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Abstract 

Background: Maturity‑onset diabetes of the young (MODY) is the most common type of monogenic diabetes, 
being characterized by beta‑cell disfunction, early onset, and autosomal dominant inheritance. Despite the rapid 
evolution of molecular diagnosis methods, many MODY cases are misdiagnosed as type 1 or type 2 diabetes. High 
costs of genetic testing and limited knowledge of MODY as a relevant clinical entity are some of the obstacles that 
hinder correct MODY diagnosis and treatment. We present a broad review of clinical syndromes related to most com‑
mon MODY subtypes, emphasizing the role of biomarkers that can help improving the accuracy of clinical selection 
of candidates for molecular diagnosis.

Main body: To date, MODY‑related mutations have been reported in at least 14 different genes. Mutations in glucoki‑
nase (GCK), hepatocyte nuclear factor‑1 homeobox A (HNF1A), and hepatocyte nuclear factor‑4 homeobox A (HNF4A) 
are the most common causes of MODY. Accurate etiological diagnosis can be challenging. Many biomarkers such as 
apolipoprotein‑M (ApoM), aminoaciduria, complement components, and glycosuria have been tested, but have not 
translated into helpful diagnostic tools. High‑sensitivity C‑reactive protein (hs‑CRP) levels are lower in HNF1A‑MODY 
and have been tested in some studies to discriminate HNF1A‑MODY from other types of diabetes, although more 
data are needed. Overall, presence of pancreatic residual function and absence of islet autoimmunity seem the most 
promising clinical instruments to select patients for further investigation.

Conclusions: The selection of diabetic patients for genetic testing is an ongoing challenge. Metabolic profiling, 
diabetes onset age, pancreatic antibodies, and C‑peptide seem to be useful tools to better select patients for genetic 
testing. Further studies are needed to define cut‑off values in different populations.
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Background
Diabetes is a heterogeneous disease, most cases corre-
sponding to type 1 and type 2 diabetes. Nevertheless, a 
considerable proportion of patients does not fit into this 
classification and is known to have hyperglycemia caused 

by a mutation in a single gene. Maturity-onset diabetes of 
the young (MODY) is a heterogeneous group of mono-
genic diseases, normally associated with a secretory beta-
cell defect [1]. Although classically described as a clinical 
syndrome of early-onset autosomal dominant diabetes 
[2, 3], MODY is now known to present as distinct clinical 
syndromes.

The most common causes are mutations in Glucoki-
nase (GCK), presenting as mild non-progressive hyper-
glycemia since birth [4]; hepatocyte nuclear factor-1 
homeobox A (HNF1A) and hepatocyte nuclear factor-4 
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homeobox A (HNF4A), presenting as familial sympto-
matic diabetes whereby hyperglycemia usually becomes 
evident during adolescence or early adulthood and dete-
riorates throughout life [5–7]; and hepatocyte nuclear 
factor-1 homeobox B (HNF1B), presenting mainly as 
renal alterations and diabetes [8]. Other rare forms 
of MODY can be caused by mutations in other genes 
(Table 1).

Despite the rapid evolution of molecular diagnosis 
methods, many MODY cases may be misdiagnosed as 
type 1 or type 2 diabetes [9]. Accurate etiological diag-
nosis of diabetes can be challenging, even within a sin-
gle family [10]. In this context, there is a worldwide trend 
towards “Precision Medicine” (PM), an approach which 
aims to tailor prevention and treatment taking character-
istics of individuals and/or subpopulations into account. 
PM is a possible approach to enhance treatment of 
patients with diabetes and has been successfully applied 
in monogenic diabetes, especially in neonatal diabetes 
(ND), since a single clinical criterion is used (age of diag-
nosis < 6 months). ND is mainly caused by mutations in 
the genes encoding the pore-forming (Kir6.2, KCNJ11) 
and regulatory (SUR1, ABCC8) subunits of the K ATP 
channel. It is well-known that sulfonylurea treatment in 
potassium channel-linked ND have marked impact on 
endogenous insulin secretion and is now considered the 
treatment of choice [11–14]. Therefore, ND is an excel-
lent prototype of how the understanding of pharma-
cogenomics helps in tailoring treatment according to a 
patient’s genetic profile.

In MODY, nonetheless, this approach is more com-
plex. The lack of a single clinical criterion, cost of genetic 

testing, and specialists’ emphasis on treatment rather 
than diagnosis are the major barriers for the dissemi-
nation of precision medicine in MODY [15]. With the 
establishment of sulfonylureas as the treatment of choice 
for HNF1A-MODY [16], molecular diagnosis of mono-
genic diabetes has been solidified as a necessary clinical 
tool with important prognostic implications, being part 
of clinical routine for patients with a clinical suspicion of 
MODY. Evidence that most patients with GCK mutations 
generally do not require pharmacological treatment [7, 
17, 18] and do not develop long-term complications [19, 
20] has established the importance of classifying MODY 
in clinical syndromes as described below.

The use of criteria based on absolute cut-offs have 
shown poor sensibility, resulting in many MODY patients 
misdiagnosed as either type 1 or type 2 diabetes [9, 21, 
22]. Despite more widespread availability of molecu-
lar diagnosis, better strategies for clinical screening of 
monogenic diabetes are necessary, in order to better 
select candidates for molecular diagnosis and therefore 
optimize cost-effectiveness.

This review aims to describe the clinical syndromes 
related to the most common genetic causes of MODY 
and biomarkers that can potentially improve accuracy of 
clinical selection candidates for molecular diagnosis.

Literature search strategy
Pubmed was searched for publications on the subject 
by employing search terms: MODY, Maturity Onset 
Diabetes of the Young, monogenic diabetes, HNF1A, 
HNF-1 alpha, GCK, glucokinase, HNF1B, HNF-1 
beta, HNF4A, HNF-4 alpha, biomarkers. Search was 

Table 1 MODY—genes and relative prevalence

MODY maturity‑onset diabetes of the young

Gene name Gene full name Relative prevalence References

GCK Glucokinase Common (30‑70% of MODY) [4]

HNF1A Hepatocyte nuclear factor‑1 hohomeobox A Common (30‑70% of MODY) [5]

HNF4A Hepatocyte nuclear factor‑4 homeobox A 5‑10% of MODY [6]

HNF1B Hepatocyte nuclear factor‑1 homeobox B 5‑10% of MODY [8]

ABCC8 ATP‑binding cassette C8 Rare: < 1% of MODY [90]

KCNJ11 Inward‑rectifying potassium channel J11 Rare: < 1% of MODY [98]

INS Insulin Rare: < 1% of MODY [99]

PDX1 Pancreas/duodenum homeobox‑1 Very rare [100]

NEUROD1 Neurogenic differentiation‑1 Very rare [101]

CEL Cholesteryl‑ester lipase Very rare [102]

KLF11 Krüpell‑like factor 11 Very rare [103]

PAX 4 Paired homeobox 4 Very rare [104]

BLK B‑lymphoid tyrosine kinase Very rare [105]

APPL1 Adaptor protein, phosphotyrosine interaction, PH Domain, 
and leucine zipper‑containing 1

Very rare [106]
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performed on May 18th, 2020, so literature review is up 
to date at this point. We manually screened results for 
relevant and recent papers limited to the English lan-
guage. References from selected publications were also 
used when necessary.

Clinical syndromes related to most common MODY 
subtypes
Clinical criteria for diagnosing MODY devised at the 
time of its original description, the classical triad of 
early onset, autosomal dominant inheritance, and pre-
dominant secretory defect, have reasonable positive 
predictive value (PPV). Nevertheless, sensitivity and 
hence negative predictive value (NPV), hallmarks of an 
adequate screening test, are low. This results in many 
false negative MODY cases intermixed in the vast het-
erogeneity of major types of diabetes [21].

With the advancement of molecular diagnosis tech-
nologies, clinical criteria for suspicion of MODY have 
been refined according to specific characteristics of 
different genes, so the classic criteria of autosomal 
dominant early-onset diabetes could be said to be 
more adequate for the screening of MODY caused by 
transcription factors. Nevertheless, given its low sen-
sitivity, many publications have extended these criteria 
to individuals initiating diabetes at a later age (before 
35 years old) and with at least one first-degree relative 
with diabetes instead of three full generations, since 
penetrance of MODY mutations is incomplete and 
varies with age. These criteria have been used in most 
large cohorts of patients with MODY and have yielded 
identification of thousands of individuals [23–27], but 
refining those criteria can improve detection of other 
specific subtypes of MODY. As an example, an Italian 
group designed and validated a 7-item flowchart (7-iF) 
to identify patients that have a high probability of car-
rying GCK mutations, taking into account aspects such 
as autoimmune diabetes antibodies, HbA1c levels, and 
heredity [28]. In order to assist clinicians in selecting 
candidates for molecular diagnosis, we describe below 

the most common clinical presentations of MODY 
according to the causative gene [7].

Mild non‑progressive hyperglycemia due to GCK mutations
GCK-MODY is characterized by mild non-progressive 
hyperglycemia. It was first suggested by Cammidge in 
1928 [29] and it was first recognized as a monogenic dis-
ease in 1992, when Froguel et  al. first observed a tight 
linkage between the glucokinase locus on chromosome 
7p and diabetes in 16 French families with MODY [4]. 
Subsequently, in the same year, a nonsense mutation 
in the gene encoding glucokinase and its linkage with 
MODY in one family was reported [30].
GCK-MODY can be described as disturbed beta-cell 

glucose sensing. Decreased levels of glucokinase activity 
in beta-cells are predicted to lead to a defect in glucose-
stimulated insulin secretion, and, therefore, a rightward 
shift of the dose–response curve of insulin secretion [31]. 
GCK-MODY has been reported in 40–50% of cases of 
incidental or asymptomatic hyperglycemia in the pedi-
atric population [32]. One British study, employing a 
systematic population screening approach, tested C-pep-
tide in 808 individuals with diabetes and age younger 
than 20  years old and, in those with detectable pancre-
atic residual function, pancreatic autoantibodies were 
assessed. Those without evidence of pancreatic autoim-
munity were tested for monogenic diabetes, demonstrat-
ing 2.5% of the 808 individuals to have MODY, being 
1% of the total caused by GCK [25]. This low prevalence 
reinforces the importance of clinical screening. Diagnosis 
of GCK mutations is suggested by the clinical character-
istics depicted in Table  2. Measuring fasting glucose in 
apparently unaffected parents is important when consid-
ering a diagnosis of a GCK mutation in a proband, since 
mutations have complete penetrance [7, 33–35]. Due to 
the mild non-progressive hyperglycemia, HbA1c can 
have a role in differential diagnosis with other types of 
diabetes [18, 36]. Another British study showed 123 indi-
viduals carrying GCK mutations to have HbA1c between 
5.6 and 7.3% in the subgroup with age below 40 years old, 
and between 5.9 and 7.6% in the subgroup aged 40 years 
or older [35].

Table 2 Clinical criteria suggesting diagnosis of GCK-MODY

HbA1c hemoglobin A1c, OGTT  oral glucose tolerance test

Fasting hyperglycemia (≥ 5.5 mmol/L or 100 mg/dL in 98% of patients)

Small (< 3 mmol/L or 60 mg/dL) increment in an OGTT 

Persistent hyperglycemia (at least three separate occasions), stable over a period of months to years

HbA1c rarely exceeding 7.5%

Parents with a clinical diagnosis of type 2 diabetes with no complications or parents without a known diabetes diagnosis, but a mildly raised fasting 
blood glucose (range 5.5–8 mmol/L or 100–140 mg/dL) upon testing
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In contrast to other forms of dysglycemia, insulin 
secretion continues to be regulated. Pharmacological 
treatment is not usually recommended since hyperglyce-
mia in GCK-MODY is resistant to oral medication due to 
a set point alteration of glucose homeostasis. Therefore, 
treatment does not generally alter glycemic control or 
prognosis, with the exception of pregnancy, where treat-
ment of an affected mother is needed due the possibility 
of in utero accelerated growth when the fetus is unaf-
fected [36].
GCK-MODY is rarely associated with diabetes-related 

complications. A British study evaluated the association 
between chronic, mild hyperglycemia and complication 
prevalence in patients with  GCK  mutations. Despite a 
median duration of 48.6  years of hyperglycemia, preva-
lence of microvascular and macrovascular complications 
was low [20].

Presence of GCK mutations probably do not affect the 
risk of developing type 2 diabetes and obesity later in 
life [36], Therefore, diagnosis of GCK mutations in older 
individuals can be challenging due to the possibility of 
overlap with other metabolic conditions [37].

Early‑onset autosomal dominant diabetes due to HNF1A 
and HNF4A mutations
Hepatocyte nuclear factors (HNFs), despite being first 
described in the liver of animal models, are transcrip-
tion factors expressed in different tissues that play a sub-
stantive role in the normal development and function of 
pancreatic beta-cells. Reduction of insulin secretion in 
response to glucose occurs in patients with heterozygous 
HNF1A mutations. This secretory defect worsens over 
time due to progressive beta-cell dysfunction [17]. Dia-
betes mellitus manifests usually at the age of 6–25 years 
with mild osmotic symptoms (polyuria, polydipsia) or 
as asymptomatic postprandial hyperglycemia without 

ketosis or ketoacidosis [38]. In contrast to GCK-MODY, 
there is impairment of first and second-phase insulin 
secretion in individuals with HNF1A mutations [39, 40], 
resulting more often in overt diabetes as opposed to the 
mild hyperglycemia seen in the first.

Clinical expression of HNF1A-MODY varies consid-
erably. Environmental and genetic characteristics con-
tribute to this heterogeneity [41–43]. Therefore, some 
patients with HNF1A-MODY may not fulfill the classical 
diagnostic criteria. Nevertheless, in general, diagnosis of 
HNF1A mutations may be suggested by the presence of 
clinical characteristics described on Table 3 [7, 40, 44].

In HNF1A-MODY the frequency of cardiovascular and 
microvascular complications is high and similar to that of 
patients with type 1 and type 2 diabetes [45, 46]. Treat-
ment depends on the age and HbA1c levels. Patients 
can initially be managed with diet but most patients will 
require pharmacological treatment. They are very sen-
sitive to sulfonylureas which are usually more effective 
than insulin, particularly in children and young adults 
[47]. This treatment is usually effective for several dec-
ades, but in a case of severe decrease in beta-cell insu-
lin production, insulin therapy is needed [48]. A study 
demonstrated that 80% of patients with HNF1A-MODY 
treated with sulfonylurea therapy remained insulin inde-
pendent at 84 months of follow-up [49].

Diabetes caused by mutations in the HNF4A gene is 
considerably less common than HNF1A (5% to 10% of 
the cases) [9], but should be considered whenever clini-
cal characteristics of HNF1A are present and genetic 
analysis does not detect a mutation in this gene. Some 
discriminatory factors between HNF4A from HNF1A are 
later age at diagnosis and the lack of pronounced glyco-
suria in the former (see Table 3). Patients are also often 
sensitive to sulfonylureas [50]. Differently from HNF1A, 
HNF4A mutations are associated with macrosomia 

Table 3 Clinical criteria suggesting diagnosis of HNF1A-MODY

GCK glucokinase, OGTT  oral glucose tolerance test

Familial history of diabetes (at least two generations)

Young‑onset diabetes (typically before age 25 in at least one family member)

Incomplete insulin‑dependency outside the normal honeymoon period (3 years) as demonstrated by:
 · Not developing ketoacidosis in the absence of insulin;
 · Good glycemic control on less than the usual replacement dose of insulin, or;
 · Detectable C‑peptide measured when on insulin with glucose > 8 mmol/l (140 mg/dL)

Glucose increment usually > 5 mmol/l (90 mg/dL) in an OGTT (normal fasting values with 2‑hour values in the diabetic range are common and a useful 
feature to contrast with GCK)

Absence of pancreatic islet autoantibodies

Glycosuria at blood glucose levels < 10 mmol/L (180 mg/dL), due to a low renal glucose reabsorption threshold

Marked sensitivity to sulfonylureas (resulting in hypoglycemia despite poor glycemic control before transitioning to secretagogue agents)

Absence of characteristics of insulin resistance that could suggest type 2 diabetes rather than monogenic diabetes, such as obesity, acanthosis nigri‑
cans, and belonging to ethnic groups at risk for type 2 diabetes
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(approximately 56% of mutation carriers) and transient 
neonatal hypoglycemia (approximately 15% of mutation 
carriers) [51]. A family history of marked macrosomia 
or diazoxide responsive neonatal hyperinsulinism in the 
context of familial diabetes should raise the hypothesis of 
HNF4A-MODY [51].

Renal/urogenital alterations and diabetes due to HNF1B 
mutations
HNF1B gene plays a role in the tissue-specific regulation 
of gene expression in liver, kidney, intestines, and pancre-
atic islets, therefore influencing their embryonic develop-
ment [52]. Diabetes in HNF1B-MODY develops during 
adolescence or early adulthood. Median age of onset of 
diabetes was 28 years old in a multicenter cohort of 201 
individuals. Patients present some degree of hepatic insu-
lin resistance, explaining why approximately half of them 
do not respond to sulfonylureas, needing early insu-
lin therapy [7, 53]. A recent study evaluated 35 patients 
with HNF1B mutations, 65.7% of whom were treated 
with insulin and, in 40%, extrapancreatic symptoms 
were reported [54]. Diabetes complications (especially 
microvascular disease) and cardiovascular risk factors 
are highly frequent and renal impairment can be a major 
issue (chronic kidney disease stages 3–4 was present in 
44% of individuals and end-stage renal disease in 21%) 
[55, 56].

This subtype of MODY was thought to be rare when 
initially described, but since the diabetes phenotype is 
frequently associated with renal and urogenital malfor-
mations [57], search for MODY in patients with those 
features has demonstrated HNF1B to be more frequent, 
with a proportion of affected patients similar to HNF4A 
depending on the studied population [44]. Although 
HNF1B-MODY is often described as a syndrome of renal 
cysts and diabetes (RCAD), several different renal and 
urogenital phenotypes are now known to be associated 
with mutations in this gene. Presence of urogenital tract 
malformations, renal failure not explainable by diabetes 
progression, renal cysts, renal dysplasia, or hypoplastic 
glomerulocystic kidney disease in association with diabe-
tes may prompt direct investigation of HNF1B, without 
necessarily investigating more common types of MODY 
beforehand [8]. It is important to point out in this con-
text that spontaneous de novo mutations are relatively 
frequent and the absence of a familial history of renal 
disease should not discourage testing for HNF1B muta-
tions [58]. Renal and other alterations associated with 
HNF1B mutations are described in Table  4. In addition 
to the marked heterogeneity of the urogenital pheno-
type observed in association with diabetes, many cases of 
HNF1B without diabetes have been described [59].

Considering the heterogenous phenotype of HNF1B, 
researchers have developed a score that could be used as 
a tool for clinicians to select patients with suspicion of 
HNF1B before genetic testing. One of these scores was 
developed based on the frequency of most typical find-
ings considering clinical, biological, imaging, and familial 
characteristics. A score > 8 showed very good discrimina-
tory power with high NPV (99%), and it would provide a 
useful aid for selecting patients for HNF1B testing [60]. 
A British study aimed at validating this score in a cohort 
of 686 individuals with a genetic diagnosis of a HNF1B 
mutation found the same cutoff point to have an NPV 
of 85% [61]. In a Brazilian cohort, 28 patients with clini-
cal suspicion of HNF1B-MODY due to hyperglycemia 
and renal cysts were evaluated and two positive cases of 
HNF1B gene mutations were found. Both positive cases 
had a score higher than 8 [62].

Clinical heterogeneity, atypical diabetes, 
and discriminatory models of MODY
Clinical strategies to select patients for genetic test have 
benefited from inclusion of other clinical data in the past 
decade, with the added goal of excluding other common 
types of diabetes such as type 1 diabetes. Absence of pan-
creatic islet autoantibodies and presence of pancreatic 
residual function after 5 years of diabetes duration, when 
the honeymoon phase has unequivocally past (as dem-
onstrated by low insulin requirements and/or detectable 
C-peptide) are now valuable clinical criteria in the selec-
tion of candidates to molecular diagnosis [7]. Superposi-
tion with type 2 diabetes has also to be considered, since 
monogenic diabetes does not usually show features of 
insulin resistance [63].

With typical MODY families identified, further explo-
ration into the heterogeneity of type 1 and type 2 dia-
betes uncovered patients with MODY but not bearing 
typical clinical features, even when extended criteria have 
been used. This has drawn especial attention to atypical 
cases of the two most common types of diabetes. In 247 
British individuals clinically labeled as type 1 diabetes, 
20 had persistent residual beta-cell function outside the 
range usually expected for type 1 diabetes. There were no 
differences in GAD positivity, BMI, and parental diabetes 
history between C-peptide positive and negative patients. 
Among the 20 C-peptide positive individuals, two (10%) 
had mutations in HNF1A. Although the importance of 
diagnosing HNF1A diabetes correctly lies partly on the 
possibility of transferring patients from insulin to sulfo-
nylureas, both patients couldn’t have their therapies suc-
cessfully changed and were kept on insulin. Of note, both 
had positive GAD antibodies, opening the possibility of 
autoimmunity modulating MODY phenotype [63]. In 
the same series, among 322 patients clinically diagnosed 
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as having type 2 diabetes, 80 met extended criteria for 
MODY. In this group, 10 individuals had HNF1A muta-
tions and 2 had HNF4A mutations (only 5 of those 12 
individuals had classical MODY criteria). Resequencing 
for GCK-MODY was carried out on 38 individuals and 
one previously reported mutation was found. This patient 
had a metabolic profile consistent with GCK-MODY 
[63].

In a French study, a model employing as predictors 
Euro-Caucasian origin, 3 or more affected generations, 
age, and BMI (only in patients without symptoms of 
hyperglycemia) yielded sensitivity 90% and specificity 
49%. This model is useful to improve the low sensitivity 
of the classical criteria, although its own definition pre-
cludes its utilization in non-European populations [64].

Even with extended clinical criteria, most variables 
have been traditionally used in discrete form, resulting 
in poor sensitivity. To cope with this limitation, a math-
ematical model was developed for patients of white Euro-
pean origin, who have been diagnosed with diabetes at 
age equal or less than 35. Two-hundred and seventy-eight 

individuals with type 1 diabetes (clinically defined as 
requiring insulin within 6 months of diagnosis), 319 with 
type 2 diabetes (clinically defined as not requiring insulin 
within 6 months of diagnosis), and 594 probands with a 
genetic diagnosis of MODY (243 GCK, 296 HNF1A, and 
55 HNF4A) have been compared regarding simple and 
widely available clinical variables [21].

When comparing type 2 diabetes with MODY, the fol-
lowing variables were associated with MODY: lower age 
at diagnosis, BMI, HbA1c, and current age; having one 
diabetic parent; not being treated with insulin or oral 
antidiabetic agents; female sex. Accuracy as measured by 
area under ROC curve was 0.95. Sensitivity was 92% and 
specificity 95%. Comparing type 1 diabetes with MODY, 
the latter was associated with: having one parent with 
diabetes; lower current age and HbA1c; higher age at 
diagnosis; female sex. Area under ROC curve was 0.95. 
Sensitivity was 87% and specificity 88%.

The mathematical model had better sensitivity than 
the classical criteria (72%). It is available online as a 
probability calculator at http://www.diabe tesge nes.org. 

Table 4 Morphological and functional alterations associated with HNF1B mutations (listed alphabetically)

Phenotype References

Asthenospermia, bilateral epidydimal cysts, atresia of vas deferens, ovarian carcinoma [57, 107]

Bicornuate uterus [57, 107–109]

Chromophobe renal cell carcinoma [8]

Cortical atrophy, interstitial fibrosis, enlarged glomeruli, glomerular cysts [107, 110]

Cryptorchidism, varicocele [57]

Cystic kidney disease [8, 108–114]

Familial juvenile hyperuricemic nephropathy [115]

Glomerulocystic kidney disease [56, 113, 114, 116]

Horseshoe kidney [113]

Hypomagnesemia [57]

Hypospadia [109]

Hyposthenuria and poor urinary concentrating ability [112]

Hyperuricemia and Gout [117]

Kidney agenesis [107, 109]

Liver dysfunction [57, 118, 119]

Liver imaging abnormalities (nonspecific, biliary cysts, abnormal biliary ducts) [57]

Liver biopsy abnormalities [57]

Mayer‑Rokitanski syndrome [57]

Mild to moderate renal failure with creatinine clearance [57, 110, 111, 113, 120]

Neonatal cholestasis [119]

Oligomeganephronia [107, 114, 120]

Pancreas atrophy [57, 107]

Pancreas calcifications, pancreas divisum, ring pancreas, malrotation, intraductal papillary mucinous tumor [57]

Renal dysplasia [109, 113, 114]

Renal hypoplasia [112, 118]

Subclinical pancreas exocrine insufficiency [57, 107]

Vaginal aplasia, rudimentary uterus [108, 120]

http://www.diabetesgenes.org
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Individuals with type 2 diabetes should be tested for 
MODY if the probability provided is greater than 25%. 
In individuals with type 1 diabetes, probability should be 
greater than 10% [21]. Although promising, similar mod-
els need to be tested in other populations in order to gain 
wider acceptance in clinical use, since this specific model 
has been developed for European Caucasian individuals 
with diabetes diagnosed before 35 years old and has been 
validated only for the three most commons subtypes of 
MODY. Moreover, even when the shift from individual 
gene Sanger sequencing to targeted-NGS is completed 
in most centers around the world, algorithms to select 
candidates to genetic testing would still be necessary in 
order to improve cost-effectiveness [65–67].

Many stepwise algorithms of etiologic diagnoses of 
hyperglycemia have been proposed [68–70]. Recently, 
Urakami et  al. suggested an algorithm used to identify 
candidates with diabetes who should undergo genetic 
testing considering age at onset of diabetes, pancreatic 
autoimmunity and residual function, obesity and insulin 
resistance and some nongenetic biomarkers [71].

Biomarkers employed in the clinical screening 
of monogenic diabetes
Nowadays, selection for molecular testing is based on 
nonspecific clinical characteristics such as age of onset, 
family background, and atypical presentation for the 
assumed etiology, although these criteria do not combine 
reasonable levels of specificity and sensitivity. In this con-
text, many researches have been persistently looking for 
biomarkers to assist selection of individuals who deserve 
further investigation. Meanwhile, many candidates like 
apolipoprotein-M (ApoM), aminoaciduria, complement 
components, and glycosuria have been tested, but have 
not translated into useful biomarkers [72–74]. Biomark-
ers that have been studied as screening tools for MODY 
mutations are described on Table 5. An overview of the 
most studied biomarkers as well as its rationale and clini-
cal limitations follow below.

High‑sensitivity C‑reactive protein (hsCRP) and HNF1A
Some studies have shown that common variants near 
the HNF1A gene are associated with small alterations in 
serum high-sensitive C-reactive protein (hsCPR) levels 
in healthy adults. Levels of hsCRP are lower in HNF1A-
MODY than in other types of diabetes (including other 
types of MODY) and nondiabetic subjects. The rationale 
for associating hsCRP levels with HNF1A derives from 
two basic concepts. First, C-reactive protein is coded by 
the CRP gene. This gene bears binding sites specific for 
the HNF1A transcription factor. SNPs in HNF1A have 
been associated to CRP levels in various populations 
[75–77]. Second, although MODY can bear some clinical 

resemblance with type 2 diabetes, low-grade inflam-
matory process seen in type 2 diabetes, obesity, and 
cardiovascular disease does not participate in the patho-
physiology of MODY.

The use of hsCRP as a clinical screening tool for MODY 
has been first investigated in a British study, that showed 
patients with HNF1A-MODY to have significantly lower 
hsCRP levels when compared to autoimmune diabe-
tes (both type 1 diabetes and LADA), young-onset type 
2 diabetes, GCK-MODY, and non-diabetic individuals, 
even after correction for BMI and use of medications 
that could potentially lower hsCRP (aspirin and statins). 
Accuracy of hsCRP alone was 80% when discriminat-
ing HNF1A-MODY from type 2 diabetes and 75% when 
comparing HNF1A-MODY with all other types of diabe-
tes. Analyzing various combinations of hsCRP with other 
criteria, utilizing CRP ≤ 0.2 mg/L or diagnosis of diabetes 
up to 30 years of age performed best, with 88% sensitivity 
and 75% specificity. This study, however, did not compare 
HNF1A diabetes with HNF4A, which bears many clinical 
similarities between each other [22].

These findings have been confirmed in a large multi-
center trial involving 7 European countries, that showed 
hsCRP levels to be lower in HNF1A than every other 
type of diabetes, including HNF4A this time. Accuracy of 
hsCRP to distinguish between HNF1A-MODY patients 
and young adult- onset type 2 diabetes, as measured 
by ROC-derived C-statistic, ranged from 0.79 to 0.91, 
depending on the center [78].

Since the discriminating cutoff point occurs in very low 
levels of CRP, the utilization of a high-sensitivity assay 
is mandatory. In another British study, a cutoff point of 
0.75 mg/L had a positive predictive value (PPV) of 2.7% 
and a negative predictive value (NPV) of 99.7% when 
comparing HNF1A-MODY to type 2 diabetes. When 
used to compare HNF1A with other MODY types, a 
0.55  mg/L cutoff point may be useful to decide priority 
of sequencing in the context of using Sanger sequencing 
and testing genes separately [79].

The rise in obesity and type 2 diabetes have made the 
number of individuals with a family history of diabetes 
increase. Almost 30% of patients with HNF1A-MODY 
are overweight or obese, making differential diagnosis 
between HNF1A and familial young onset type 2 diabe-
tes even more challenging [64]. A recent French study 
assessed the added value of hsCRP to distinguish between 
these two conditions. Area under ROC-curve was 0.82 
with the clinical model (diabetes at age < 40 years, famil-
ial history of diabetes in at least two generations, and 
absence of obesity) and increased to 0.87 when hsCRP 
was included. These values were not satisfactory since 
the calculated probability of HNF1A-MODY diagno-
sis > 50% as a threshold for identifying patients for genetic 
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screening would miss one-third of HNF1A-MODY cases 
[80].

Szopa et  al. also evaluated the utility of hsCRP to 
improve diagnostic accuracy of MODY. In accordance 
with previous findings, the lowest levels of hsCRP were 
seen in HNF1A-MODY, but there was significant overlap 
of hsCRP distribution among individuals with HNF1A-
MODY, GCK-MODY, and type 1 diabetes. Authors 
devised a three-step decision tree algorithm using C-pep-
tide, BMI, 1,5-anhydroglucitol (1,5-AG), and hsCRP 
to identify patients with HNF1A mutations. Neverthe-
less, the model was not accurate enough to discriminate 
HNF1A patients without gene sequencing [68].

Although hsCRP is becoming a useful and promising 
marker for HNF1A, considering its extensive availability 
and low cost, clinicians should have in mind that it is a 
non-specific test, affected by several pathological condi-
tions such as inflammation and acute infection, so cau-
tion should be exercised with its clinical significance until 
more data are available.

Pancreatic residual function
The measurement of C-peptide is used to assess endog-
enous insulin production in diabetic and non-diabetic 
individuals, despite treatment with insulin. Several meth-
ods of C-peptide measurement have been proposed. 
Venous blood C-peptide levels can be measured in the 
random, fasting or stimulated state [74]. Fasting and ran-
dom non-fasting C-peptide are simple, quick to perform, 
and correlate with diabetes type. C-peptide is a small lin-
ear peptide, which is susceptible to enzyme proteolytic 
cleavage, consequently, quickly centrifuging and freez-
ing sample is usually required. The 24-h urinary C-pep-
tide (24  h UCP) sample collection is non-invasive and 
stable for 72 h in boric acid but is time-consuming and 
requires good patient compliance. Urinary C-peptide/
creatinine ratio (UCPCR) is a reproducible measure that 
correlates well with 24-h UCP in nondiabetic subjects 
[81]. Second-void fasting UCPCR was suggested as the 
optimum approach for the assessment of baseline endog-
enous C-peptide production using a spot urine test [82]. 
Both tests are inaccurate in chronic kidney disease and 
affected by variations in creatinine [81, 82].

One important feature distinguishing type 1 diabetes 
from MODY is long-term evolution of residual pancre-
atic function. In type 1 diabetes, complete insulin defi-
ciency ensues in most patients after 5 years of evolution 
[83, 84]. In MODY, since there is no direct destruction 
of beta-cells, residual endocrine pancreatic function 
may be observed after several years of evolution, there-
fore, detectable serum C-peptide outside the honeymoon 
period may indicate a diagnosis of MODY. This can be 
especially useful in transcription factor MODY, which 

presents frequently as a differential diagnosis to type 1 
diabetes. In contrast, in type 2 diabetes, obesity-related 
insulin resistance may result in elevated levels of insulin 
and C-peptide [85].

C-peptide has been studied as a screening tool for 
HNF1A/4A MODY, specifically as post-prandial UCPCR, 
for the sake of methodological simplicity. Adults with 
diabetes duration equal or greater than 5  years were 
evaluated, including patients with monogenic diabe-
tes, as well as clinically defined type 1 and type 2 dia-
betes. Individuals with type 1 diabetes had a median 
UCPCR < 0.02  nmol/mmol, compared to 1.72  nmol/
mmol in HNF1A/4A patients. Area under ROC curve 
(ROC-AUC) showed good accuracy (0.98). Sensi-
tivity was 97% and specificity 96% for discriminat-
ing HNF1A/4A MODY from type 1 diabetes, with an 
UCPCR cut-off point of 0.2 nmol/mmol. Accuracy levels 
were maintained after comparing only insulin-treated 
HNF1A/4A patients with type 1 diabetic subjects (area 
under ROC curve 0.96, 94% sensitivity, and 96% specific-
ity) [86].

Considering that C-peptide is known to decline more 
rapidly in children than in adults, a study evaluated the 
use of UCPCR and its ability to discriminate pediatric 
diabetes subtypes even in short-duration diabetes. Two-
hour postprandial UCPCR was measured in 264 patients 
with diabetes (MODY, type 1 diabetes, type 2 diabetes) 
aged < 21  years old. The UCPCR ≥ 0.7  nmol/mmol was 
effective in differentiating between type 1 and non-type 
1 diabetes (type 2 diabetes and MODY), with a sensitiv-
ity of 100% and a specificity of 81%, independently of 
diabetes duration. If the duration of diabetes was greater 
than 2 years, a UCPCR ≥ 0.7 nmol/mmol was considered 
to be effective, with a sensitivity of 100% and a specific-
ity of 97%. However, UCPCR was not able to discriminate 
MODY from type 2 diabetes (ROC-AUC 0.57) [87].

Another study compared UCPCR and fasting C-pep-
tide together in patients with MODY and type 1 diabetes 
on the pediatric age group. UCPCR ≥ 0.22  nmol/mmol 
confirmed excellent differentiation between MODY and 
type 1 diabetes in children, yielding 96.3% sensitivity and 
85.7% specificity. Fasting C-peptide levels in the type 1 
diabetes group were lower than in MODY (p = 0.001). 
Fasting C-peptide cutoff determined by ROC curve anal-
ysis was 0.62 ng/ml, with a sensitivity of 93% and a speci-
ficity of 90% for discriminating between MODY and type 
1 diabetes. All patients with type 1 diabetes had diabetes 
duration above 2  years, but a UCPCR level ≥ 0.7  nmol/
mmol, as employed by the reference cited above, showed 
sensitivity of only 59% and specificity of 91% [88].

Evaluation of the correlation between UCPCR 
and duration of diabetes demonstrated that UCPCR 
decreased as the duration of diabetes increased in 
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both groups (type 1 diabetes and MODY). This seems 
contradictory at first glance, but in HNF1A/HNF4A-
MODY there is actually a progressive decline in C-pep-
tide related to reduction of beta-cell proliferation and 
increase of apoptosis. Conversely, GCK-MODY does not 
show decrease in C-peptide, as normal insulin secretion 
occurs, only at a higher glucose threshold. UCPCR values 
in the GCK-MODY group were higher than in type 1 dia-
betes, but the difference was not statistically significantly, 
and other studies confirmed this data [86, 88].

A recent study assessed random C-peptide measure-
ments in patients with antibody-negative diabetes. A 
cut-off level of 0.15 nmol/L, obtained at 6 months or later 
after diabetes diagnosis, showed a negative predictive 
value of 96%. Thus, random C-peptide testing would be a 
potentially simple and affordable initial screening test for 
MODY in antibody-negative patients [89].

In conclusion, currently available evidence suggests 
that a UCPCR of ≥ 0.2  nmol/mmol indicates that a 
genetic test might be suitable. Biochemical parameters 
with autoimmune, demographic, physical characteristics, 
and the use of additional markers of pancreatic reserve 
may be critical to aid in the distinction between type 1 
diabetes and MODY. Further studies in larger samples 
with a broader ethnical distribution of patients with spe-
cific MODY mutations are indicated.

Sulfonylurea sensitivity
Sulfonylurea sensitivity has been reported in MODY 
patients even before description of involved genes, 
including the first family described by Stephan Fajans 
[50]. Although better response of transcription factor 
MODY to sulfonylureas has been now solidly demon-
strated, and many patients can be safely transferred back 
to oral medications even after many years of insulin ther-
apy [16], it is frequent to encounter patients responding 
to sulfonylureas without a definite classification of dia-
betes, in clinical setting where molecular diagnosis is not 
readily available.

While transferring patients to sulfonylurea based 
solely in a clinical diagnosis of MODY is not a validated 
approach, patients without mutations in the known genes 
responding to oral medications suggest other undis-
covered causes of MODY which also respond to sulfo-
nylureas. The finding of 8% of ABCC8 mutations in 85 
individuals with sulfonylurea-sensitive diabetes, negative 
for HNF1A and HNF4A mutation, and without neonatal 
onset illustrate this principle [90].

A British study showed that only 36% of indi-
viduals with HNF1A/HNF4A mutations achieved 
HbA1c ≤ 7.5% on sulfonylurea/diet alone. Shorter 
diabetes duration, lower HbA1c, and lower BMI at 
genetic diagnosis predicted successful treatment with 

sulfonylurea/diet alone. This study also suggested that 
sulfonylurea should be added to existing treatment, 
rather than replacing it, especially in those with longer 
duration of diabetes (> 11  years), overweight or obese 
and with a high HbA1c at the time of genetic diagnosis 
[91].

Sulfonylurea responsiveness is not endorsed as a valid 
criterion for patient selection for genetic testing. Never-
theless, marked sensitivity and long-term effectiveness to 
sulfonylureas among patients with long diabetes duration 
could be a useful clue to optimize the recruitment pro-
cess [92].

Pancreatic autoimmunity
Type 1 diabetes is the most common form of diabetes in 
children and young adults. Approximately 80% of MODY 
patients are misdiagnosed [9]. This issue often leads to an 
inadvertent use of insulin, which has important implica-
tions on quality of life, side effects, level of acceptance of 
illness, and costs.

In this context, the assessment of islet antibodies to 
rule out type 1 diabetes gains importance. GAD and IA2 
islet autoantibodies discriminate well between type 1 and 
MODY, with cross sectional studies showing they are 
present in 80% of patients with type 1 diabetes and in less 
than 1% of patients with MODY [93].

A recent study assessed the prevalence of MODY in a 
nationwide population-based registry of childhood dia-
betes. It used next-generation sequencing for the most 
common affected genes only in children negative for both 
GAD and IA-2 autoantibodies. The prevalence of MODY 
in antibody-negative childhood diabetes reached almost 
6.5%. One-third of these MODY cases had not been rec-
ognized by clinical criteria alone [94, 95].

A Swedish study assessed the four islet autoantibod-
ies: GAD (GADA), insulinoma antigen-2 (IA2A), zinc 
transporter 8 (ZnT8A), and insulin autoantibodies (IAA) 
at the time of diagnosis of diabetes in a pediatric popula-
tion. This approach effectively resulted in more patients 
with type 1 diabetes being identified and reduced the 
number of patients needing consideration for MODY 
testing. Testing three islet autoantibody (GADA, IA-2A, 
and ZnT8A) seems to be the most cost-effective strategy, 
since testing IAA only reduced the number of patients 
who were autoantibody negative from 13% of pediat-
ric diabetes to 12%. Testing 303 autoantibody-negative 
patients identified 46 patients with MODY (detection 
rate 15%). The detection rate rose to 49% when test-
ing was limited to autoantibody-negative patients with 
 HbA1c < 7.5% (58 mmol/mol) (36 out of 46 patients) [96]. 
Therefore, evaluation of autoantibodies can be a useful 
tool to select patients for further investigation.
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Challenges and perspectives
The correct MODY diagnosis is crucial for proper treat-
ment and improvement in quality of life. Recent advances 
in next-generation sequencing technology have enabled 
the maximization of diagnosis performance of mono-
genic diabetes. However, high costs of genetic testing and 
limited awareness of MODY as a relevant entity outside 
clinicians undermines accurate diagnosis. Moreover, 
paucity of studies in non-European populations (espe-
cially African and Latino), as well as access to molecular 
diagnosis in those populations, is also a challenge [97]. 
Likewise, refining the selection of patients to undergo 
genetic testing, using clinical criteria and inexpensive 
biomarkers, readily available and validated in various 
populations, could positively impact cost-effectiveness of 
diagnosis, follow-up, and treatment.

Conclusions
MODY is a heterogeneous group of monogenic forms of 
diabetes. Although it has been initially defined as a clini-
cal syndrome of early-onset diabetes, subtypes of MODY 
caused by mutations in specific genes now stand on their 
own as separate pathological entities. Moreover, strict 
enforcement of the classical criteria to screen for MODY 
mutations yields poor sensitivity levels, detrimental 
to an adequate screening strategy. Clinical biomarkers 
have been studied to improve accuracy of recruitment 
for molecular diagnosis. Among them, models employ-
ing residual beta-cell function are the most promising, 
although they need to be further validated to other popu-
lations. This combined with advancements in molecular 
diagnosis technology and reduction of its costs may lead 
to more efficient detection of the great majority of undi-
agnosed MODY cases in the near future.
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