2d shows a typical time course of spontaneous Ca2+ 
transients at each temperature. The peak-to-peak interval 
between Ca2+ transients, commonly employed as a meas-
ure of beat rate, decreased linearly from 2.8 ± 0.29  s at 
32 °C to 1.2 ± 0.30 s at 42 °C (Fig. 2e, n = 3).

hiPSC‑CM imaging
We then assessed Gamillus-based NL(Ca2+)Δ9 [hereaf-
ter GmNL(Ca2+)] signals during spontaneous hiPSC-CM 
contraction in the customized microscope. GmNL(Ca2+) 
was expressed in cardiomyocyte spheroids by Adeno 
associated virus infection (Fig.  3a). GmNL(Ca2+) 
was imaged at 20  Hz for 15  min, detecting periodic 
changes in bioluminescence signal during synchronized 

contractions (Fig.  3b). The time course of biolumines-
cence intensity was recorded for the first and last 3 min, 
and analyzed to estimate three beating parameters; peak 
interval, peak amplitude, and 50% peak width (FWHM) 
which approximates to the action potential duration. We 
compared these results to those obtained using Fluo4 
under various illumination power densities (62, 125, 
250 and 500  mW  cm−2 respectively). The amplitude of 
GmNL(Ca2+) did not change significantly during obser-
vation (− 8.0 ± 21%, n = 8), in contrast to that of Fluo4 
which reduced significantly under all illumination condi-
tions tested (− 50 ± 8.5% at 62 mW cm−2 to − 99 ± 0.51% 
at 500 mW cm−2) indicative of dye loss by export or pho-
tobleaching (Fig. 3c).

In addition, stability of beating parameters between 
the start and the end of the observation window was only 
seen with GmNL(Ca2+) (From 1.3 ± 0.36 to 1.3 ± 0.27  s 
for beat–beat interval, and 0.61 ± 0.14 to 0.59 ± 0.063  s 
for FWHM, n = 8) and Fluo4 at the lowest power density 
(62 mW cm−2) (from 1.6 ± 0.11 to 1.8 ± 0.10  s for inter-
val, and from 0.48 ± 0.029 to 0.59 ± 0.031  s for FWHM, 
n = 6). At higher power density reduction in peak-to-
peak interval (From 1.9 ± 0.10 to 0.99 ± 0.051  s at 500 
mW  cm−2, n = 7) was seen suggesting extrinsic light 
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illumination can cause significant phototoxicity in this 
system (Fig. 3c). Collectively, these observations demon-
strate that GmNL(Ca2+) improves long-term signal sta-
bility without physiological perturbations arising from 
extrinsic illumination. Interestingly the variation between 
hiPSC-CMs from GmNL(Ca2+) was greater than that 
from cells labelled with Fluo4.

Drug‑induced changes to the hiPS‑CM Ca2+ transient
Next we tested whether GmNL(Ca2+) can identify 
expected Ca2+ transient changes in hiPSC-CMs induced 
by well characterized drugs. After addition of isoproter-
enol, a non-selective β-adrenergic agonist used clinically 
to increase the heart rate, the mean peak-to-peak interval 
reduced (from 1.1 ± 0.16 to 0.75 ± 0.070 s, n = 3) (Fig. 3d, 
e) [13]. Conversely, propranolol, an adrenergic recep-
tor blocker, increased the peak-to-peak interval (from 
1.0 ± 0.081 to 1.27 ± 0.11 s, n = 3) as expected (Fig. 3d, e) 
[14]. Similarly GmNL(Ca2+) could correctly elicit the rate 
related Ca2+ transient alterations induced by Dopamine, 
and Doxazosin (Additional file 4). These results suggested 
that GmNL(Ca2+) is able to report bidirectional drug 
effects in hiPSC-CMs using a drug dispensing system 
based inside the on-stage environmental control condi-
tions needed for bioluminescence imaging.

Discussion
GmNL(Ca2+) enables imaging free from the problems 
of phototoxicity and photobleaching, which plague 
fluorescence imaging. In contrast to our expecta-
tions, GmNL(Ca2+) was slightly dimmer than Nano-
lantern(Ca2+) at saturating Ca2+ concentrations. 
Saturation mutagenesis at the junction between the light 
donor and the FRET acceptor might improve the per-
formance of GmNL(Ca2+). Although the GmNL(Ca2+) 
measurements in hiPSC-CM show stable Ca2+ transients 
between the beginning and the end of the observation 
window, the variation between hiPSC-CMs appears high 
in comparison with that from Fluo4. The observed varia-
bility might be attributable to heterogeneous infection of 
AAV or reduced penetration of the luminescent substrate 
into the spheroid culture model as either may lower bio-
luminescence signal.

The spontaneous beating characteristics of cardiomyo-
cytes are sensitive to the physical environment, especially 
temperature, therefore maintenance of sample environ-
ment is crucial. In our system we can independently con-
trol the temperature of the sample chamber and the drug 
reservoir, remotely adding the small molecules without 
perturbation of imaging environment.

Overall, our study presents a bioluminescent Ca2+ 
indicator and a light-tight box equipped with an auto-
matic dispenser that can be controlled remotely. As a 
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proof-of-concept, we demonstrate a minimally harm-
ful, and operator independent Ca2+ imaging strategy in 
hiPSC-CMs with robust testing of drug-induced changes 
in Ca2+ transients at a scale.

Limitations
As GmNL(Ca2+) is intensiometric indicator, the oscilla-
tion from GmNL(Ca2+) in hiPSC-CMs should include the 
fraction of motion artefact in addition to Ca2+-dependent 
signal as previously shown [7]. A negative control using 
Ca2+-insensitive probe will give the insightful informa-
tion about motion artefact.
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