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Abstract 

Objective:  Data from our laboratory suggest that recovery from a traumatic brain injury depends on the time of day 
at which it occurred. In this study, we examined whether traumatic brain injury -induced damage is related to circa‑
dian variation in N‐methyl‐d‐aspartate receptor expression in rat cortex.

Results:  We confirmed that traumatic brain injury recovery depended on the time of day at which the damage 
occurred. We also found that motor cortex N‐methyl‐d‐aspartate receptor subunit NR1 expression exhibited diurnal 
variation in both control and traumatic brain injury-subjected rats. However, this rhythm is more pronounced in trau‑
matic brain injury—subjected rats, with minimum expression in those injured during nighttime hours. These findings 
suggest that traumatic brain injury occurrence times should be considered in future clinical studies and when design‑
ing neuroprotective strategies for patients.
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Introduction
Traumatic brain injuries (TBIs) are among the most 
important contemporary health problems. TBIs are 
responsible for longer periods of disability than any other 
cause [1].

The initial damage from a TBI range from contusion 
to skull fracture, hemorrhage, and diffuse axonal injury. 
The TBI then triggers secondary injuries that are mainly 
mediated by excitotoxicity resulting from substantial 
neuronal Ca2+ entry. This Ca2+ entry in turn results from 
glutamate binding to N‐methyl‐d‐aspartate receptors 
(NMDARs), which contribute to several dysfunctions, 
such as hypoperfusion [2], edema [3, 4], excitotoxicity 
[5], and cognitive deficits [6].

NMDARs are heteromers composed of two subunits 
types NR1 and NR2 [7, 8]. The NR1 subunits play the 
main functional role and are involved in apoptosis fol-
lowing injuries like ischemia or TBI [9].

We previously showed that TBI-induced damage 
depends on the time of day at which the TBI occurs [10, 
11]. This may arise from temporal variation in NMDAR 
expression. Although several articles describe diurnal 
variations for numerous receptors [12], very few exist for 
NMDARs, and most of them in suprachiasmatic nuclei 
[13, 14], but there are reports in other tissues like hip-
pocampus [15].

We are interested in the motor cortex because it is 
involved in movement initiation and the suppression of 
unwanted movements [16]. However, there is no data 
regarding diurnal variations in NMDAR expression 
within this structure. If such variations exist, then they 
might be associated with variations in TBI-triggered 
excitotoxicity.
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Here, we explore the possible association between 
diurnal variation in rat cerebral cortex NMDAR expres-
sion and behavioral recovery from TBIs induced at differ-
ent hours.

Main text
Methods
Subjects
Male Wistar rats (250–300  g) were maintained under 
controlled temperature and dark–light cycle (12:12  h; 
lights on at 08:00 h) with food and water ad libitum. All 
animal experiments were approved by the local ethics 
committee (protocol 128-2009, Facultad de Medicina, 
UNAM) and conducted according to official guidelines 
(NOM-062-ZOO-1999).

TBI
Rats were anesthetized with chloral hydrate [Riedel–de 
Haen, Germany] (350 mg/kg, i.p.) and subjected to TBIs 
with a modified closed-skull weight-drop injury protocol 
[17, 18]. Severe TBIs were induced on the exposed skull 
over the motor cortex (L:1.4, A:2) located with a stere-
otaxic device as previously described [11]. It consists of 
a pneumatic piston, which can be controlled in terms of 
the firing pressure and distance, therefore the magnitude 
of the impact is perfectly controlled. Previous trials in 
our laboratory allow us to establish with precision that 
our damage is similar in each subject. This model also 
reproduces focal damage [19], epidural hematoma and 
skull fracture (with or without brain damage) [20] and 
acute post-traumatic hemorrhage associated with severe 
TBIs in humans [21]. Furthermore, MRI studies have 
shown that this model accurately represents the clinical 

conditions that occur in closed skull lesions in humans, 
such as those occurring in falls or motor vehicle acci-
dents [22].

Neurological behavior
We used a 21-point behavioral-neurological scale [23] 
to evaluate neurological status in control rats and TBI-
subjected rats 24 h after model induction. Although this 
scale was designed to evaluate damage caused by cerebral 
ischemia, many pathophysiological pathways are report-
edly activated in both forms of brain damage [24], and 
we have previously used this scale to investigate TBI-
induced neurological damage [10, 11, 25, 26].

Diurnal variations
Control rats were subjected to neurobehavioral analysis 
before being deeply anesthetized with sodium pento-
barbital [Pisa, México] (40  mg/kg, i.p.) and euthanized 
at different hours of the day (01:00, 05:00, 09:00, 13:00, 
17:00, or 21:00 h) that we have previously used to analyze 
the diurnal variations of other receptors [11]. The motor 
cortex was dissected from each rat and stored at − 70 °C 
(Fig. 1).

We used another group of rats to analyze the effects of 
TBI on behavioral variables. These rats were anesthetized 
with chloral hydrate and subjected to TBI at different 
times (01:00, 05:00, 09:00, 13:00, 17:00, or 21:00  h). We 
quantified mortality immediately after TBI induction. 
After 24  h, we measured bodyweights and used a neu-
robehavioral scale to assess motor skill behaviors. The 
rats were deeply anesthetized with sodium pentobarbi-
tal and euthanized. The ipsilateral motor cortex was dis-
sected and stored at − 70 °C (Fig. 1).

Fig. 1  Experimental design
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Western blotting
The motor cortex was homogenized with phosphate-
buffered saline (PBS) [JT Baker, México] and protease 
inhibitors [Sigma-Aldrich, USA], and centrifuged (600g, 
10  min, 4  °C). The supernatant was centrifuged again 
(39,000g, 15  min, 4  °C). Electrophoresis through a 7% 
analytical sodium dodecyl sulfate [JT Baker, México] 
-polyacrylamide [Merck, México] gel was performed. The 
resuspended tissue homogenates (60 μg of protein) were 
mixed with Laemmli buffer (1:1 ratio), heated (95  °C, 
5  min) and loaded into a 0.75-mm-thick gel. The sam-
ples were electrophoresed (150  V, 2  h), and electroblot-
ted (100 V, 1 h, 4 °C) onto a nitrocellulose membrane (GE 
Healthcare Life Sciences, Chicago, IL). The membrane 
was stained with Ponceau S [Sigma-Aldrich, USA], and 
cut into two pieces. One piece was used to analyze the 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
levels, and the other to analyze NR1 levels. The mem-
brane was washed and incubated with 3% PBS-Tween, 10 
or 20% nonfat dry milk, and 2 or 6% normal goat serum 
[Sigma-Aldrich, USA], for 30 min at room temperature. 
It was then incubated with anti-GAPDH (1:2000; Santa 
Cruz Biotechnology [sc166545], Dallas, TX) or anti-NR1 
(1:1000; Abcam [ab17345], Cambridge, UK) antibodies 
overnight at 4 °C. The blot was thrice washed with PBS-
Tween for 5 min, incubated for 1 h at room temperature 
with goat anti-rabbit immunoglobulin G horseradish per-
oxidase conjugate [Sigma-Aldrich, USA] (1:2000), and 
developed with diaminobenzidine [Sigma-Aldrich, USA] 
(0.5 mg/mL in PBS plus 0.009% H2O2). The band density 
was analyzed with Quantity One software (Bio-Rad Lab-
oratories, Hercules, CA).

Statistical analysis
The results are reported as mean values  ±  standard 
errors of the mean (SEM). Statistical significance was 
assessed with two-way analysis of variance and Tukey’s 
multiple comparisons corrections for bodyweights and 
NR1 expression, Kruskal–Wallis and Mann–Whitney U 
tests for neurological scores, and Chi square tests for sur-
vival data. Statistical significance was defined as P < 0.05.

Results
Figure 2a shows that 24 h after the induction of the TBI, 
bodyweight losses significantly varied depending on the 
TBI induction time (F1,107 = 287.0, P < 0.0001).

Figure  2b shows the neurobehavioral scale findings. 
The rats with TBIs induced during daytime hours had 
lower scores than did those with TBIs induced at night 
(Kruskal–Wallis = 64.52, P < 0.0001).

Finally, Fig. 2c shows the survival rates following TBIs 
induced at different times. The survival rate was 100% 

for TBIs induced at 01:00  h but 71% for those induced 
at 13:00  h ( χ2

5
= 3.628 , P =  0.6041). TBIs induced dur-

ing daytime hours tended to cause greater damage than 
those induced at night did.

Figure  3 shows the observed expression of NMDAR 
subunit NR1 in the motor cortex. Figure 3a includes the 
results for all control and TBI-subjected rats. We found 
that TBIs induced a significant reduction of NMDAR 
expression in the motor cortex (t104 = 2.130, P = 0.0356). 
Nevertheless, this reduction depended on the TBI induc-
tion time. We found significant effects of experimental 
group (F1,94  =  10.88, P  =  0.0014), TBI induction time 
(F5,94 = 10.21, P < 0.0001), and the two factors’ interac-
tion (F5,94 =  2.540, P =  0.0334) (Fig.  3b, c). In control 
rats, we found that NR1 expression was greater at 09:00 
and 13:00  h than at 21:00  h, whereas in TBI-subjected 
rats, NR1 expression was greater at 13:00 h than at 01:00, 
09:00, and 21:00 h. Notably, TBIs induced at 01:00 h or 
09:00  h reduced NR1 expression, but those induced at 
other times did not.

Discussion
TBIs are a major health problem and affect millions of 
people worldwide every year. They are associated with 
short- and long-term damage in several domains, includ-
ing physical, cognitive, metabolic, and behavioral prob-
lems, which depend on the severity of the damage [27, 
28].

TBIs induce abnormal homeostasis in areas of second-
ary damage. The influx of glutamate into the extracellu-
lar space is immediate and can last several minutes. This 
produces excessive NMDAR activation, which in turn 
produces excessive and uncontrolled entry of Na+ and 
Ca2+ into neurons [28–30]. This Ca2+ influx interferes 
with mitochondrial oxidative phosphorylation and pro-
duces oxidative stress and apoptosis. This effect is ampli-
fied by neuronal hyperexcitability, which exacerbates 
glutamate release and produces a vicious circle involving 
generalized excitotoxicity [31–36].

The excessive glutamate release causes astrocytes to 
recapture glutamate via the glutamate transporter GLT-1 
[37], but persistently high extracellular glutamate con-
centrations can cause down-regulated of GLT1 and intra-
cellular Na+ overload reverses glutamate transport. This 
causes glutamate efflux from the astrocytes, increasing 
excitotoxic damage [38, 39].

Moreover, NMDAR-mediated Ca2+ loading is more 
neurotoxic than equivalent Ca2+ loading mediated by 
other mechanisms [40]. Hardingham [41] suggests that 
neuronal responses by NMDA activation follow a bell-
shaped curve in which excessively high and excessively 
low activity are both potentially harmful.
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In this study, we hypothesized that the dependence 
of post-TBI behavioral recovery on TBI induction 
time is related to diurnal variation in rat motor cortex 
NMDAR expression. Our results support our initial 
hypothesis, we found that a TBI induced deteriora-
tion in an animal’s general condition. This manifested 
as decreased bodyweight, as reported by other authors 
[42, 43]. We also verified that post-TBI deterioration 
is observable on a neurobehavioral scale. This find-
ing and the survival rates data corroborate our pre-
vious findings that showed that post-TBI recovery 
depends on the time of day at which the TBI occurs. 
This time-dependent recovery must respond to some 
rhythmic event that modulates the post-TBI damage. 
We proposed that this rhythmic event could be diurnal 

variations in the glutamatergic system. Given that exci-
totoxicity depends on NMDAR activation, we evaluated 
NMDAR expression in the area of damage. We propose 
that a greater expression of NMDAR produces greater 
influx of Ca2+ and therefore greater excitotoxicity, the 
opposite should happen in the hours with low expres-
sion levels and therefore should be less post-TBI dam-
age. We therefore analyzed the expression of the NR1 
subunit since, as indicated above, it is essential in the 
functioning of the NMDAR [7, 8, 44].

Several authors have shown that after a traumatic 
event there are changes in the expression of NMDAR, 
these effects were manifested from the first minutes 
until a week later and in various regions such as fron-
toparietal cortex and hippocampus, the expression also 

Fig. 2  Effects of TBI induction time on bodyweight, neurobehavioral damage, and survival. a Bars represent the means ± standard errors of 
bodyweight losses 24 h after TBI induction at different times of day; *P < 0.05 vs control group at the same hour, #P < 0.05 vs TBI group at 21:00 h. 
b Bars represent the means ± standard errors of neurobehavioral test scores obtained 24 h after TBI induction at different times of day; *P < 0.05 vs 
control group at the same hour, #P < 0.05 vs TBI group at 01:00 and 21:00 h. c Bars represent the survival rates observed over a 24-h period following 
TBI induction at different times of day. n = 7–10 per timepoint in each group
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varies depending on the area of impact (decrease) or 
penumbra (increase) [45, 46].

With respect to the NR1 subunit, some authors found 
no variation in cortex and hippocampus between 1 and 
7 days post-TBI [7, 8, 47] while others only saw a tran-
sient change in the hippocampus [48].

We found that the effect of TBI on NR1 expression 
depended on the TBI induction time. Moreover, our 
data show that the extent of TBI-induced damage also 
depended on the TBI induction time. TBIs caused 
less damage if they occurred during nighttime hours. 
Such nighttime TBIs were associated with decreased 
NMDAR expression and lower extracellular glutamate 

levels in the motor cortex as reported by Dash [49], 
which support Hardingham’s [41] proposal.

Numerous animal studies have shown that NMDAR 
antagonists can mitigate TBI-induced damage. How-
ever, clinical trials have found that such drugs have no 
benefits and even have detrimental effects [50]. Sev-
eral authors have discussed the causes of these failures 
in humans and have suggested that they include trial 
design, human population heterogeneity, and inade-
quate dose ranges [51, 52]. We believe that another fac-
tor worth considering is the TBI occurrence time, since 
NMDAR expression depends on this variable.

Fig. 3  Effects of TBI and TBI induction time on NMDAR subunit NR1 expression in the rat cerebral cortex. a Data considering all the controls as 
a single group and all the experimental ones as another group. Bars represent means ± standard errors. *P < 0.05 vs control. b Representative 
Western immunoblotting of NR1 and GAPDH in motor cortex. c Data considering TBI induction time. Bars represent means ± standard errors. 
*P < 0.05 vs control group at the same hour; $P < 0.05 vs control group at 21:00 h; #P < 0.05 vs TBI group at 01:00 and 21:00 h. n = 7–9 per timepoint 
in each group
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Limitations
A TBI induces behavioral damage.

The extent of TBI-induced damage depends on the 
time of day the TBI is induced.

NMDAR activation-induced excitotoxicity is a pri-
mary mechanism of TBI damage.

NMDAR—subunit NR1 expression in cerebral cortex 
depends on the time of day the TBI is induced.

The minimal expression of NMDA—subunit NR1 is 
associated with a lesser damage caused by TBI.

The diurnal variation of NMDAR functionality in cer-
ebral cortex has not been analyzed.
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