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Abstract

Background: Distinct prevalence of inherited genetic predisposition may partially explain the difference of cancer
risks across ancestries. Ancestry-specific analyses of germline genomes are required to inform cancer genetic risk
and prognosis of diverse populations.

Methods: We conducted analyses using germline and somatic sequencing data generated by The Cancer Genome
Atlas. Collapsing pathogenic and likely pathogenic variants to cancer predisposition genes (CPG), we analyzed the
association between CPGs and cancer types within ancestral groups. We also identified the predisposition-
associated two-hit events and gene expression effects in tumors.

Results: Genetic ancestry analysis classified the cohort of 9899 cancer cases into individuals of primarily European
(N = 8184, 82.7%), African (N = 966, 9.8%), East Asian (N = 649, 6.6%), South Asian (N = 48, 0.5%), Native/Latin
American (N = 41, 0.4%), and admixed (N = 11, 0.1%) ancestries. In the African ancestry, we discovered a potentially
novel association of BRCA2 in lung squamous cell carcinoma (OR = 41.4 [95% CI, 6.1–275.6]; FDR = 0.002) previously
identified in Europeans, along with a known association of BRCA2 in ovarian serous cystadenocarcinoma (OR = 8.5
[95% CI, 1.5–47.4]; FDR = 0.045). In the East Asian ancestry, we discovered one previously known association of BRIP1
in stomach adenocarcinoma (OR = 12.8 [95% CI, 1.8–90.8]; FDR = 0.038). Rare variant burden analysis further
identified 7 suggestive associations in African ancestry individuals previously described in European ancestry,
including SDHB in pheochromocytoma and paraganglioma, ATM in prostate adenocarcinoma, VHL in kidney renal
clear cell carcinoma, FH in kidney renal papillary cell carcinoma, and PTEN in uterine corpus endometrial carcinoma.
Most predisposing variants were found exclusively in one ancestry in the TCGA and gnomAD datasets. Loss of
heterozygosity was identified for 7 out of the 15 African ancestry carriers of predisposing variants. Further, tumors
from the SDHB or BRCA2 carriers showed simultaneous allelic-specific expression and low gene expression of their
respective affected genes, and FH splice-site variant carriers showed mis-splicing of FH.

Conclusions: While several CPGs are shared across patients, many pathogenic variants are found to be ancestry-
specific and trigger somatic effects. Studies using larger cohorts of diverse ancestries are required to pinpoint
ancestry-specific genetic predisposition and inform genetic screening strategies.
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Background
Cancer risk differs across ancestries. According to the
National Cancer Institute’s Surveillance, Epidemiology,
and End Results (SEER) program, the cancer inci-
dence per 100,000 ranges from 449 in race/ethnicity
population self-identified as Whites, 453 in Blacks,
298 in Asian/Pacific Islanders, 315 in American In-
dian/Alaskan Natives, and 336 in Hispanics in the
USA between 2011 and 2015 [1, 2]. While some of
these differences may be attributed to non-genetic
factors such as access to health care or diet, much
can likely be explained by differences in the genomic
architecture of these ancestries and differing frequen-
cies of inherited genetic predisposition. Previous stud-
ies revealed different carrier rates of pathogenic
variants across ancestries, albeit often in a limited
panel of genes or selected cancer types [3–5].
While multiple large-scale genome-wide association

studies have investigated the common risk variants con-
tributing to cancer [6–10], fewer studies have interro-
gated rare pathogenic variants in non-European
ancestries [5, 11–15]. A 2019 systematic review of cancer
sequencing studies found a total of only 764 reported
non-European (minority) cases in 27 published studies
with reported race/ethnicity [9]. Consequently, germline
genetic testing in non-White patients often results in
higher rates of variants of unknown significance (VUSs)
[16]. Ongoing efforts are bridging the knowledge gap of
cancer genetic predisposition in under-studied popula-
tions [17–19]. Meanwhile, systematic cross-ancestry in-
vestigations of predisposing variants across cancer types
are urgently needed to inform genetic testing for each
ancestral group.
Herein, we analyzed germline variant data of 9899 can-

cer cases across 33 cancer types from the Cancer Gen-
ome Atlas Project (TCGA) [20] to identify ancestry-
specific cancer-gene associations where the genes show
an excess of pathogenic/likely pathogenic germline vari-
ants the TCGA samples. In samples of African ancestry,
we identified two associations, BRCA2 in lung squamous
cell carcinoma (LUSC) and ovarian serous cystadenocar-
cinoma (OV). In analyses of individuals with East Asian
ancestry, we identified an association for BRIP1 in stom-
ach adenocarcinoma (STAD). Using a rare-variant asso-
ciation analysis, we identified seven additional suggestive
cancer gene associations. Evidence of a somatic second
hit event (i.e., loss of heterozygosity [LOH] or a biallelic
mutation) was found in two thirds of the tumors with
germline predisposing variants. Many carriers of
ancestry-specific predisposition variants showed altered
expression of the affected genes, including allelic-specific
expression (ASE), mis-splicing, and reduced tumor sup-
pressor gene expression, further supporting these genetic
variants’ contribution to cancer predisposition.

Methods
Study cohort and genetic ancestry assignment
We used the clinical data provided by TCGA PanCanA-
tlas and restricted analyses to those with pass-QC blood/
normal sequencing data. In addition to excluding cases
with PanCanAtlas blacklisted germline BAM-files, cases
with less than 60% genotype concordance between se-
quencing variant calls and SNP-genotype data were
eliminated, where 10,389 cases were left [20]. We further
overlapped with the cases included in the PanCanAtlas
Ancestry Informative Markers (AIM) genetic ancestry
assignment, resulting in the final set of 9899 samples.
The detailed descriptions of ancestry assignment proce-
dures are available in the marker publication [21].
Briefly, consensus genetic ancestry for each TCGA

case was determined as the majority of ancestry assign-
ments that were independently determined by five
methods across four institutions. These methods include
those based on SNP-array genotypes used by Broad In-
stitute, University of California San Francisco (UCSF),
and Washington University (WashU), as well as those
based on whole-exome sequencing data used by Univer-
sity of Trento and ExAC/Broad Institute. The five
methods conducted variations of principal component
analyses (PCA) on TCGA normal samples to infer gen-
etic ancestry. We further provide the PCA plots showing
the alignment of the major PCs in the UCSF and WashU
analyses with the AIM-group consensus genetic ancestry
in Additional file 1: Fig. S1.
For each sample, the percentage of global ancestry of

African, European, East Asian, Native/Latin American,
and South Asian (k = 5) was further estimated using AD-
MIXTURE [22] version 1.23 based on the common SNP
markers (1000 genomes allele frequency (AF) > 1%) in
the Broad Institute analysis. Samples with the proportion
of the secondary ancestry greater than 20% were consid-
ered as admixed samples (Additional file 2: Table S1).
Sensitivity analyses revealed increased power by includ-
ing admix samples in this cohort. Thus, cases with
admixed ancestry assignments were grouped to their
nearest neighbors (e.g., afr_admix to afr) for downstream
analyses.

Pathogenic and likely pathogenic germline variant calls
We downloaded the overall and predisposing germline
variant calls previously reported by the PanCanAtlas
Germline Analyses Working Group (https://gdc.cancer.
gov/about-data/publications/PanCanAtlas-Germline-
AWG) [20]. The detailed description of variant calling
and classification procedures are available in the TCGA
PanCanAtlas germline publication [20].
Briefly, germline SNVs were identified using the union

of variant calls between Varscan [23] and GATK [24].
Germline indels were identified using Varscan, GATK,
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and Pindel [25], and we only retained variants called by
at least two out of the three callers or high-confidence
Pindel-unique calls (at least 30× coverage and 20% vari-
ant allele fraction [VAF]). We used the GRCh37-lite ref-
erence. We further required the variants to have an
allelic depth (AD) ≥ 5 for the alternative allele. We then
used bam-readcount to quantify the number of reference
and alternative alleles in both normal and tumor sam-
ples. We required the variants to have at least 5 counts
of the alternative allele and an alternative allele fre-
quency of at least 20%. Of these, we included those rare
variants with ≤ 0.05% allele frequency in 1000 Genomes
and ExAC (release r0.3.1). We subsequently retained
only cancer-relevant pathogenic variants, based on
whether they were found in the curated cancer variant
databases or a 152 curated cancer predisposing gene list.
Finally, we manually reviewed all variants using integra-
tive genomics viewer (IGV) and filtered out variants with
poor support sequence reads.
The variants defined by the above pipeline were then

classified using an automatic pipeline termed CharGer
[26] (https://github.com/ding-lab/CharGer) that adopts
the American College of Medical Genetics and Genom-
ics/Association of Molecular Pathology (ACMG/AMP)
variant classification guidelines which are designed for
assessment of germline variants in Mendelian disorders
[27]. For the CharGer classification pipeline, we defined
12 pathogenic evidence levels and 4 benign evidence
levels using a number of datasets, including ExAC and
ClinVar. The pathogenic evidence adds points, whereas
benign evidence subtracts points that amount to patho-
genicity (pathogenic requires the variant to be described
as pathogenic by the reviewed clinical significance in
ClinVar (not including variants showing “conflicting in-
terpretations of pathogenicity”) or other cancer predis-
position gene databases, likely pathogenic requires
CharGer score > 8). To acquire enough CharGer points
to be classified as likely pathogenic, the variants typically
need to be predicted to result in truncation in cancer
predisposition genes where the loss of function (LOF) is
a known disease mechanism and harbor variants with a
dominant (evidence level PVS1, + 8 points) or a recessive
(evidence level PSC1, + 4 points) mode of inheritance.
Additionally, evidence level PS1, + 7 points are scored if
the variant results in the same peptide sequence change
as an established pathogenic variant. All other modules
will each add ≤ 2 points.

Principal component analysis (PCA)
Birdseed genotype files were downloaded from Genomic
Data Commons (GDC) in the legacy (hg19) archive onto
Institute for System Biology-Cancer Genome Cloud
(ISB-CGC), converted to individual VCF files, and then
merged into a combined VCFs containing 11,459

samples and 522,606 variants. We conducted PCA as
implemented by PLINK (v1.9) [28]. Specifically, we
retained 298,004 variants with AF > 0.15 for population
structure analysis. The resulting eigenvalues and eigen-
vectors were then recorded. PC1 and PC2 accounted for
51.6% and 29.2% of the variations across the first 20
PCs, and none of the trailing PCs accounted for more
than 3.2%. Thus, we subsequently controlled for PC1
and PC2 in ancestry-specific cancer predisposing gene
analysis (Additional file 1: Fig. S1).

Multivariate regression to identify the enrichment of
pathogenic variants
For each cancer type within each ancestry, we conducted
multivariate logistic regression analyses considering the
case status of the cancer type as the dependent variable
(using all other cancer cohorts as controls) and the car-
rier status of each predisposing gene as an independent
variable. The model corrected for age at the initial
pathologic diagnosis, gender, and the first two principal
components (accounted for 80.8% variations across the
first 20 PCs). All ancestry cohorts are called using the
same variant calling pipeline, thus avoiding the potential
danger of comparing this population against other co-
horts such as ExAC. We collapsed predisposing (patho-
genic and likely pathogenic) germline variants to the
gene level. Only ancestry-cancer combinations with at
least 20 cases and predisposing genes with at least two
individuals with predisposing variants within the cohort
are tested. In total, we tested 33 cancers in European
Ancestry, 15 cancers in African Ancestry, and 8 cancers
in East Asian ancestry that met this criterion. No co-
horts of the Native/Latin American and South Asian an-
cestry have sufficient sample sizes in TCGA for testing.
Among these tested cancers, we tested a total of 114
cancer-gene combinations for multivariate regression
analysis, of which 101 were within European ancestry, 9
were in African ancestry, and 4 were in East Asian an-
cestry. P values were calculated using the Wald test and
adjusted to FDR using the standard Benjamini-Hochberg
procedure.

Burden testing of pathogenic variants
We conducted burden testing of the cohort within each
ancestry as defined by the TCGA AIM working group.
Specifically, we adopted the Total Frequency Test (TFT)
[29] by collapsing predisposing (pathogenic and likely
pathogenic) germline variants to the gene level. For each
cancer type with at least 20 cases of the tested ancestry
with at least one predisposing variant carrier, we tested
the burden of predisposing variants for each gene against
all other cancer cohorts as controls. Among the cancers
that met the sample size criteria described above, we
tested a total of 120 cancer-gene combinations using
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rare variant burden testing, of which 104 were within
European ancestry, 11 were in African ancestry, and 5
were in East Asian ancestry. The resulting P values were
adjusted to FDR using the standard Benjamini-Hochberg
procedure.

gnomAD analysis
We analyzed the gene-level and variant-level frequency
of the identified genetic predisposition using the non-
cancer subset of the genome aggregation database (gno-
mAD-non-cancer) cohort (118,479 WES and 15,708
WGS samples) [30, 31] (http://gnomad.broadinstitute.
org). For the gene-level analysis, we retained rare vari-
ants with ancestry-specific minor allele frequency < 0.
5%. We further retained pathogenic and likely patho-
genic variants per ACMG/AMP criteria as ascertained
by InterVar [32] and annotated using ANNOVAR [33].
Allele frequencies were summarized at gene-level within
each sub-population in gnomAD using total allele
counts and maximum allele numbers within each group.
The lolliplot diagrams in Fig. 2 were constructed and

modified using protein paint (https://pecan.stjude.cloud/
proteinpaint).

Expression analysis
TCGA level-3 normalized RNA expression data were
downloaded from Firehose (2016/1/28 analysis archive).
The tumor expression percentile of individual genes in
each cancer cohort was calculated using the empirical
cumulative distribution function (ecdf), as implemented
in R. We annotated germline carriers of predisposition
variants with extreme mRNA tumor expression (> 80th
or < 20th percentile) of the affected gene. For samples
within the same ancestry and same cancer cohort, we
then used the two-sample Kolmogorov-Smirnov test to
compare the expression percentile distribution between
variants of oncogenes and tumor suppressors. The
resulting P values were adjusted to false discovery rate
(FDR) using the standard Benjamini-Hochberg
procedure.
For the ancestry-specific variants, we recorded the

RNA VAF of the mutant allele in the RNA-Seq bam
files. For splice site variants, we assessed the mis-splicing
of the transcript and variants using IGV.

Power and downsampling analysis
Post hoc power analyses were performed using R-
package SKAT [34] and the power_logistic function to
calculate the number of samples for rare variant associ-
ation with causal percentage = 80%, minor allele fre-
quency < 0.1%, and using odds ratio (OR) > 1 through
OR < 10. Each calculation was performed using 100 sim-
ulations over a target 5 kb region.

Additionally, we performed a downsampling analysis
for each tumor type by random sampling of subsets of
samples with incremental sizes from zero to the total
number of samples in that tumor type. We identified the
number of significantly mutated genes as described
above within each subset and plotted a smoothed func-
tion (loess method) against the subset size. Each calcula-
tion was performed at ten iterations (Additional file 1:
Fig. S2).

Results
Ancestry demographics of TCGA cohort
We classified the 9899 TCGA cases with pass-QC
germline data across 33 cancer types by genotype-
defined ancestries defined by the PanCanAtlas An-
cestry Informative Markers (AIM) working group
(Additional file 1: Fig. S1, the “Methods” section,
Table 1). The European ancestry contained 82.68%
(n = 8184) of individuals in this cohort. The remain-
der of the cohort consisted of 9.76% (n = 966) Afri-
can ancestry, 6.56% (n = 649) East Asian ancestry,
0.48% (n = 48) South Asian ancestry, 0.41% (n = 41)
Native/Latin American ancestry, and 0.11% (n = 11)
mixed ancestry. The largest ancestry-specific tumor
cohorts are breast invasive carcinoma (BRCA) for
the European ancestry (n = 811) and African ancestry
(n = 180), liver hepatocellular carcinoma (LIHC) for
the East Asian ancestry (n = 162), and thyroid carcin-
oma (THCA) for the Native/Latin American ancestry
(n = 11) and the South Asian ancestry (n = 11).

Ancestry-specific cancer predisposing genes
Acknowledging the limited power to assess ancestry-
specific associations as shown by the post hoc power ana-
lyses (Additional file 1: Fig. S2), we sought to identify cancer
predisposing genes within each ancestry. We considered
cancer predisposing genes as those statistically enriched for
pooled pathogenic and likely pathogenic variants (referred
to here as predisposing variants) as previously classified
[20]). For each ancestry-cancer type pair, we conducted
multivariate regression analyses correcting for onset age,
gender, and the first two principal components.
Along with 36 cancer-gene associations (FDR < 0.05,

Wald test) found in the European ancestry, we identified
two specific cancer-gene associations in the African an-
cestry: BRCA2 in ovarian cancer (OV) (OR = 8.5 [95%
CI, 1.5–47.4]; FDR = 0.045) and LUSC (OR = 41.4 [95%
CI, 6.1–275.6]; FDR = 0.002). We also identified one as-
sociation in the East Asian ancestry, BRIP1 in STAD
(OR = 12.8 [95% CI, 1.8–90.84]; FDR = 0.038) (Fig. 1,
Additional file 2: Table S2a). While the association of
BRCA2 and LUSC is first described in African-American
ancestry here, BRCA2 was previously found to be associ-
ated with non-small cell lung cancer (including LUAD
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and LUSC) and ovarian cancer (OV) in the European
ancestry [35–37]. The association of BRIP1 predispos-
ition to STAD in the East Asian ancestry was also

previously reported for the European ancestry [38].
These findings (including novel associations) in a large
heterogeneous cancer population build on older studies

Table 1 The demographic distribution of TCGA PanCanAtlas cohort
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that evaluated individual cancer predisposition genes
and cancer risk across ancestries.
The top associated predisposing genes and their

carrier frequency vary widely across ancestries
(Fig. 1a). For genes with a significant association in
the African ancestry, we observed a higher carrier fre-
quency compared to other ancestries. For example, in
LUSC, BRCA2 predisposing variants were found in 2
of the 29 African ancestry samples (6.9%), whereas we
only found 1 BRCA2 carrier out of the 455 European-
ancestry samples (0.44%).
We next investigated whether the cross-ancestry differ-

ences in predisposing gene frequencies were also observed
in other cohorts. Specifically, we examined the gene-level
rates of individuals carrying pathogenic and likely patho-
genic variants in the gnomAD non-cancer cohort [30, 31]
(118,479 WES and 15,708 WGS samples, the “Methods”
section, Additional file 2: Table S3). BRCA2 showed the
highest frequency in the African ancestry (0.072%) than all
other defined ancestries, including non-Finnish European
(0.048%) and East Asian (0.047%). BRIP1 also showed
higher frequency in the East Asian ancestry (0.068%) than
all ancestries (≤ 0.045%) except for the non-Finnish Euro-
pean ancestry (0.099%).

To generate hypotheses for future targeted studies,
we investigated additional ancestry-implicated genes
using total frequency testing (TFT) of predisposing
variants, fully acknowledging potential confounders
using this method (Additional file 2: Table S2b). We
identified 7 suggestive (FDR < 0.05 in the TFT ana-
lysis) ancestry-specific cancer-gene associations in the
African ancestry, 6 of which have been previously de-
scribed including SDHB in PCPG [39], ATM in PRAD
[40, 41], FH in KIRP [42], VHL in KIRC [43], PTEN
in UCEC [44], and BRCA2 in OV [12]. We also re-
discovered the BRCA2 in LUSC described above. In
the East Asian ancestry, we identified 3 borderline-
suggestive associations (FDR = 0.32): RECQL in STAD,
BRIP1 in STAD, and POLE in LIHC. In STAD,
RECQL and BRIP1 each affected 2 of the 90 East
Asian ancestry cases, but none of the 294 European-
ancestry cases. In LIHC, two protein-truncating
variants were seen in POLE among 162 East Asian
ancestry cases compared to none in 179 European-
ancestry cases. These suggestive associations remain
to be established and are only used to identify poten-
tial predisposing variants with supporting somatic
evidence.

Fig. 1 Cancer predisposing genes identified in each ancestry across 9899 TCGA cases across cancer types in the African ancestry, East Asian, and
European ancestries. a Ancestry-specific cancer-gene pairs from TCGA dataset containing cancer predisposing variants as identified by
multivariate logistic regression analyses. Each number represents carrier frequencies of predisposing genes within that cancer cohort. Genes with
significant associations (Wald test FDR < 0.05) are highlighted with blue boxes. b Significant cancer-predisposing gene associations (FDR < 0.05)
identified in the African and East Asian ancestries
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Ancestry-specific predisposing variants
We next examined ancestry-specific predisposition at
the variant level (Fig. 2, Additional file 2: Table S4) for
the 3 significant associations from the multivariate

logistic regression analyses and the 7 suggestive associa-
tions from the TFT analysis. The cancer-gene pairs in-
cluded 15 predisposing variants within the African
ancestry and another 6 within the East Asian ancestry.

Fig. 2 Ancestry-specific predisposing germline variants. Predisposing variants in the significant (regression analysis; a) and suggestive (rare variant
burden testing; b) cancer-gene associations are shown. The variants are labeled with carrier counts and colored by their respective carriers’
ancestry (European Ancestry: blue, African ancestry: red, East Asian Ancestry: green). a Significant predisposing variants identified in the African
and East Asian ancestries are shown across respective cancer types. For BRCA2, predisposing variants across all cancers are shown (top) in
comparison with the two cancer types with significant associations in the African ancestry (LUSC and OV, bottom). Similarly, predisposing variants
contributing to the significant association of BRIP1 in STAD in the East Asian ancestry are shown. b Suggestive predisposing variants identified in
the African ancestry are shown for ATM, FH, and VHL genes within their associated cancer types. Bi-allelic events in each carrier are linked by a
grey line bracket where the somatic second-hit mutations are marked with a box. c Borderline-suggestive predisposing variants identified in the
East Asian ancestry are shown for RECQL in STAD and POLE in LIHC

Oak et al. Genome Medicine           (2020) 12:51 Page 7 of 15



None of the above variants discovered in the Afri-
can ancestry were observed in any other ancestry
within that cancer type (Fig. 2). Across the pan-
cancer TCGA cohort, all of the BRCA2 frameshift
variants found in LUSC and OV were unique to the
African ancestry. For other associated genes in the
African ancestry, including ATM (PRAD), FH (KIRP),
and VHL (KIRC), the predisposing variants differ be-
tween the African and European ancestries (Fig. 2b).
The African ancestry-specific predisposing variants in-
clude splice site variants ATM c.2921+1G>A and FH
c.556-2A>T, protein-truncating variants ATM
p.T2333fs and FH p.S187*, and missense variants
ATM p.R3008C. VHL p.C162F is the only recurrent
variant found in two KIRC cases.
In the East Asian ancestry, we assessed predisposing

variants in BRIP1 (STAD), POLE (LIHC), and RECQL
(STAD) (Fig. 2a and c). These include two BRIP1 vari-
ants p.I525fs and p.E1222fs and two protein-truncating
variants in POLE and RECQL, respectively. All six pre-
disposing variants were not shared with any other ances-
try in the TCGA cohort (Fig. 2c).
We further analyzed the frequency of these variants of

the gnomAD non-cancer dataset [30, 31]. Among the
African ancestry-specific predisposing variants, splice-
site variant ATM c.2921+1G>A (African ancestry allelic
count [AC]/total allele number [AN] = 1/14,878; allelic
frequency [AF] = 0.0067%) and BRCA2 p.R3128* (Afri-
can ancestry AC/AN = 4/23,610; AF = 0.016%) were the
only variants present in the African and non-Finnish
European ancestries in gnomAD-non-cancer dataset. All
other variants were absent within African ancestry and
most other ancestries in gnomAD except SDHB p.R46*
(Finnish European ancestry AC/AN = 2/25,066; AF =
0.007%) and ATM p.R3008C (East Asian ancestry AC/
AN = 1/17,688; AF = 0.005%). Similarly, only two of the
six East Asian ancestry-specific predisposing variants,
BRIP1 p.E1222Gfs (East Asian ancestry AC/AN = 11/19,
232; AF = 0.05%) and POLE p.Tyr1078fs (East Asian an-
cestry AC/AN = 1/17,692; AF = 0.005%), were present
exclusively in the East Asian ancestry of gnomAD-non-
cancer dataset. Of note, 7 of the 15 predisposing vari-
ants, including BRCA2 variants in OV (p.Y1710fs,
p.K1202fs) and in LUSC (p.V3082fs), were not found in
ClinVar [45]. While VHL p.C162F lacks a ClinVar rec-
ord, the co-localizing p.C162W showed three reports of
pathogenicity and one report of uncertain significance.
We also investigated the presence of the six predispos-

ing variants in the East Asian ancestry from the gno-
mAD non-cancer dataset. Only the POLE p.Y1078fs
(AC/AN = 1/17,692, AF = 0.0056%) and BRIP1 p.E1222fs
(AC/AN = 11/19,232, AF = 0.057%) were present exclu-
sively in the East Asian ancestry of gnomAD-non-cancer
dataset. All other East Asian-ancestry variants were not

detected in this dataset. Of note, none of the six variants
were previously reported in ClinVar [45].

Germline-somatic two-hit events
We next examined the two-hit hypothesis, whereby a
somatic second hit of the same gene is found in carriers
of the germline predisposing variants [46, 47]. First, we
investigated the extent of loss of heterozygosity (LOH)
of the predisposing variants using our previously devel-
oped statistical test [38] (the “Methods” section) that
compares the variant allele fractions in tumor vs. normal
samples. Among the variants observed in the African an-
cestry, we observed significant LOH (FDR < 0.05) for
both truncating variants in SDHB p.R116fs and p.R46*
in PCPG (Fig. 3a). Three additional variants exhibited
significant LOH, including BRCA2 p.R3128* (LUSC),
BRCA2 p.K1202fs (OV), and FH p.S187* (KIRP). We also
observed suggestive LOH (FDR < 0.15 or tumor VAF >
0.6) for ATM c.2921+1G>A (PRAD) and BRCA2
p.Y1710fs (OV) (Fig. 3b). Among the six predisposing
variants in the East Asian ancestry, only POLE p.E2137*
(LIHC) showed significant LOH (Fig. 3a).
As an alternative mechanism of a somatic second hit,

we identified three biallelic mutations where the rare
germline predisposing variant was coupled with a second
somatic mutation of the same gene, all found in African
ancestry carriers (labeled in Fig. 2b, Additional file 2:
Table S4b). In a PRAD carrier of ATM, the germline
p.L2332fs variant was coupled with a somatic p.E2164K
mutation; in the KIRC carrier of VHL, the germline
p.C162F variant was coupled with somatic p.E186* mu-
tation. In a KIRP carrier of FH, whose FH gene expres-
sion is low (Fig. 4a), germline p.S187* variant was
coupled with a somatic splice-site mutation
c.1390+6T>A. Analysis of RNA from the KIRP tumor
revealed that the somatic FH: c.1390+6T>A causes mis-
splicing of 27.6% of the transcripts in tumor RNA, as in-
dicated by the number of reads spanning consensus
splice site (n = 68) and the new cryptic splice site (n =
26) (case 2 in Fig. 4b). None of the six carriers of the
predisposing variants in East Asian ancestry harbored a
biallelic somatic mutation. Overall, the assessment of
LOH and biallelic mutation supports the variants’ con-
tribution to oncogenesis through the two-hit model.

Expression changes in predisposing genes
To examine the transcriptional effects of the predispos-
ing variants, we investigated the gene expression in
tumor samples of the predisposing variant carriers
(Fig. 4a). We observed 154 overall and 27 non-European
ancestry-specific predisposing variants co-occurring with
an extreme expression (> 80% or < 20% in the same can-
cer cohort) of the respective gene, although the current
sample sizes preclude us from discovering significantly
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associated genes compared to non-carriers within each
ancestry-cancer cohort (Additional file 2: Table S5a).
All of the expression-associated variants were germline

heterozygous variants at the DNA level. The degree of
their variant allele fraction in the tumor RNAseq data
(RNA VAF) thus indicates the degree of allelic-specific
expression (ASE). The African carriers of SDHB truncat-
ing variants p.R116fs (the corresponding gene’s expres-
sion ranks at the bottom 0.5 percentile among all PCPG
cases [0.5%], RNA VAF = 0.25 and p.R46* (9% in PCGP,
RNA VAF = 0.80) showed low SDHB expression. The
African carriers of BRCA2 p.Y1710fs (6% in OV, RNA
VAF = 0) and p.3082fs (15% in LUSC, RNA VAF = 0)
also exhibited low BRCA2 (Fig. 4c). In the OV case, the
germline BRCA2 p.Y1710fs is coupled with a somatic
LOH event, resulting in nearly complete loss of BRCA2
expression.
Both of the African ancestry carriers of FH predispos-

ing variants, FH p.S187* (2% in KIRP, RNA VAF = 0.13)
and FH:c.556-2A>T (2% in KIRP, RNA VAF = 0.50),
showed low FH expression. In addition to the biallelic
somatic FH:c.1390+6T>A mutation in the carrier of

germline FH p.S187* described earlier, we also observed
a mis-splicing event in a different case carrying germline
FH:c.556-2A>T at the RNA level (case 1 in Fig. 4b).
For other ancestries, the tumor from one predisposing

variant carrier of the Native/Latin American ancestry,
NF1 p.Y489C, showed low NF1 mRNA expression (2%
in BRCA, RNA VAF = 0). Overall, RNA VAF of the ma-
jority of protein-truncating variants not accompanied by
LOH varied between 0 and 0.25 (Additional file 2: Table
S5a), suggesting degradation of the mutant allele.
Many predisposing truncating variants of tumor sup-

pressors are assumed to lead to loss of gene expression
through mechanisms such as nonsense-mediated decay
(NMD). Using the NMD Classifier [48], we revealed all
frameshift variants found in the African and East Asian
ancestries were located in the NMD-competent region
(Additional file 1: Fig. S3). These results support that a
fraction of predisposing variants likely result in reduced
gene products of tumor suppressors in ancestral groups.
Conversely, for the rare tumors with germline variants

in oncogenes, the two predisposing RET variants are
coupled with elevated RET expression in their African

Fig. 3 Loss of heterozygosity (LOH) and transcriptional effects associated with ancestry-specific predisposing germline variants. a LOH in ancestry-
specific predisposing variants shown by comparing variant allele frequency in tumor vs. that in normal samples. Each dot denotes a variant and
the affected genes are labeled in cases where showed both significant allelic imbalance and copy number deletion of the wild-type alleles (in
purple). Variants showing significant allelic imbalance, yet no conclusive evidence of wild-type alleles are considered as other LOH and marked in
yellow. All other variants are shown in grey. b Count distribution of each type of LOH events across genes in the African ancestry, the East Asian
ancestry, and the European ancestry. Note given the larger number of events, the x-axis for the European ancestry is shown on a different scale
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ancestry carriers, including p.C631Y (84% in KIRC) and
p.D634Y (91% in PCGP).

Power consideration for predisposing gene discovery
Given the currently limited sample sizes in most of the
minority cohorts, we sought to identify the required
numbers of samples to discover novel cancer predispos-
ing genes. We performed post hoc power analyses to de-
tect a rare-variant association in an aggregation test

using SKAT [34]. We assumed that a high proportion
(80%) of variants are casual when focusing on prioritized
predisposing variants in accordance with ACMG/AMP
guidelines (Additional file 2: Table S6a, see the
“Methods” section) [26, 27, 32]. The detection of rare
variants (AF < 0.01) with moderate effect sizes (odds ra-
tio [OR] > 5) with at least 80% power requires sample
sizes exceeding 1000 samples (n = 1014) per cancer type
(Additional file 1: Fig. S2A).

Fig. 4 Expression changes associated with the predisposing variants. a mRNA gene expression of the affected genes in the carriers of ancestry-
specific variants as quantiles in their respective cancer cohort. Each dot denotes the gene expression level of a predisposing variant carrier
colored by ancestry. Non-European variants corresponding to the bottom 25% expression in affected tumor suppressor genes and top 25%
expression in affected oncogenes are further labeled. b Tumor RNA expression highlighting (red box) mis-spliced exon 5 with germline or
somatic splice site variants in two cases with FH splice site variants as visualized using the integrated genome viewer (IGV). c Tumor RNA
expression for the BRCA2 gene. The first two rows correspond to samples with a germline predisposing variant coupled with or without somatic
LOH event, respectively. The third row corresponds to an unrelated sample without any BRCA2 alteration. All three coverage plots are group-
scaled to show lower expression in the two samples harboring BRCA2 alterations
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The sample size requirement suggests limited power
for ancestry-specific analyses using TCGA, one of the
largest cancer sequencing cohorts to date. For the largest
ancestry subgroup in the study, European-ancestry
BRCA cases (n = 811), there is 67% power to detect
genes with smaller effect sizes (OR < 3). For all other an-
cestries, their respective largest cohorts afford inad-
equate power to detect genes with large effect sizes
(OR = 9), including the African ancestry BRCA cohort
(n = 180, power = 36%), the East Asian-ancestry LIHC
cohort (n = 162, power = 24.5%), and the Native/Latin
American-ancestry THCA cohort (n = 11, power = < 1%).
As a reference, most known cancer predisposing genes,
including ATM, PTEN, STK11, CHEK2, BRIP1, and
PALB2, have an estimated OR < 10. BRCA1/BRCA2 are
exceptions with an OR > 10 for BRCA, but also show
more moderate OR for other cancer types [49]. Despite
limited power, this TCGA study includes threefold more
non-European cases (n = 1715) compared to the
combined number of samples across 27 published non-
TCGA sequencing studies that report race/ethnicity in-
formation from cancer cohorts (n = 764 non-Europeans,
10 cancer types) [9]. Moreover, the majority of these
studies focused on somatic alterations, and only a hand-
ful reported ancestry-specific germline predisposition
(Additional file 2: Table S7).
Standard power analyses have the caveat of assuming

various unknown parameters that may be inaccurate.
We thus performed a downsampling analysis using two
cancer types with at least five significantly associated
germline genes in the European-ancestry: pheochromo-
cytoma and paraganglioma (PCPG) and sarcoma (SARC)
[4] (Additional file 1: Fig. S2B, Additional file 2: Table
S6b). We found that the sample size requirements differ
for each gene and cancer cohort, likely due to varying
penetrance. For example, six predisposing genes are dis-
covered in both PCPG (n = 146) and SARC (n = 217)
samples of the European ancestry, respectively, at their
full cohort size. Upon downsampling the cohort size in
half, we found VHL, SDHB, RET, and NF1 to be still as-
sociated in 73 PCPG cases, whereas only TP53 remained
significantly associated in 108 SARC cases. Even while
assuming similar penetrance of the predisposing genes
across ancestries, this analysis implicates that the discov-
ery power is still far from saturation for most ancestry-
specific cohorts (N < 100). The different predisposition
landscapes across cancer types should also be accounted
for in future study designs.

Discussion
We report one of the most extensive multi-ancestry in-
vestigations of rare cancer predisposing genes to date,
encompassing 9899 cancer cases across 33 cancer types.
In the African ancestry, our results validated six known

predisposing genes and nominated BRCA2 as a potential
predisposing gene for LUSC (Fig. 1) previously shown
only for Europeans. In the East Asian ancestry, we found
predisposing variants affecting BRIP1 in STAD that war-
rants further investigation. Although the number of
germline predisposing variants is small, they were associ-
ated with LOH (Fig. 3), biallelic mutations (Fig. 2), and
gene expression effects in the tumor samples (Fig. 4),
supporting their potential contribution to cancer predis-
position in carriers.
In this TCGA cohort, we found multiple significant

predisposing genes for the European ancestry and seven
for the African ancestry, yet lack cancer cohorts with
sufficient testing samples for many other ancestries, in-
cluding Native/Latin American and South Asian that
each constitute a considerable fraction of the US popula-
tion. Even when tested, this study likely contains false
negatives in multiple smaller cancer cohorts, especially
those of non-Europeans. To achieve 80% power, the post
hoc power calculation showed that the detection of rare
variants (AF < 0.01) with moderate effect sizes (OR > 5)
requires at least 1014 samples (Additional file 1: Fig. S2),
a cohort size larger than any of the TCGA non-
European cohorts.
It is necessary to use caution when interpreting the

ancestry-specific predisposing gene associations identi-
fied herein or previous studies of smaller sample sizes,
where a handful of carriers may give rise to the associ-
ation in a limited cancer cohort. Further, the suggestive
associations nominated by the TFT analyses will need to
be established by analyses of larger cohorts adjusted for
potential confounders. Two of the associations we iden-
tified in the African ancestry were also complemented
by familial studies [39, 42], providing further validation.
To design future cancer genomics studies, one must
note that the power considerations differ for discovering
somatic driver genes and germline predisposing genes.
Current detection powers have potentially reached satur-
ation in detecting somatically mutated genes for sample
sizes in multiple cancer types of TCGA [4], although ra-
cial disparities of the sequencing data could potentially
limit the generalizability of findings [50–52]. We further
highlighted the imbalanced dataset limits power for
germline gene discovery in populations under-
represented in research studies.
We observed selected predisposing genes shared

across ancestries (ex. BRCA2 in BRCA/OV and SDHB in
PCPG for both the African and European ancestries).
Predisposing variants, on the other hand, are highly
ancestry-specific (Fig. 2). Many of the predisposing vari-
ants found in the African or East Asian ancestry were
not identified in the much larger European-ancestry
population of TCGA (n = 8184) or even the gnomAD
non-cancer cohort (n = 134,187) or submitted to ClinVar
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by clinical laboratories assessing patients for cancer pre-
disposition. Rare variant classification and interpretation
remain a challenge given the low frequency of observa-
tion precluding statistical associations. The identification
of ancestry-specific predisposing variants further high-
lights this challenge in minority groups, where current
germline sequencing often results in higher rates of vari-
ants of unknown significance (VUSs) [16].
Personalized medicine provides tailored disease diag-

nosis and treatment plans based on an individual’s
unique genetic profile. The knowledge of different can-
cer predisposing genes and prevalence across ancestries
suggests that we need to provide ancestry-specific inter-
pretations of genetic data. In particular, many of the
current guidelines for when genetic testing is recom-
mended rely on the underlying likelihood of identifying
a germline variant. Thus, accurate estimates of germline
prevalence may alter recommendations for different pa-
tient populations. At the current sample sizes for minor-
ity cohorts, our study is still limited in power to discover
and establish ancestry-specificity of predisposing genes
(Additional file 1: Fig. S2). However, we were able to dis-
cover many ancestry-specific variants not currently sub-
mitted to ClinVar. Further, much of the diverse
populations within the USA, not to mention worldwide,
still lack representation in existing sequencing cohorts.
Ongoing sequencing projects will begin to address this
disparity within US populations (e.g., CSER [17], eMER-
GEIII [18], Million Veteran Program [19], and the All of
Us Research Program) and multiple countries in East
Asia and Europe [53]. Yet, many populations, such as
the diverse African ancestry [54], remain underserved al-
though projects like H3Africa are designed to address
this problem. Additional efforts will be required to de-
liver the promise of genome-based precision medicine
for all.
TCGA provides a powerful multi-omic sequencing

dataset comprising more than ten thousand adult cancer
cases [55, 56]. The dataset is used not only for character-
izing somatic mutations and molecular subtypes but also
enables studies of rare genetic predisposition and
germline-somatic interactions [20, 38, 57–59]. However,
in such applications, one needs to note that TCGA is
not a prospective cohort nor designed as a case-control
study. Using the matched-ancestry cases of other cancer
types as “controls” (the “Methods” section) is not ideal,
yet they are the only available samples in the same study.
The associations herein, therefore, may show biased ef-
fect sizes that require validation in carefully designed
epidemiological studies. To enhance the confidence of
the reported variants, we focused on identifying their
somatic impacts, including LOH, ASE, and extreme gene
expression levels that can be uniquely revealed in the
multi-omic dataset.

To aid interpretation of low-frequency ancestry-specific
variants, evidence of a somatic second hit event (i.e., loss of
heterozygosity [LOH] or a biallelic mutation) in tumor sam-
ples can support functionality. Our analysis of the two-hit
model identified the second somatic events in two thirds
(10/15) of the African ancestry-specific predisposing variants
and in one out of six of the East Asian ancestry-specific pre-
disposing variants (Additional file 2: Table S4b). Addition-
ally, some carriers of ancestry-specific predisposing variants
showed simultaneous extreme expression of the affected
genes (Fig. 3). Such evidence derived from analysis of the
somatic genome or transcriptome can be further utilized to
characterizing rare germline variants [60], especially when
DNA-level analysis still suffers from limited sample sizes.
Our observation of somatic second hit (Figs. 2

and 3) and transcriptional effects (Fig. 4) coupled
with germline variants also adds on to the current lit-
erature on germline-somatic interactions in cancer
[61]. While the majority of cancer genomic studies
focus exclusively on the germline or somatic genome,
pathogenic germline variants are associated with dif-
ferent somatic mutational signatures, allele-specific
imbalance, or somatic drivers [20, 38, 58, 62, 63]. The
availability of germline DNA analysis and tumor gen-
omic and transcriptomic analyses from the same indi-
vidual provides critical data to the analyses described
here that is not possible in many studies that only
analyze germline DNA samples alone. Collectively,
these findings are providing the roadmaps of how
germline variants may trigger and collaborate with
specific somatic mutations, eventually leading to can-
cer development. In this process, genomes across dif-
ferent ancestral populations provide different contexts
for developing somatic mutations and genomic in-
stability, even when the individual carries the same
germline predisposition variant. We showcased exam-
ples of predisposition-associated LOH and gene ex-
pression changes in diverse individuals. As sample
sizes of sequencing cohorts expand, analyzing
germline-somatic interactions across ancestry will be
pivotal to reveal potential ancestry-specific effects.

Conclusions
In summary, we identify ancestry-specific predisposing
genes and variants contributing to multiple cancer types.
The results provide insights into rare genetic predispos-
ition and their somatic impacts in cases of African and
East Asian ancestries. While the identified cancer predis-
position genes are known, most predisposing variants
are found to be exclusive within ancestries, supporting
the “clan-genomics” hypothesis [64]. Continuous studies
using larger ancestry cohorts will be required to enable
adequately powered discovery of predisposing genes and
improve genetic screening for diverse populations [65].
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