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Abstract 

Background:  Neuroimaging features associated with vascular cognitive impairment have not been examined in 
sub-Saharan Africans. We determined magnetic resonance imaging (MRI) features associated with cognitive impair-
ment in a sample of Nigerian stroke survivors.

Methods:  Stroke survivors underwent brain MRI with standardized assessment of brain volumes and visual rating 
of medial temporal lobe atrophy (MTA), and white matter hyperintensities (WMH) at 3 months post-stroke. Demo-
graphic, clinical and psychometric assessments of global cognitive function, executive function, mental speed and 
memory were related to changes in structural MRI.

Results:  In our pilot sample of 58 stroke survivors (60.1 ± 10.7 years old) MTA correlated significantly with age 
(r = 0.525), WMH (r = 0.461), memory (r = −0.702), executive function (r = −0.369) and general cognitive per-
formance (r = −0.378). On univariate analysis, age >60 years (p = 0.016), low educational attainment (p < 0.001 
to p < 0.003), total brain volume (p < 0.024 and p < 0.025) and MTA (p < 0.003 to p < 0.007) but not total WMH 
(p < 0.073, p = 0.610) were associated with cognitive outcome. In a two-step multivariate regression analysis, MTA 
(p < 0.035 and p < 0.016) and low educational attainment (p < 0.012 and p < 0.019) were sustained as independent 
statistical predictors of cognitive outcome.

Conclusions:  Medial temporal lobe atrophy was a significant neuroimaging predictor of early post-stroke cognitive 
dysfunction in the Nigerian African stroke survivors. These observations have implications for a vascular basis of MTA 
in older stroke survivors among sub-Saharan Africans.
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Background
Although physical disability is most commonly associ-
ated with stroke, cognitive changes and other non-motor 
consequences are quite frequent in those who survive 

longer. Up to 64  % of stroke survivors will develop a 
degree of cognitive impairment and about 30  % suc-
cumb to dementia in the long term [1]. In a recent meta-
analysis, the pooled prevalence estimates of post-stroke 
dementia (PSD) within one year of stroke ranged from 
7.4  % in population-based studies of first-ever stroke 
excluding pre-stroke dementia to 41.3  % in hospital-
based studies of all strokes including pre-stroke dementia 
[2]. Despite the potential high burden of vascular cogni-
tive impairment after stroke few pharmacological studies 
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have addressed treatment options [3]. Post-stroke cogni-
tive dysfunction characteristically encompasses a multi-
domain impairment of attention and concentration, 
executive function, language, memory and visuospatial 
function, with executive function being the earliest and 
predominantly affected domain [4–6].

There is a large body of structural brain imaging evi-
dence in vascular cognitive impairment (VCI), which 
suggests that medial temporal lobe atrophy (MTA) or 
global cerebral atrophy, white matter changes, lacu-
nar infarcts, strategic infarcts and cerebral microbleeds 
contribute to vascular cognitive impairment, although 
the relative contributions of each varies across studies 
[7–13]. However, the neuroimaging substrates of post-
stroke cognitive impairment and dementia or VCI have 
never been examined among sub-Saharan Africans. 
In studies involving multiracial populations includ-
ing persons of African ancestry, worse cardio- and cer-
ebrovascular outcomes have often been reported [2]. For 
instance, in the multiracial South London Stroke Registry 
(SLSR) Study [14], worse outcome in terms of mortality 
and higher rates of cognitive impairment and dementia 
were reported among black participants. Thus, investi-
gating neuroimaging substrates for post-stroke cognitive 
impairment among sub-Saharan Africans could provide 
deeper insight into the reasons why people of African 
ancestry seem to have worse predisposition to poor cere-
brovascular outcomes compared to Caucasians and other 
races. The aim of this study, therefore, was to determine 
the neuroimaging correlates of VCI 3 months post-ictus 
in older Nigerian African stroke survivors participating 
in the Cognitive Function After STroke (CogFAST)—
Nigeria Study.

Methods
Study design and participants
Stroke patients (≥45  years) were recruited from the 
stroke registers of two referral hospitals, the Federal 
Medical Center Abeokuta [15] and University College 
Hospital, Ibadan in South-western Nigeria between July 
2010 and June 2012. Consecutively presenting stroke 
patients diagnosed by the most senior physician/attend-
ing neurologist were admitted to the medical wards of 
the two specialist hospitals. Subjects and their family/
caregivers were approached regarding participation in 
the study at discharge from hospital or during the initial 
outpatient visit. Three months after the ictus, 220 stroke 
survivors were screened for eligibility out whom 145 met 
the selection criteria for the study but two were further 
excluded due to incomplete records. The sample for this 
study consisted of the 58 stroke survivors for whom brain 
MRI images were available. The inclusion criteria for the 

study were: 45 years of age or older, duration after stroke 
within 3  months and clinically confirmed stroke based 
on history, physical examination and neuroimaging as 
much as possible. Exclusion criteria were: [1] subarach-
noid haemorrhage [2] significant physical illness and 
motor impairment that precluded paper and computer-
based neuropsychological evaluation (e.g. visual impair-
ment, moderate-severe aphasia, hemiparesis affecting 
the dexterous hand (MRC power grade <3) [3] any co-
morbid psychiatric or neurologic illness [4] any systemic 
disease that could impair cognition e.g. chronic liver dis-
ease, chronic kidney disease [5] inability or failure to give 
consent.

Stroke was defined according to the World Health 
Organization (WHO) definition [16] and classified 
using the WHO definition, the Oxford Community 
Stroke Project Classification (OCSP) [17] and neuro-
imaging (CT scan and/or MRI) findings,when available. 
Neuroimaging was not performed on some patients 
due to limited access and prohibitive cost in Nigeria. 
The WHO criteria have been shown to have a sensi-
tivity of 73 % for haemorrhage, 69 % for infarction and 
an overall accuracy of 71 % in Nigeria [18]. The cohort 
was comprehensively assessed 3  months after stroke, 
allowing time for the resolution of post-stroke delirium 
in accordance with the design of Desmond et  al. [19]. 
The evaluation included a medical history, assessment 
of neurological deficits and MRI scan (n  =  58). Car-
diovascular risk factors including hypertension, diabe-
tes mellitus, dyslipidaemia, smoking, excessive alcohol 
use, atrial fibrillation and previous stroke were ascer-
tained from medical history and clinical records. The 
aggregated vascular risk score was defined as the sum 
of the number of vascular risk factors identified in each 
subject (hypertension, diabetes mellitus, dyslipidemia, 
atrial fibrillation, ever smoked, ever taken alcohol and 
previous stroke).

Exclusion criteria were: (1) subarachnoid haemorrhage, 
(2) significant physical illness and motor impairment that 
precluded paper- and computer-based neuropsychologi-
cal evaluation (e.g. visual impairment, moderate to severe 
aphasia, hemiparesis affecting the dexterous hand (MRC 
power grade <3), (3) any co-morbid psychiatric or neu-
rologic illness, (4) any systemic disease that could impair 
cognition e.g. chronic liver disease and chronic kidney 
disease, (5) non-consent to take part in the study. The 
local research ethics committees granted approval for the 
study (University College Hospital, Ibadan and Federal 
Medical Centre Abeokuta), while written informed con-
sent was obtained from each subject. Each subject was 
informed of the study and possibilities of future publica-
tion of the results.
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Cognitive assessment
The neuropsychological instrument consisted of 
the Community Screening Instrument for Demen-
tia (CSID)—cognitive part [20], the Mini-Mental State 
Examination (MMSE) previously used among Nigerian 
cohorts [21] and the vascular neuropsychological battery 
[1]. The CSID is a paper and pencil test of global cogni-
tive performance which adaptability, validity and utility 
in populations from different cultural, educational and 
socio-economic backgrounds have been established [20, 
22]. It has a sensitivity of 87 % and specificity of 83 % for 
the diagnosis of dementia, and has been used reliably and 
widely to assess cognition in the Yoruba-speaking popu-
lation of south-western Nigeria, where the present study 
was conducted [23]. The schedule includes sub-scores for 
attention, orientation, calculation, short- and long-term 
memory, language comprehension and expression, praxis 
and abstract thinking. A raw score method was used 
for scoring resulting in score range of 0–30 with higher 
scores indicating better cognitive function. Pre-stroke 
cognitive status was assessed using the CSID-informant 
part by trained interviewers.

The Vascular Neuropsychological Battery was devised 
by us after the NINDS-CSN Harmonization Standards 
60-min neuropsychological protocol [1], with minor modi-
fications to ensure adaptability to the language and culture 
of the study population. The vascular neuropsychological 
battery consisted of multiple test items examining specific 
cognitive domains (executive function, memory/learning, 
language, visuospatial/visuoconstructive skills).

Test items from the Cognitive Drug Research com-
puterized assessment battery were also included in the 
vascular-neuropsychological battery for the evaluation of 
attention, processing speed and executive function [the 
constituent tests included simple reaction time (SRT)—a 
measure of attention, choice reaction time (CRT)—meas-
uring processing speed, digit vigilance and spatial work-
ing memory—measuring attention and working memory, 
respectively [6]. Further details of the complete cognitive 
assessment battery are provided as Additional file 1.

Cognitive diagnosis
To make a cognitive diagnosis on a subject, all avail-
able datasets including cognitive scores, functionality 
and disability scores (the Barthel Index and modified 
Rankin score) coupled with the physician’s assessment 
were assembled and discussed by the research team for 
consensus diagnosis. Functional impairment was defined 
[24] as a Barthel Index score <75. Final cognitive catego-
rization was based on the VCI criteria proposed by the 
American Stroke Association/American Heart Associa-
tion VCI Guidelines [4] and the DSM IV criteria (Ameri-
can Psychiatric Association, 1994).

Operational definitions of cognitive dysfunction
Failure of an individual subject on a test was defined as 
a mean score that was at least 1.5 standard deviations 
below the mean score of the control group. Impairment 
in a domain was defined as failure on at least 50 % of tests 
examining that particular domain [25]. Vascular mild 
cognitive impairment and PSD were defined according 
to the American Stroke Association/American Heart 
Association VCI Guidelines [4]. Vascular mild cognitive 
impairment or vascular cognitive impairment no demen-
tia (vCIND) [4] was defined as impairment in at least 1 
cognitive domain (executive function, memory/learning, 
language, visuospatial/visuoconstructive skills) and nor-
mal or mild impairment of activities of daily living inde-
pendent of motor/sensory symptoms. PSD [4], in accord 
with the DSM IV criteria, was defined as impairment in 
≥2 cognitive domains that were of sufficient severity to 
affect the subject’s activities of daily living independent of 
motor/sensory symptoms [4].

MRI protocol
Brain magnetic resonance imaging (MRI) was performed 
on a subset of stroke survivors (n = 58) using two MRI 
scanners operated between 0.2 and 0.35  T. Axial spin-
echo T2-weighted (T2W) images (echo time, 80–120 ms; 
repetition time, 4000–6500  ms; slice thickness, 5  mm); 
and axial, sagittal and coronal spin-echo T1-weighted 
(T1W) images (echo time, 9–15  ms; repetition time, 
350–500 ms; slice thickness, 5 mm) were acquired. These 
were complemented by fluid-attenuated inversion recov-
ery (FLAIR) sequences (echo time, 90–120 ms; repetition 
time, 6000–9000 ms; inversion time, 2000–2200 ms; slice 
thickness, 5 mm) to allow for better separation and iden-
tification of WMHs and cerebrospinal fluid, as used in a 
previous study [26]. All images were transferred to com-
puter workstation with Clear canvas DICOM viewer and 
evaluated by two experienced neuroradiologists. All rat-
ings were performed by consensus agreement.

Image assessment
White matter changes were assessed using the Schel-
tens visual rating scale for white matter hyperintensities 
(WMH) [27]. Ratings were performed on MRI images 
on computer screen with T2 and FLAIR images. Perive-
ntricular WMH score was compiled as a summation 
of all three periventricular WMH scores in the fron-
tal and occipital regions, as well as along the ventricles; 
the deep WMH score was a summation of all the deep 
WMH scores in the four regions assessed (Fig. 1 shows 
moderate white matter hyperintesities in axial brain 
MRI images from a 69  year old male stroke survivor in 
the cohort). The total WMH score for each patient was 
the sum of all ratings. Medial temporal lobe atrophy 
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(MTA) was evaluated using the Scheltens MTA visual 
rating scale [28]. Both sides were assessed and the score 
of the more affected side was used in cases of severe 
asymmetry. Figure  2 illustrates different degrees of 
MTA in selected stroke survivors of different ages from 
the study cohort. Total brain volume (TBV) was meas-
ured from the T1-weighted axial images. Slice-to-slice 
variations in intensity were first removed. This was per-
formed by creating a mask using the brain extraction tool 
(Bet) from the FSL software (www.fmrib.ox.ac.uk/fsl/). 
The mean intensity within the mask was determined on 
each slice, and the overall intensity for the whole slice 
scaled accordingly. We then used the segmentation tool 
in SPM8 (www.fil.ion.ucl.ac.uk/spm/) to generate gray 
and white matter segmentations. A brain mask was gen-
erated from the sum of gray + white matter. This brain 
mask was visually inspected, and manually edited, where 
necessary, to remove non-brain tissue; total brain volume 
was measured from the number of voxels in the mask. 
Total intracranial volume (ICV) was measured from the 

T2 weighted axial images in a similar fashion, correct-
ing for slice intensity variations, using SPM to segment 
the brain, then manually editing the segmentation, where 
appropriate. Total intracranial volume was then taken as 
the sum of gray matter + white matter + CSF. Ventricu-
lar volume was measured from the T2-weighted axial 
images. We used a previously-created standard space 
template of probable location of the ventricles in older 
people [29]. This template was transformed from stand-
ard space to each subject and used to mask the CSF seg-
mentation from the previous step. The resulting ventricle 
segmentation was manually edited, and volume deter-
mined. All neuroimaging evaluations were undertaken 
with the assessors blind to clinical information.

Statistical analysis
Data were analyzed using the Statistical Package for 
Social Sciences version 19.0 (SPSS Chicago Inc.). Cat-
egorical variables were examined and summarized in 
percentages, while continuous variables were described 

Fig. 1  Magnetic resonance imaging (MRI) T1- and T2-weighted (a, b), and fluid-attenuated inversion recovery (c) axial images from a 69-year old 
male Nigerian stroke survivor showing moderate white matter hyperintensities

Fig. 2  Magnetic resonance imaging (MRI) T1-weighted coronal images showing different degrees of medial temporal lobe atrophy (MTLA) in Nige-
rian stroke survivors: a Grade 4 MTLA in a 58 year old male; b Grade 3 MTLA in an 72 year male; c Grade 2 MTLA in a 60 year female; d Grade 1 MTLA 
in an 59 year male; e Grade 0 MTLA in an 49 year female

http://www.fmrib.ox.ac.uk/fsl/
http://www.fil.ion.ucl.ac.uk/spm/
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using measures of central tendency (mean, median and 
semi-interquartile range) and compared using the Stu-
dent’s t test, analysis of variance (ANOVA) and Kruskal–
Wallis Test. Correlations were examined using Pearson’s 
correlation coefficient, while logistic regression models 
were fitted to determine univariate and multivariate rela-
tionships between cognitive status and patient-related 
demographic and neuroimaging variables. Multivariate 
logistic regression analysis was performed by incremen-
tally feeding demographic and neuroimaging variables 
which were significant (p  <  0.05) in univariate analysis 
into multivariate analysis in each of three models: model I 
(Normal vs vCIND); model 2 (vCIND vs PSD) and model 
3 [Normal vs (vCIND + PSD)]. Age and years of educa-
tional attainment were entered as dichotomous meas-
ures and other determinants as continuous measures in 
the regression models. Age and sex were included in the 
multivariate model, even if not significant. Unadjusted 
and adjusted odds ratios (OR) with 95  % CIs were esti-
mated. Level of statistical significance was set at p < 0.05.

Results
Participant characteristics
Out of a total of 143 stroke survivors evaluated at base-
line 3  months after stroke over the study period, 58 
(41  %) had a brain MRI performed in addition to clini-
cal and neuropsychological assessment. Given a signifi-
cance level, α = 0.05 and assuming a moderate effect size 
Cohen’s  =  0.4, using the G*Power software, the com-
puted power (1 − β) = 0.7599.

Table  1 shows the demographic, clinical and neuro-
imaging characteristics of those who had MRI and con-
stituted the study group. Subjects who had brain MRI 
(n = 58) did not differ significantly from those who did 
not (n = 85) with respect to mean age (p = 0.453); gender 
(p = 0.302) years of formal education (p = 0.150), stroke 
type (p  =  0.08) and OCSP classification (p  =  0.211) 
(Additional file  2: Table  S1). Among subjects who had 
brain MRI, 6 (10.3 %) subjects had significant pre-stroke 
cognitive impairment from the informants’ rating of sub-
jects’ cognitive function. Additionally, of subjects who 
had brain MRI, 26 (44.8 %) subjects had no vCIND, while 
24 (41.4 %) and 8 (13.8 %) had vCIND and PSD, respec-
tively based upon our operational criteria.

Characteristics of cognitive sub‑groups of subjects
Table  2 presents the demographic, cognitive and MRI 
imaging characteristics of cognitive sub-groups of the 
cohort, demonstrating the pattern of performance on 
tests of general cognitive functioning as well as in specific 
domains of memory (V-NB memory score), executive 
function (V-NB executive score), attention (SRT), infor-
mation processing speed (CRT) and mental flexibility 

Table 1  Demographic, clinical and  neuroimaging charac-
teristics of subjects (N = 58)

Mean ± SD is stated for continuous variables and n (%) for dichotomous 
variables

MRI Magentic Resonance Imaging, ICV Intracerebral Volume, MTLA Medial 
Temporal Lobe Atrophy, TBV Total Brain Volume, Ven Vol Ventricular Volume, 
WMH White Matter Hyperintensities, CSID Community Screening Instrument for 
Dementia, MMSE Mini Mental State Examination, CESD Centre for Epidemiologic 
Studies Depression Scale

* Volumetric analysis was done only in 54 cases; ** computed based on 
Schelten’s WMH scale
x  Data non-normally distributed

Age at baseline: (mean ± SD) years 60.1 ± 10.7

Sex: n (%) female 28 (50)

Total number of years of education:(mean ± SD) years 8.6 ± 5.6

CSID total score (mean ± SD) 24.8 ± 4.6

MMSE score (mean ± SD) 23.5 ± 5.9

Executive function score (mean ± SD) 10.6 ± 4.6

Memory score (mean ± SD) 29.6 ± 10.4

Simple reaction time (mean ± SD) 947.5 ± 861.0

Choice reaction time (mean ± SD) 1170.6 ± 763.4

CESD score (mean ± SD) 6.5 ± 5.4

Stroke type (diagnosed by CT and/or MRI)

 Ischaemic 50 (86.2)

 Haemorrhagic 8 (13.8)

Cardiovascular risk factors, n (%)

 Hypertension 53 (91.4)

 Diabetes mellitus 13 (22.4)

 Dyslipidemia 6 (10.3)

 Atrial fibrillation 1 (1.7)

 Ever smoked 15 (25.9)

 Ever taken alcohol 28 (48.2)

 Previous stroke 7 (12.1)

Imaging volumetrics (mean ± SD)*

 ICV (mls) 1331.0 ± 146.7

 TBV (mls) 1024.9 ± 132.2

 Ven vol (mls) 44.7 + 19.3

 TBV/ICV 0.77 ± 0.06

 Ven vol/TBV 0.04 ± 0.02

 MTA (L + R) total score 7.06 ± 1.67

Vascular lesions on MRI

 Large vessel infarct-right [n (%)] 3 (5.1)

 Large vessel infarct-left [n (%)] 3 (5.1)

 Frontal infarct-right [n (%)] 4 (6.9)

 Frontal infarct-left [n (%)] 3 (5.1)

 Parietal infarct-right [n (%)] 17 (29.3)

 Parietal infarct-left [n (%)] 13 (22.4)

 Basal ganglia small vessel disease-right [n (%)] 15 (25.9)

 Basal ganglia small vessel disease-left [n (%)] 9 (15.5)

Total brain WMH (median, semi-interquartile range)x, ** 7.00 (0–13.75)

Periventricular WMH (median, semi-interquartile range)x, 
**

3.00 (0–5.00)

Deep WMH (median, semi-interquartile range)x, ** 4.00 (0–9.25)
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(SPMRT). There were statistically significant differences 
in performance (mean and standard deviation) across the 
spectrum of stroke survivors (Normal, vCIND and PSD) 
on each cognitive test.

Regarding neuroimaging metrics, total intracranial 
volume (F =  0.898, p =  0.414) and ventricular volume 
(F = 1.823, p = 0.172) were similar across the subgroups, 
whereas total brain volume (F =  7.686, p =  0.001) and 
the ratio of total brain volume to intracranial volume 
(F = 7.950, p = 0.001) were significantly reduced in cog-
nitively impaired and demented stroke survivors. Medial 
temporal lobe atrophy (MTA) scores were significantly 
increased in cognitively impaired and demented stroke 
survivors (F  =  6.776, p  =  0.003), while WMHs also 
showed a similar increasing trend, although this did not 
attain statistical significance (p > 0.05).

Correlation of clinical, cognitive and neuroimaging 
variables
Age correlated significantly with total brain volume 
(r  =  −0.393, p  =  0.004), MTA total score (r  =  0.525, 
p  <  0.001) but not WMH total score (r  =  0.206, 
p  =  0.144). Number of years of educational attain-
ment correlated significantly with total brain vol-
ume (r  =  0.324, p  =  0.018) but not MTA (r  =  0.263, 
p = 0.065) or total WMH (r = −0.012, p = 0. 935). MTA 
correlated significantly with total WMH score (r = 0.461, 
p =  0.002), total CSID score (r = −0.378, p =  0.019), 
memory (r  =  −0.702, p  <  0.001) and executive 

function (r = −0.369, p = 0.016) but not total brain vol-
ume (r = −0.203, p = 0.157). Deep WMH frontal score 
correlated significantly with MTA (r = 0.352, p = 0.013), 
executive function (r = −0.350, p = 0.013) choice reac-
tion time (r = 0.345, p = 0.015) and memory (r = −0.333, 
p  =  0.021). Deep WMH parietal score correlated with 
memory (r  =  −0.502, p  <  0.001) and executive func-
tion (r = −0.315, p = 0.026), while deep WMH tempo-
ral score correlated with executive function (r = −0.303, 
p = 0.033) but not with memory (r = −0.226, p = 0.123). 
Pre-stroke informant cognitive score showed significant 
correlation with post-stroke memory score (r = −0.321, 
p =  0.022) and a trend with post-stroke general cogni-
tive functioning CSID total score (r = −0.248, p = 0.071). 
Presence of hypertension correlated significantly with 
total WM score (r =  0.361, p =  0.001) and total deep 
WM score (r =  0.375, p =  0.007). The aggregated vas-
cular risk factor load correlated significantly with the 
female gender (r = 0.372, p = 0.005) but showed a trend 
with age (r =  0.251, p =  0.064) and MTA (r = −0.248, 
p =  0.086). Left parietal infarcts were also significantly 
associated with cognitive dysfunction as an outcome 
(r = 0.780, p = 0.002).

Univariate determinants of cognitive outcomes
Table  3 presents univariate logistic regression analy-
ses of statistical predictors of cognitive impairment in 
three different models. In model I (Normal vs vCIND), 
education <7  years, and MTA rating were significantly 

Table 2  Characteristics of cognitive sub-groups of subjects (N = 58)_

* p value = significant p values are in italics
a  Normal vs vCIND, t = 1.209 p = 0.233; vCIND vs PSD, t = 3.160 p = 0.004; normal vs PSD, t = 3.596 p = 0.001
b  Normal vs vCIND, t = 1.762 p = 0.085; vCIND vs PSD, t = 2.216 p = 0.036; normal vs PSD, t = 4.053 p < 0.001
c  Normal vs vCIND, t = −3.244 p = 0.002; vCIND vs PSD, t = −0.296 p = 0.770; normal vs PSD, t = −2.608 p = 0.014
d  Kruskal–Wallis test

Variable Normal (N = 26) Vascular CIND (N = 24) PSD (N = 8) p value (ANOVA)
Mean (SD) Mean (SD) Mean (SD)

Age (years) 54.9 (7.8) 62.8 (8.9) 68.3 (15.6) 0.001

Education (years) 11.3 (4.1) 6.9 (6.2) 4.6 (4.1) 0.001

SRT (ms) 599.1 (622.6) 1001.9 (656.5) 1886.4 (1283.3) <0.001

CRT (ms) 826.3 (442.9) 1296.8 (794.8) 1899.2 (920.9) <0.001

SPMRT (ms) 2186.0 (1068.8) 2827.2 (1542.9) 3741.2 (2850.9) 0.06

Log_ICV 6.12 (0.05) 6.12 (0.05) 6.10 (0.04) 0.414

Log_TBVa 6.02 (0.05) 6.00 (0.04) 5.93 (0.06) 0.001

Log_Venvol 4.56 (0.17) 4.66 (0.23) 4.66 (0.13) 0.172

TBV/ICVb 0.79 (0.04) 0.77 (0.06) 0.70 (0.09) 0.001

MTA total (L + R) scorec 6.28 (1.49) 7.79 (1.58) 8.00 (1.27) 0.001

Total WMH score 6.80 (7.53) 11.52 (11.78) 14.57 (15.34) 0.273d

Periventricular WMH score 2.38 (2.21) 3.31 (2.38) 3.85 (2.73) 0.231

Deep WMH score 4.42 (6.20) 8.21 (10.11) 10.71 (13.62) 0.492d
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associated with vCIND. In model II (vCIND vs PSD), 
TBV was significantly associated with PSD. In model III, 
[Normal vs (vCIND + PSD)], age >60 years, educational 
attainment <7  years, TBV and MTA significantly differ-
entiated normal (no vCIND) from cognitively impaired 
(vCIND + PSD) study subjects.

Multivariate determinants of cognitive outcomes
Demographic and significant univariate neuroimaging 
predictors were fed into the three models and following 
which, educational attainment <7 years and MTA rating 
remained significant independent statistical predictors 
of post-stroke vascular cognitive impairment no demen-
tia (model I) and of post-stroke cognitive dysfunction 
(model III) accounting for up to 49 % of the variance of 
cognitive outcome (Table  4). There were also no differ-
ences in the outcomes of the logistic regression analyses 
with and without cases with pre-stroke cognitive decline 
(Additional file 2: Table S2).

Discussion
The principal finding was the independent association of 
MTA with early post-stroke cognitive dysfunction in a 
sample of Nigerian African stroke survivors, apart from 
the demographic variable of lower educational attain-
ment. In addition, MTA showed significant correlation 
with WMH, general cognitive performance, executive 
function, and memory score. Despite a modest sample 
size, this study is unique in being the first in sub-Saharan 
Africa to examine neuroimaging correlates of cognitive 
impairment. Our findings provide robust evidence in 
support of other previous studies showing the predictive 
role of MTA in vascular cognitive impairment [7, 8, 30]. 
Although MTA has often been interpreted as a signature 
of Alzheimer pathology [8], some recent studies suggest 
it may also have a vascular basis resulting from cerebral 
hypoperfusion [31].

Qui et  al. [32] recently reported a significant asso-
ciation between aggregated vascular risk factors and 

Table 3  Univariate logistic regression model of  demographic and  imaging determinants of  cognitive dysfunction 
among subjects

vCIND vascular cognitive impairment no dementia, PSD post-stroke dementia, CSID Community Screening Instrument for Dementia, MMSE Minimental State 
Examination, V-NB vascular neuropsychological battery, ICV intracranial volume, TBV total brain volume, VenVol ventricular volume, MTA medial temporal lobe atrophy 
rating, WMH white matter hyperintensity, OR odds ratio, CI confidence interval

* p value = significant p values are in italics

Normal vs vCIND vCIND vs PSD Normal vs (vCIND + PSD)

OR 95 % CI p value* OR 95 % CI p value* OR 95 % CI p value*

Age >60 years 3.21 0.98–10.45 0.053 2.54 0.42–15.21 0.308 3.97 1.30–12.13 0.016

Female gender 2.24 0.72–6.95 0.163 1.19 0.23–6.17 0.835 2.34 0.81–6.74 0.116

Education <7 years 6.67 1.92–23.18 0.003 3.50 0.37–33.56 0.277 8.52 2.58–23.12 <0.001

Total WMH score 1.06 0.97–1.13 0.123 1.02 0.95–1.09 0.580 1.06 1.00–1.13 0.073

Periventricular WMH 
score

1.20 0.92–1.57 0.181 1.10 0.76–1.60 0.610 1.22 0.96–1.56 0.102

Deep WMH score 1.06 0.98–1.15 0.145 1.02 0.95–1.10 0.600 1.07 0.99–1.15 0.094

Log_ICV 0.22 0.001–5462.00 0.809 0.02 0.001–10,385.0 0.247 0.01 0.001–1144.1 0.439

Log_TBV 0.04 0.01–137.28 0.230 0.03 0.01–0.023 0.024 0.04 0.01–0.20 0.025

Log_VenVol 13.44 0.52–347.02 0.117 1.22 0.020–74.90 0.924 18.6 0.81–429.36 0.067

MTLA rating 1.91 1.19–3.06 0.007 1.10 0.59–2.07 0.759 2.05 1.28–3.27 0.003

Table 4  Multivariate logistic regression model of  significant univariate determinants of  cognitive dysfunction 
among subjects

Variable Normal vs vCIND vCIND vs PSD Normal vs (vCIND + PSD)

OR 95 % CI p value* OR 95 % CI p value OR 95 % CI p value*

Nagelkerke R2 R2 = 0.414 R2 = 0.470 R2 = 0.490

Age >60 years 1.06 0.19–5.92 0.945 0.50 0.05–5..45 0.579 0.79 0.15–4.27 0.787

Female gender 1.42 0.33–6.17 0.641 0.25 0.02–3.86 0.322 0.83 0.14–4.79 0.834

Education <7 years 6.22 1.35–28.73 0.019 8.88 0.26–306.34 0.227 6.95 1.54–1.30 0.012

MTLA rating 2.02 1.05–3.87 0.035 2.25 1.16–4.35 0.016

Log_TBV 0.01 0–1996.50 0.260
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reduced hippocampal volume in a cohort of men, while 
hippocampal neuronal atrophy was found to correlate 
with PSD in another cohort with insignificant degen-
erative pathology [33, 34]. There was a trend towards 
significance in the relationship between aggregated vas-
cular risk factors and MTA as well as in the progression 
of WMH measures across the cognitive groups. Thus, the 
relationship between MTA and cognitive impairment in 
our cohort may suggest a bi-directional causality medi-
ated by cerebral vascular disease. However, the strength 
of this interpretation is limited by the moderate power (1 
− β) =  0.76 of our pilot sample owing to limited avail-
ability and high cost of MRI in our study population. 
Further validation in a bigger cohort studied over time is 
necessary.

The finding of a significant correlation between MTA 
and WMH agrees with others [35] and further strength-
ens the case for a vascular basis in the pathomechanism 
of MTA, WMH being a surrogate of small vessel disease 
[12]. We also found a significant association between 
MTA and WMH, executive function, processing speed 
and memory in line with previous studies [36, 37]. Sim-
ilarly, Jokinen et  al. found synergistic interactions of 
MTA, white matter lesions, regional and cortical atrophy 
on cognitive performance in subjects with small vessel 
disease in the LADIS study [11]. Our findings, therefore, 
provide further evidence that global and regional cerebral 
atrophy, cortico-cortical and cortico-subcortical discon-
nections and slowing of neural impulse transmission 
consequent to white matter damage from microvascular 
pathologies do have robust impact on cognitive processes 
[4, 12, 13].

Executive dysfunction is an early and prominent feature 
of vascular cognitive impairment of varying aetiologies 
and natural history [4, 5]. In previous studies, executive 
dysfunction had been found to correlate with both WMH 
[36] and MTA [35, 37] and is thought to further mediate 
their relationship with memory and visuospatial dysfunc-
tion in the context of cerebral vascular disorders.

Surrogates of cognitive reserve include number of 
years of educational attainment [38] and total brain vol-
ume [39]. Our finding of older age and low educational 
attainment as significant predictors of post-stroke cogni-
tive dysfunction are consistent with previous studies [13, 
40–44]. Age is the strongest risk factor for age-associated 
cerebrovascular and neurodegenerative disorders impli-
cating a likely role for age-related neurodegeneration, 
synergizing with stroke to cause cognitive impairment 
and dementia in this cohort [13]. Lower educational 
attainment is associated with lower cognitive reserve and 
reduced resilience to dementing brain pathologies [45], 
especially in the presence of an accompanying reduction 
in total, cortical or regional brain volume [46]. This pilot 

study, nonetheless, has several limitations. Though sam-
ple size was modest, the significant findings, the first of 
its kind in sub-Saharan Africa, are worthy of note. The 
CogFAST—Nigeria project is still in progress in a longi-
tudinal cohort approach with a view to confirming the 
current findings and unraveling new associations [7]. We 
assessed white matter changes with the Scheltens’ scale 
[27]. Generally, visual rating scales are not as sensitive 
as structural volumetric measures and this may partly 
explain the lack of statistical significance in the findings 
of white matter changes in our cohort. Nevertheless, 
visual rating scales are cost effective, useful in clinical 
practice and have been proved to attain good reliability 
and correlation with volumetric measurements [47, 48]. 
A possibility of selection bias also exists because of our 
inability to obtain brain MRI for all the available subjects, 
although we demonstrated that those who had brain 
imaging did not differ significantly from those who did 
not have.

Conclusion
We report an independent association of MTA with early 
post-stroke cognitive dysfunction in Nigerian African 
stroke survivors. MTA also showed significant correla-
tion with WMH, general cognitive performance, execu-
tive function, and memory score. This study is unique 
in being the first in sub-Saharan Africa to examine neu-
roimaging correlates of cognitive impairment and sug-
gests that MTA, which has often been interpreted as a 
signature of Alzheimer pathology, may have a vascular 
basis resulting from cerebral hypoperfusion. This study 
demonstrates feasibility in poor-resourced countries 
and underscores the importance of early-and long-term 
sequelae of stroke in survivors [49] that may have impli-
cations for the low and middle income countries [50]. 
Acute and restorative services delivered to stroke sur-
vivors will need to be set up in anticipation of a rising 
number of people with long term motor- and non-motor 
consequences following stroke, including cognitive 
impairment. Further studies with larger samples and lon-
gitudinal design are needed to unravel more associations.
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