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A phylogeny-based sampling strategy and power
calculator informs genome-wide associations
study design for microbial pathogens
Maha R Farhat1,5*, B Jesse Shapiro2, Samuel K Sheppard3, Caroline Colijn4 and Megan Murray5,6
Abstract

Whole genome sequencing is increasingly used to study phenotypic variation among infectious pathogens and to
evaluate their relative transmissibility, virulence, and immunogenicity. To date, relatively little has been published on
how and how many pathogen strains should be selected for studies associating phenotype and genotype. There
are specific challenges when identifying genetic associations in bacteria which often comprise highly structured
populations. Here we consider general methodological questions related to sampling and analysis focusing on
clonal to moderately recombining pathogens. We propose that a matched sampling scheme constitutes an
efficient study design, and provide a power calculator based on phylogenetic convergence. We demonstrate this
approach by applying it to genomic datasets for two microbial pathogens: Mycobacterium tuberculosis and
Campylobacter species.
Background
In infectious disease, host and pathogen factors interact to
result in the observed severity of illness. Genetic changes
within pathogen populations can result in a spectrum of
virulence, drug resistance, transmission rates, and im-
munogenicity - all highly relevant phenotypes in the study
of infectious disease. Host variables that affect susceptibil-
ity to infection, such as age, immunodeficiency, and nutri-
tional status are more easily measured and have been
studied for some time, whereas the study of pathogen spe-
cific determinants of disease risk is more recent. One of
the first to use the term molecular epidemiology and apply
it to infectious disease agents was E. Kilbourne. In his
1973 paper ‘Molecular epidemiology of influenza’, he dis-
cussed antigenic variation as a cause of the influenza pan-
demics of the 20th century [1]. The ability to type molecular
traits of pathogens, such as surface proteins or highly
variable DNA segments, allowed the characterization of suf-
ficient strain-to-strain variation to determine when trans-
mission of disease occurred [2] as well as surveillance of the
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frequencies of different strain types over time [3]. As se-
quencing became sufficiently high throughput to allow for
whole genome analysis, the typing resolution immediately
reached the limit for heritable strain differences and has ac-
cordingly gained momentum in the study of infectious dis-
ease [4-7].
Molecular epidemiologic tools have not only enabled

disease surveillance and the study of transmission chains,
but also have facilitated the study of pathogen biology, by
allowing researchers to compare the transmissibility, im-
munogenicity, or other phenotypes that vary among strain
types or lineages and correlate these differences with spe-
cific changes in the genome [8,9]. Large numbers of
pathogen samples are often gathered for clinical diagnostic
purposes. For pathogens of high outbreak potential, sam-
ples may be collected for surveillance purposes. The short
evolutionary times corresponding to outbreaks often mean
that samples of transmitted pathogens are clonal. The
availability of samples from diagnostic and outbreak set-
ting, and the DNA sequences generated from them,
means that investigators are faced with questions about
which and how many pathogen isolates to sequence and
which analytical techniques to use to maximize efficiency
and power. These questions are especially relevant for
studies of whole-genome sequences (WGS) that will
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generate thousands of potentially relevant mutations, the
great majority of which will be noise, that is, neutral muta-
tions not related to the phenotype of interest.
The methods underlying human genome-wide associ-

ation studies (GWAS) and whole exome sequencing have
advanced significantly in the past 10 years, and are now
more rigorous and standardized across studies of different
human traits and diseases [10,11]. These advancements
have included recommendations on study design includ-
ing subject selection strategies and sample size to uncover
elements of varying frequency and effect sizes. These
methods are most well developed for single nucleotide
polymorphism (SNP) changes in typing data (as opposed
to whole genome sequences) and make implicit assump-
tions about the human genomic structure, diploidy, and
recombination rates [12-14]. The situation is different in
bacteria where recombination and genetic mutation rates
vary among species, from highly clonal organisms like
Mycobacterium tuberculosis (MTB), to the rapidly recom-
bining/sexual Streptococcus pneumoniae. In contrast to
disease states in humans, pathogen phenotypes of interest
are often those that provide a selective advantage for the
organism. Several different methods are in current use for
the study of genome wide variation of pathogens that, in
contrast to human genetic association studies, can fre-
quently leverage information about positive selection.
Despite this, the field has not yet defined accepted meth-
odologies and standards for statistical testing of variants
on a whole genome scale. In this paper we review the lit-
erature on genotype-phenotype studies and analytical
techniques focusing on MTB as an example. We propose
a matched genome sampling and analysis strategy to
optimize power for pathogens that are clonal to moder-
ately sexual. We provide an associated power and sample
size calculator and demonstrate and validate the method
using two genomic datasets: one from MTB and one from
Campylobacter species.

Methods
The methods outlined below were used for the applica-
tion of the sampling strategy.
Strain isolation, culture, sequencing, and variant call-

ing are detailed in the original publications [15,16].

Phylogeny construction
MTB: The phylogeny was constructed based on the whole
genome multiple alignment. As MTB populations are con-
sidered to be predominantly clonal, most of the genome is
thought to support a single consensus phylogeny that is not
impacted significantly by recombination [17]. A superset of
SNPs relative to reference strain H37Rv [18] was created
across the clinical isolates from the variant caller SNP re-
ports. SNPs occurring in repetitive elements including
transposases, PE/PPE/PGRS genes, and phiRV1 members
(273 genes, 10% of genome) (genes listed in reference [19])
were excluded to avoid any concern about inaccuracies in
the read alignment in those portions of the genome. Fur-
thermore, SNPs in an additional 39 genes previously associ-
ated with drug resistance [20] were also removed to
exclude the possibility that homoplasy of drug resistance
mutations would significantly alter the phylogeny. After ap-
plying these filters the remaining SNPs were concatenated
and used to construct a parsimony phylogenetic tree using
PHYLIP dnapars algorithm v3.68 [21] with KZN-DS [22]
strain as an outgroup root. We constructed a phylogeny by
two methods. First, using Bayesian Markov chain Monte
Carlo (MCMC) methods as implemented in the package
MrBayes v3.2 [23] using the GTR model and a maximum
likelihood tree using PhyML v3.0 [24]. Second, using the
GTR model with eight categories for the gamma model and
the results were consistent with the PHYLIP Phylogeny.

Campylobacter
Using multi-local sequence typing data, a phylogeny was es-
timated using ClonalFrame [25], a model-based approach
to determining microevolution in bacteria. This program
differentiates mutation and recombination event on each
branch of the tree based on the density of polymorphisms.
ClonalFrame was run with 50,000 burn in iterations and
50,000 sampling iterations. The consensus tree represents
combined data from three independent runs with 75% con-
sensus required for inference of relatedness. Recombination
events were defined as sequences with a length of >50 bp
with a probability of recombination > =75% over the length,
reaching 95% in at least one site.

Analysis
The number of mutations, insertions, or deletions (of
any size) differing between each strain pair was summed
across each locus for the eight strain pairs for each of
the two datasets belonging to MTB or Campylobacter.
The upper 95% confidence interval for the average num-
ber of mutations/locus across the eight pairs was used as
a mean of the null Poisson distribution. All genes with
larger counts than expected under this null distribution
were considered to be significantly association with the
resistance phenotype.

Results and Discussion
Literature search
We first defined five cornerstones of a systematically de-
signed microbial genotype-phenotype association study:
(1) a well-defined phenotype of interest, that can be mea-
sured/classified with negligible error; (2) some under-
standing of the effect size for that phenotype, for example
is it influenced by many genetic variants each with small
or incremental effect, or are there fewer variants with a
large effect?; (3) estimates of the number of whole
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genomes needed to achieve nominal power; (4) a sampling
strategy that may include the sequencing of pathogens seri-
ally sampled over time from the same patient, the study of
strains matched by some predefined characteristic, a ‘ran-
dom’ subsample, or an ‘exhaustive’ complete sample; and
(5) a defined statistical analysis strategy that maximizes
power and minimizes the rate of false positives.
We performed a systematic search of the literature to de-

termine which sampling and analytical strategies (the five
components above) have been applied to the study of MTB
biology using whole genome sequences. We sought articles
studying one of the following aspects of MTB biology:
immunogenicity, pathogenicity, virulence, transmissibility,
drug resistance, or fitness using whole genome sequences.
Search terms, inclusion and exclusion criteria are detailed
in Table 1. We searched PubMed on 1 September 2013 and
identified 216 abstracts, and included 16 studies (Figure 1,
Table 2).

Phenotype
Most of the studies (13/16) focused on the MTB resist-
ance phenotype to a wide range of drugs. Three other
studies examined other strains including: (1) strains
causing extrapulmonary tuberculosis; (2) strains with a
smooth phenotype; and (3) strains typed as Beijing using
spoligotyping.
Effect sizes and a priori power calculations were not

explicitly discussed in any of these studies.

Sampling
Half of the 16 studies sampled strains in time-course, ei-
ther in laboratory-evolved strains (five studies), or in
serial samples from the same patient (three studies). In
all cases, strains were initially drug sensitive but later
acquired a drug resistance phenotype. In the other eight
studies, clinical MTB samples were obtained from dif-
ferent TB patients, and generally involved the study of
more distantly-related strains than in the time-course
studies. In general strains were sampled more or less
randomly to include strains with and without the
Table 1 PubMed Search terms and inclusion and exclusion cr

Search purpose Search terms

Identify studies of Pathogen
Biology using whole
genome sequencing and
analysis

‘genome sequencing’ AND ‘tuberculosis’
AND (‘drug resistance’ OR ‘virulence’ OR
‘immunogenicity’ OR ‘transmissibility’ OR
‘fitness’)

In all PubMed fields
phenotype. Seven of the non-time-course studies were
published within the last year.

Analysis
In the time-course studies, few mutations occurred and
it was generally tractable to identify all novel mutations
and infer their role in resistance. In the other studies,
only two of eight were able to make specific genomic
iteria

Inclusion criteria Exclusion criteria

All abstracts describing the use of WGS data to
identify genes related to pathogen
immunogenicity, virulence, transmissibility, drug
resistance, or fitness

(1) Review articles

(2) Studies that
published new
sequence data only

(3) Studies that did
not study MTB
bacteria and its
biology

(4) Studies that only
assess mutation rates
in non-clinical
settings



Table 2 Literature search results

Author Reference Year Strains
sequenced (n)

Stated study purposea Clinical
strains?

Time series? Method Report specific
genotypic association?

Zhang et al. [26] 2013 161 Identify drug resistance
genes

Yes No Phylogenetics and comparison of rates
with poisson distribution

Yes; list of genes provided

Farhat et al. [15] 2013 124 Identify drug resistance
genes

Yes No Phylogenetics and convergence
analysis

Yes; list of genes provided

Lin et al. [27] 2013 2 Identify drug resistance
genes

Yes No Comparison with reference
mycobacterial strains

No

Wu et al. [28] 2013 4 Identify Beijing associated
pathways

Yes No COG enrichment of genes with snps General pathways rather than
individual genes

Das et al. [29] 2013 5 Identify genes related to
extrapulmonary TB

Yes No COG enrichment of genes with snps General pathways rather than
individual genes

Ilina et al. [30] 2013 4 Identify drug resistance
genes

Yes No Comparison with reference
mycobacterial strains

No

Abrahams et al. [31] 2013 - Identify resistance targets(s)
for novel imidazole

No Yes: spontaneous mutants
resistant to drug and their
sensitive ancestor

Identification of all mutations Yes qcrb

Supply et al. [32] 2013 5 Identify genes associated
with smooth TB phenotype

Yes No Comparison with reference
mycobacterial strains

General pathways rather than
individual genes

Hartkoorn et al. [33] 2012 - Identify resistance targets(s)
for pyridomycin

No Yes: spontaneous mutants
resistant to drug and their
sensitive ancestor

Identification of all mutations Yes acyl-carrier-protein inha

G. Sun et al. [34] 2012 7 Identify drug resistance
genes

Yes Yes: serial samples from same
patient

Identification of all mutations No; but list of potential
candidates with new fixed
mutations provided

Grzegorzewicz et al. [35] 2012 - Identify resistance targets(s)
for novel compound
Adamantyl Urea

Yes Yes: serial samples from the
same patient

Identification of all mutations Yes mmpl3

Casali et al. [36] 2012 59 Identify drug resistance
genes

Yes No Phylogenetic tree and parallel
evolution and convergence

Yes rpoc

Tahlan et al. [37] 2012 - Identify resistance targets(s)
for novel compound
SQ109

No Yes: spontaneous mutants
resistant to drug and their
sensitive ancestor

Identification of all mutations Yes mmpl3

La Rosa et al. [38] 2012 - Identify resistance target(s)
for 1,5-diarylpyrrole
derivative BM212

No Yes: spontaneous mutants
resistant to drug and their
sensitive ancestor

Identification of all mutations Yes mmpl3
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Table 2 Literature search results (Continued)

Comas et al. [39] 2011 10 Identify drug resistance
genes

Yes Yes: serial samples from the
same patient

Identification of all mutations in rpoc.
Assessment of convergence across
different strain pairs

Yes confirmed rpoc

Manjunatha et al. [40] 2006 - Identify resistance targets(s)
for PA-824

No Yes: spontaneous mutants
resistant to drug and their
sensitive ancestor

Identification of all mutations Yes Rv3547

aThe term ‘phenotype related genes’ is used loosely here to describe genes that are associated with but not necessarily causative of the phenotype.
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associations supported by formal assessments of statistical
significance; both these studies sequenced a relatively large
number of genomes (>100), and used phylogenetic ances-
tral reconstruction in their analysis of mutations relevant
to the phenotype [15,26]. Two studies [15,36] used phylo-
genetic convergence (described below) to select candidates
for association with the drug resistance phenotype. In the
other six studies, the phenotype-genotype associations
were of a more descriptive, less formal nature.
Across all studies, a common theme was the use of tests

for positive selection and phylogenetics to differentiate be-
tween genetic variation related to strain ancestry and those
relevant to the phenotype [15,36]. There are also examples
from non-TB pathogens [16,41]. In the phylogenetic con-
vergence test mentioned above, a relatedness tree, con-
structed using the whole genome data is used to identify
genes that accumulate frequent mutations synchronous
with the acquisition of the phenotype of interest. Phylogen-
etic convergence has several advantages well-suited to the
study of microorganisms. Most notably, by focusing only
on the genetic changes that coincide with the independent
appearances of the phenotype, it ignores false-positive asso-
ciations due to clonal population structure, namely the gen-
etic relatedness of the strains [15,16,36,41,42]. It can
therefore be applied to both clonal and sexual/recombining
pathogens as long as recombination is taken into account
in the phylogenetic tree construction [43]. For highly re-
combining pathogens, the tools of human GWAS might be
appropriate, with some modifications [44,45].

Sampling and analysis strategy
The literature review highlights the success of time-course
WGS, either within patients or in vitro, to identify the gen-
etic bases of clinically-important phenotypes. However
time-course samples are often difficult to obtain, particularly
in clinical settings, and may not always be generalizable to
the larger population of pathogens [46]. In contrast to time-
courses, ‘cross-sectional’ samples of strains routinely col-
lected for patient diagnosis or public health surveillance are
both easier to obtain and may provide a more comprehen-
sive, global picture of a pathogen’s adaptive landscape.
A major challenge posed by studying diverse clinical

strains is that the sampled population of pathogens may
contain population structure related to the shared ancestry
of the strains. Populations are considered structured when
they include subpopulations among which the frequency of
genotypes differs systematically. Population structure, a form
of non-independence of observations, can be seen when
pathogen strains are isolated from disease outbreaks or dir-
ect transmission chains, or clusters, and compared with
non-clustered strains; The study of pathogen subpopulations
when they also preferentially share the phenotype of interest,
can lead investigators to wrongly associate the subpopula-
tion genotype, shared by virtue of ancestry alone, with the
phenotype of interest. This type of confounding bias is a
well-recognized problem in human GWAS [11,47-49].
Whereas different methods such as Principle Compo-

nents analysis, mixed effects models and phylogenetic
convergence can be used to correct for population struc-
ture [11,47-51], adopting a careful sampling strategy can
minimize the impact of - or even capitalize on - population
structure. Drawing parallels from case-control study design
in epidemiology and human GWAS [47] we propose that
sampling ‘matched’ pairs of closely-related strains with dif-
ferent phenotypes can not only control for population
structure but can also deliver higher power relative to
sampling randomly from strain collections. The matching
procedure we propose addresses population structure and
improves power by ignoring the shared variants within a
subpopulation and focusing only on the recently evolved
differences, thus reducing the number of variables tested
and improving power. The sequence data generated using
matched sampling can be analyzed using a simplified form
of phylogenetic convergence by: (1) identifying the recently
evolved mutations by pairwise alignment of a sequence
from a strain with the phenotype of interest with a closely-
related strain lacking the phenotype; (2) counting the num-
ber of mutations across several such pairs; and (3) compar-
ing these counts either to a null distribution generated
using a non-parametric permutation test [15], or simply to
a Poisson or Binomial distribution, as we will discuss and
demonstrate in the next sections.
Assuming a binary phenotype of interest that has been

clearly defined, we propose to match strains using data
from traditional strain typing such as pulsed-field gel
electrophoresis and multi-locus sequence typing that is
often already available for the banked strains, especially
under surveillance for public health purposes. Using this
lower resolution typing data, a phylogenetic tree can be
constructed, accounting for recombination as needed
using methods such as ClonalFrame [16,25]. Figure 2A
displays a hypothetical tree topology obtained for a sam-
ple of 16 MTB clinical strains constructed using their
MIRU-VNTR pattern [52]. Figure 2B demonstrates the
matched sampling strategy. For each phenotype positive
(ph+) strain, a neighboring phenotype negative (ph-)
strain is selected such that the phylogenetic distance be-
tween the pair of strains is minimized. Only one ph- and
one ph+ strain is sampled per clade. If more than one
strain is equidistant, then one is selected at random. The
larger phylogenetic tree is thus reduced to a set of
matched ph+ and ph- pairs.

Power calculations to optimize genotype-phenotype
association studies
To design a genotype-phenotype association study, know-
ledge about the optimal number of pathogen genomes to
sample is necessary. Here we define the sample size n as
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the number of matched genome pairs necessary to achieve
a nominal power of >80% for detecting a true association,
accepting a false positive association rate of no higher than
0.05. Our goal is to identify genomic variants, for example
mutations or recombination events that confer a fitness
advantage when the phenotype of interest such as anti-
biotic resistance, virulence, evolves under selective pres-
sure. These positively selected variants are expected to be
more prevalent in strains with the phenotype of interest
(ph+). Below, we will describe two methods to identify
genomic variants associated with this phenotype of inter-
est. The first, ‘site-level’ method, uses individual nucleotide
sites as the basic level of genetic variation. However, this
method can also be applied to other levels of variation, in-
cluding the presence of absence of genes, or clusters of
mutations that are transferred together by recombination
and can thus be considered as a unit. This method is
therefore applicable to clonal pathogens that evolve al-
most entirely by point mutation, as well as to moderately
recombining pathogens, in which recombinant parts of
the genome can be identified computationally [53-55] and
considered as a single ‘site’. In the second, ‘locus-level’
method, we model a scenario in which different mutations
within the same gene or locus can have a similar pheno-
typic effect, for example the loss of function by introdu-
cing stop codons at different points in the gene, providing
additional evidence for the importance of that gene for a
particular phenotype.
In the site-level method, for an organism with genome

of length k and an average distance (or number of vari-
ants) s between each pair of strains, we can define a null
hypothesis for the distribution of the number of variants lj
at a particular neutral site (j) in the genome (in the ph+
relative to the ph- strains) across the n pairs. In particular,
if the site j is not under selection, then s/k should be a rea-
sonable estimate of the rate of neutral variation, and under
the null hypothesis, lj is a Binomial random variable corre-
sponding to n trials with a success probability pNull = s/k.
Under the alternative hypothesis that site j is under posi-
tive selection, lj is a binomial random variable with n trials
and success probability fsite which is greater than s/k. fsite is
related to the phenotypic effect size of the variant, as a
higher frequency of a variant will result from stronger
positive selection, that is, higher fitness of the variant in
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ph+ relative to ph- strains [56]. An extreme example
would be a selective sweep that results in all members of
the ph+ population carrying the same variant in which
case fsite would be 1. In a previous genotype-phenotype as-
sociation study of drug resistance in MTB [15], the lowest
frequency of a single nucleotide (‘site level’) variant with a
known fitness advantage was estimated at 4% (f = 0.04)
(rpoB codon 455 in rifampicin (RIF) resistant strains),
whereas the highest was estimated at 52% (f = 0.52) (rpoB
codon 450).
As observed for rpoB, more than one nucleotide site

in a locus can carry a fitness conferring variant; we can
thus formulate a locus-level test by defining a null distri-
bution for the sum of the variant counts in a locus,
li_locus. If locus i of length gi is not under selection, with
the same parameters s and k defined above, then the dis-
tribution of li_locus can be approximated by a Poisson dis-
tribution with a rate = n s gi /k. Under the alternative
hypothesis, this locus is under selection and the ex-
pected number of mutations is n flocus, which is larger
than n s gi /k. Similar to fsite, flocus is related to the col-
lective fitness advantage conferred by its variants. For
example, in the study cited above, flocus was estimated to
be 0.30 to 1.5/locus/ph+ strain for the thyA locus for
MTB p-aminosalicylic resistance, and rpoB locus for RIF
resistance, respectively [15]. The test will have a different
power for different values of fsite/locus. Because this ana-
lysis involves testing all the sites and loci with observed
variation, a correction for multiple testing is needed. We
use the Bonferroni correction, assuming that the upper
limit for the number of variable sites across the sample
is n s, and the number of variable loci to be 1- e-n g

i
s/k

(from the Poisson distribution). In Figures 3, 4, and 5,
we provide power calculation results as a function of n, s
and f using the 4.41 Mbp MTB genome as an example.
Here we calculated the expected power by integrating
across the distribution of locus lengths gi for the MTB
reference genome H37Rv. Based on previous data from
fingerprint-matched MTB, our power calculations ex-
plored a range of between-strain genetic distances (s)
from 50 to 300 mutations [4].
In the case of MTB, we found that high power (>80%)

could be achieved by sequencing 50 to 100 strain pairs
(matched at a distance of s = 100 variants) to detect a
‘rare’ drug resistance variant in >5% of the ph+ strains
(fsite >0.05; Figure 3) or a locus with a low mutation rate
of 0.25/locus/ph+ strain (flocus >0.25; Figure 4). The ad-
vantage of performing a locus-level analysis is that we
expect flocus > fsite because flocus is proportional to the
sum of fsite over all sites under selection in the locus.
The number of tests performed in a locus-level analysis
is several orders of magnitude lower than with a site-
level analysis because a bacterial genome contains on
the order of 106 sites, but only 103 genes (loci). We
performed similar calculations for Campylobacter (k =
1.64 Mbp), assuming a higher matching distance s = 300
that is expected for multi-locus sequence typing (MLST)
of this pathogen [16]. With 50 to 100 strain pairs of
Campylobacter the lowest flocus that can be detected with
>80% power is 0.60 (Additional file 1: Figure S1), higher
than for MTB (Figure 4).
We next explored how power depends on the genetic

distance between sampled genomes. Figure 5 demon-
strates that considerable power gains can be achieved by
sampling strain pairs that are close genetic relatives
(low s). This is because, for a given value of fsite or flocus,
raising s decreases the ratio of selected to neutral vari-
ants, thereby decreasing the signal to noise ratio.
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The power calculator is provided with this manuscript
as an R function (Additional file 2), and allows the user
to tune all the parameters described to provide power
estimates for different effect sizes, different pathogen
genome sizes, and different levels of genetic relatedness.

Application to genomic data from MTB and
Campylobacter species
We applied the sampling strategy described in Figure 2 to a
set of 123 clinically isolated unmatched MTB genomes pre-
viously analyzed using phylogenetic convergence [15]
(Additional files 3 and 4). Repetitive, transposon, and
phage-related regions were removed as putatively recom-
binant or as error-prone regions of the alignment. Of the
123 strains, 47 were resistant to one or more drugs (ph+)
and the rest were sensitive (ph-). As different fingerprinting
methods were used for the different strains in this study
and for demonstration purposes we used the phylogeny
constructed using whole genome single nucleotide poly-
morphisms to match strains. We chose eight pairs of
strains using this selection strategy (Figure 6). We then
counted the recent mutational changes (single nucleotide
polymorphisms; SNPs) between each pair of strains. The
average distance (s) between pairs was 109 SNPs and was
in the range of 12 to 254 SNPs. We calculated the number
of changes per gene across the eight pairs and compared
this number to a Poisson distribution of mutations ran-
domly distributed across branches as the null distribution.
We then identified the tail of the distribution, containing
genes with a high number of changes highly associated with
drug resistance (Figure 7). Overall, 12 genes and non-
coding regions were found to be associated with drug re-
sistance using only 16 out of 123 strains (13%) used in the
original analysis. The analysis identified katG, embB, rpoB
(well known drug resistance determinants) as well as top
new candidates from the previous full analysis of all 123 ge-
nomes: ponA1, ppsA, murD, and rbsk. This selection strat-
egy and analysis recovered 67% of the candidates identified
with the full analysis, but used only 13% of the data, dem-
onstrating the superior power of the matched convergence
analysis to the general unmatched test.
Second, we applied the same method to a set of 192

Campylobacter coli and jejuni isolates used by Sheppard
et al. in an association study to identify the factors respon-
sible for adaptation to cattle and chickens [16] (Additional
files 5 and 6). Sheppard et al. associated the presence or
absence of unique 30 bp ‘words’ with the host specificity
phenotype and controlled for population structure by
comparing the real word counts with word counts gener-
ated along the tree through Monte Carlo simulations. We
applied our method to a subset of 29 strains enriched in
the phenotype of host switching that Sheppard et al. had
used in their initial analysis. After correcting for recom-
bination and constructing the phylogeny using Clonal-
Frame, we phylogenetically matched 8 pairs of strains that
had undergone host switching (Figure 8). Five switches
were estimated from cattle to bird or human, and three
were from bird to human hosts. We counted the pairwise
differences across the eight pairs, grouping insertions/de-
letions and mutations by gene and compared the distribu-
tion to the expected Poisson distribution (Figure 9). We
associated two consecutive genes: surE and Cj0294, both
of which were present in cattle-associated strains but ab-
sent in chicken-associated strains. These genes mapped to
a vitamin B5 biosynthesis region, which Sheppard et al.
had previously found to affect Campylobacter growth in
the presence or absence of vitamin B5 [16]. In addition,
our approach associated 105 additional genes (Additional
file 7: Table S1). Thus, using the convergence method and
focusing on genes rather than 30 bp words, we were able
to detect the experimentally-validated vitamin B5 region
of the Campylobacter genome, among other potential
genes involved in host switching that had been observed
by Sheppard et al. using a much smaller dataset.
Our power calculations rely on a well-defined pheno-

type that can be measured without error. The phenotype
is also assumed to be binary, or at least divisible into
two binary states; therefore, the calculations cannot be
easily extended to quantitative traits. Knowledge about
the expected effect size for different phenotypes is also
important for these calculations and prospective study
design. Among the studies reviewed, we found the effect
size to be infrequently reported for MTB. Here we pro-
vide empirical effect sizes estimated from a previous
MTB drug resistance study [15] as a reference point for
future studies.
Our approach also assumes that a certain amount of

previously collected antigen or genotyping data is avail-
able to allow for building a phylogeny and selecting pairs
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Figure 6 Phylogeny of MTB strains chosen for genotype-phenotype analysis. Dots indicate the presence of the drug resistant phenotype.
The tree demonstrates the matching of strains with and without the drug resistance phenotype.
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Figure 7 Distribution of SNPs/locus across the eight pairs of
MTB genomes. Observed counts are represented by black bars. The
dashed line represents the upper 95% confidence bounds on a
Poisson distribution with the observed number of mutations.
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of strains to sequence. When sequence data are already
available, this method can still be used to select strains
for paired analysis, providing a simple control for popu-
lation structure and a more simplified analysis strategy.
If no typing data are available, alternatives may still exist
- for example, using epidemiological data that link
strains within a particular outbreak. In each of these sce-
narios, perfect matching to form pairs of monophyletic
strains may not always be possible, but given the rela-
tionship of the matching distance to power demon-
strated above, we argue for matching as many strains as
possible and as closely as possible. The analysis of the
total dataset of all monophyletic and paraphyletic pairs
can be performed via ancestral reconstruction and a
more general phylogenetic convergence method (‘phyC’
[15]) rather than the simplified pairwise analysis de-
scribed here.
Our power calculations, like all models, make neces-

sary simplifications and assumptions. For example, we
assume that neutral variants are distributed randomly
across the whole genome. This may not necessarily be
the case as some pathogen genes may contain mutation
or recombination hot spots. Some adjustment for such a
scenario could be made by using a higher average rate of
variation than the one expected, that is, testing power
under a pairwise distance s† amplified by a factor m> 1
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Figure 8 Phylogeny of Campylobacter strains. Branches highlighted in green lead up to the strain pairs chosen for genotype-phenotype association.
Colored circles denote host specificity: red = cattle, green = chicken, purple =wild bird/non-host, orange = human.
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where s† =m sexpected for a range of m. The framework
and power calculations presented here represent a step
toward more systematic and prospective genotype-
phenotype study design for microbial pathogens, and
can provide the basis for more refined power calcula-
tions (for example, accounting for continuous rather
than binary phenotypes, or for analysis of un-matched
strains).

Conclusions
The improved ability to study the evolution of clinical
strains will be an important advance for the study of patho-
gens as they spread. Thus far, most of our understanding of
infectious disease has focused on the epidemiological study
of host risk factors, or on the in vitro study of the pathogen.
The rich information contained in whole genomes of clin-
ical pathogens - isolated as they adapt to their host and
cause disease - provides a new and complementary per-
spective on pathogen biology. Here we have shown how
clonal to moderately sexual strain collections, originally as-
sembled for epidemiological purposes, using appropriate
sub-sampling schemes, can empower genome-level associ-
ation studies and reveal genotype-phenotype associations,
increasing our understanding of pathogen biology and
adaptation.

Additional files

Additional file 1: Figure S1. Power of matched convergence test to
identify phenotype associated loci. The average distance between
matched strains was set at s = 300 variants. Colors represent increasing
values of locus effect size flocus.

Additional file 2: Power calculator as R function.

Additional file 3: Mycobacterium tuberculosis strains multiple
sequence alignment file.

Additional file 4: Mycobacterium tuberculosis strains drug resistance
profile.

Additional file 5: Campylobacter strain multiple sequence
alignment file.

Additional file 6: Campylobacter strain host specificity phenotype.

Additional file 7: Table S1. Campylobacter genes associated with host
switching using the matched selection strategy and the proposed
analysis.

Abbreviations
GTR: Generalized Time Reversible substitution model; GWAS: Genome Wide
Association Study; MIRU-VNTR: Mycobacterial interspersed repetitive
units-variable number tandem repeats; MLST: Multi-locus sequence typing;
MTB: Mycobacterium tuberculosis; SNPs: Single nucleotide changes;
TB: Tuberculosis; WGS: Whole-genome sequencing or sequences.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MF and MM were responsible for the conception and design of this study.
MF conducted the analysis and drafted the original manuscript. BJS and CC
contributed to the design and made key manuscript edits. SS contributed to
the Campylobacter analysis and provided key manuscript edits. All authors
read and approved the final manuscript.

Acknowledgments
This work was funded by the Parker B. Francis Foundation (MF) and the NIH
U19-AI109755 (MF and MM), NIH U19 A1-076217 (MM), the Canadian
Institutes for Health Research, the Natural Sciences and Engineering Research
Council of Canada, and the Canada Research Chairs program (BJS), the
Engineering and Physical Sciences Research Council EPSRC EP/K026003/1
(CC). SS is funded by the UK Biotechnology and Biological Sciences Research
Council (BBSRC), the Wellcome Trust, and the UK Medical Research Council
(MRC) - under the Cloud Infrastructure for Microbial Bioinformatics (CLIMB)
project. We thank Dr. Alkes Price, Harvard School of Public Health
Department of Biostatistics, for his helpful feedback on the manuscript and
methods.

Author details
1Department of Pulmonary and Critical Care, Massachusetts General Hospital,
Harvard Medical School, Boston, MA, USA. 2Département de sciences
biologiques, Université de Montréal, Montréal, QC, Canada. 3Institute of Life
Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK.
4Department of Mathematics, Imperial College London, London, UK.
5Department of Global Health and Social Medicine, Harvard Medical School,
641 Huntington Avenue Suite 4A, Boston, MA 02115, USA. 6Department of
Epidemiology, Harvard School of Public Health, Boston, MA, USA.

References
1. Kilbourne ED: The molecular epidemiology of influenza. J Infect Dis 1973,

127:478–487.
2. Alland D, Kalkut GE, Moss AR, McAdam RA, Hahn JA, Bosworth W, Drucker E,

Bloom BR: Transmission of tuberculosis in New York City – an analysis by
DNA fingerprinting and conventional epidemiologic methods. N Engl J
Med 1994, 330:1710–1716.

3. Streicher EM, Müller B, Chihota V, Mlambo C, Tait M, Pillay M, Trollip A, Hoek
KGP, Sirgel FA, van Pittius NCG, van Helden PD, Victor TC, Warren RM:
Emergence and treatment of multidrug resistant (MDR) and extensively
drug-resistant (XDR) tuberculosis in South Africa. Infect Genet Evol 2012,
12:686–694.

4. Walker TM, Ip CLC, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, Eyre DW,
Wilson DJ, Hawkey PM, Crook DW, Parkhill J, Harris D, Walker AS, Bowden R,
Monk P, Smith EG, Peto TEA: Whole-genome sequencing to delineate
Mycobacterium tuberculosis outbreaks: a retrospective observational
study. Lancet Infect Dis 2013, 13:137–146.

5. Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, Rempel S,
Moore R, Zhao Y, Holt R, Varhol R, Birol I, Lem M, Sharma MK, Elwood K,
Jones SJM, Brinkman FSL, Brunham RC, Tang P: Whole-genome
sequencing and social-network analysis of a tuberculosis outbreak.
N Engl J Med 2011, 364:730–739.

6. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M,
McGee L, von Gottberg A, Song JH, Ko KS, Pichon B, Baker S, Parry CM,
Lambertsen LM, Shahinas D, Pillai DR, Mitchell TJ, Dougan G, Tomasz A,
Klugman KP, Parkhill J, Hanage WP, Bentley SD: Rapid pneumococcal
evolution in response to clinical interventions. Science 2011, 331:430–434.

7. Kumar V, Sun P, Vamathevan J, Li Y, Ingraham K, Palmer L, Huang J, Brown
JR: Comparative genomics of Klebsiella pneumoniae strains with
different antibiotic resistance profiles. Antimicrob Agents Chemother 2011,
55:4267–4276.

8. Kato-Maeda M, Shanley CA, Ackart D, Jarlsberg LG, Shang S, Obregon-
Henao A, Harton M, Basaraba RJ, Henao-Tamayo M, Barrozo JC, Rose J,
Kawamura LM, Coscolla M, Fofanov VY, Koshinsky H, Gagneux S, Hopewell
PC, Ordway DJ, Orme IM: Beijing sublineages of Mycobacterium
tuberculosis differ in pathogenicity in the guinea pig. Clin Vaccine
Immunol CVI 2012, 19:1227–1237.

9. Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, Johnston JC,
Gardy J, Lipsitch M, Fortune SM: Mycobacterium tuberculosis mutation
rate estimates from different lineages predict substantial differences in
the emergence of drug-resistant tuberculosis. Nat Genet 2013,
45:784–790.

http://genomemedicine.com/content/supplementary/s13073-014-0101-7-s1.pdf
http://genomemedicine.com/content/supplementary/s13073-014-0101-7-s2.zip
http://genomemedicine.com/content/supplementary/s13073-014-0101-7-s3.zip
http://genomemedicine.com/content/supplementary/s13073-014-0101-7-s4.txt
http://genomemedicine.com/content/supplementary/s13073-014-0101-7-s5.zip
http://genomemedicine.com/content/supplementary/s13073-014-0101-7-s6.xlsx
http://genomemedicine.com/content/supplementary/s13073-014-0101-7-s7.xlsx


Farhat et al. Genome Medicine 2014, 6:101 Page 13 of 14
http://genomemedicine.com/content/6/11/101
10. Wang Z, Liu X, Yang B-Z, Gelernter J: The role and challenges of exome se-
quencing in studies of human diseases. Stat Genet Methodol 2013, 4:160.

11. Price AL, Zaitlen NA, Reich D, Patterson N: New approaches to population
stratification in genome-wide association studies. Nat Rev Genet 2010,
11:459–463.

12. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D:
Principal components analysis corrects for stratification in genome-wide
association studies. Nat Genet 2006, 38:904–909.

13. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen
MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES: A unified
mixed-model method for association mapping that accounts for
multiple levels of relatedness. Nat Genet 2006, 38:203–208.

14. Listgarten J, Lippert C, Kadie CM, Davidson RI, Eskin E, Heckerman D:
Improved linear mixed models for genome-wide association studies.
Nat Methods 2012, 9:525–526.

15. Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, Warren
RM, Streicher EM, Calver A, Sloutsky A, Kaur D, Posey JE, Plikaytis B, Oggioni
MR, Gardy JL, Johnston JC, Rodrigues M, Tang PKC, Kato-Maeda M,
Borowsky ML, Muddukrishna B, Kreiswirth BN, Kurepina N, Galagan J,
Gagneux S, Birren B, Rubin EJ, Lander ES, Sabeti PC, Murray M: Genomic
analysis identifies targets of convergent positive selection in drug-
resistant Mycobacterium tuberculosis. Nat Genet 2013, 45:1183–1189.

16. Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA, Kelly DJ, Bentley SD,
Maiden MCJ, Parkhill J, Falush D: Genome-wide association study
identifies vitamin B5 biosynthesis as a host specificity factor in
Campylobacter. Proc Natl Acad Sci U S A 2013, 110:11923–11927.

17. Namouchi A, Didelot X, Schöck U, Gicquel B, Rocha EPC: After the
bottleneck: Genome-wide diversification of the Mycobacterium
tuberculosis complex by mutation, recombination, and natural selection.
Genome Res 2012, 22:721–734.

18. Lew JM, Kapopoulou A, Jones LM, Cole ST: TubercuList–10 years after.
Tuberc Edinb Scotl 2011, 91:1–7.

19. Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, Ernst JD,
Gagneux S: Human T cell epitopes of Mycobacterium tuberculosis are
evolutionarily hyperconserved. Nat Genet 2010, 42:498–503.

20. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB:
Tuberculosis drug resistance mutation database. PLoS Med 2009, 6:e2.

21. Felsenstein J: PHYLIP - Phylogeny Inference Package (Version 3.2).
Cladistics 1989, 5:164–166.

22. Ioerger TR, Koo S, No E-G, Chen X, Larsen MH, Jacobs WR, Pillay M, Sturm
AW, Sacchettini JC: Genome Analysis of Multi- and Extensively-Drug-
Resistant Tuberculosis from KwaZulu-Natal. South Africa. PLoS ONE 2009,
4:e7778.

23. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S,
Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: Efficient
Bayesian phylogenetic inference and model choice across a large model
space. Syst Biol 2012, 61:539–542.

24. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New
algorithms and methods to estimate maximum-likelihood phylogenies:
assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307–321.

25. Didelot X, Falush D: Inference of bacterial microevolution using
multilocus sequence data. Genetics 2007, 175:1251–1266.

26. Zhang H, Li D, Zhao L, Fleming J, Lin N, Wang T, Liu Z, Li C, Galwey N,
Deng J, Zhou Y, Zhu Y, Gao Y, Wang T, Wang S, Huang Y, Wang M, Zhong
Q, Zhou L, Chen T, Zhou J, Yang R, Zhu G, Hang H, Zhang J, Li F, Wan K,
Wang J, Zhang X-E, Bi L: Genome sequencing of 161 Mycobacterium
tuberculosis isolates from China identifies genes and intergenic regions
associated with drug resistance. Nat Genet 2013, 45:1255–1260.

27. Lin N, Liu Z, Zhou J, Wang S, Fleming J: Draft genome sequences of two
super-XDR isolates of M. tuberculosis from China. FEMS Microbiol Lett
2013, 347:93–96.

28. Wu W, Zheng H, Zhang L, Wen Z, Zhang S, Pei H, Yu G, Zhu Y, Cui Z, Hu Z,
Wang H, Li Y: A genome-wide analysis of multidrug-resistant and
extensively drug-resistant strains of Mycobacterium tuberculosis Beijing
genotype. Mol Genet Genomics MGG 2013, 288:425–436.

29. Das S, Roychowdhury T, Kumar P, Kumar A, Kalra P, Singh J, Singh S, Prasad
HK, Bhattacharya A: Genetic heterogeneity revealed by sequence analysis
of Mycobacterium tuberculosis isolates from extra-pulmonary
tuberculosis patients. BMC Genomics 2013, 14:404.

30. Ilina EN, Shitikov EA, Ikryannikova LN, Alekseev DG, Kamashev DE,
Malakhova MV, Parfenova TV, Afanas’ev MV, Ischenko DS, Bazaleev NA,
Smirnova TG, Larionova EE, Chernousova LN, Beletsky AV, Mardanov AV,
Ravin NV, Skryabin KG, Govorun VM: Comparative genomic analysis of
Mycobacterium tuberculosis drug resistant strains from Russia.
PLoS One 2013, 8:e56577.

31. Abrahams KA, Cox JAG, Spivey VL, Loman NJ, Pallen MJ, Constantinidou C,
Fernández R, Alemparte C, Remuiñán MJ, Barros D, Ballell L, Besra GS:
Identification of novel imidazo[1,2-a]pyridine inhibitors targeting M.
tuberculosis QcrB. PLoS One 2012, 7:e52951.

32. Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, Majlessi
L, Criscuolo A, Tap J, Pawlik A, Fiette L, Orgeur M, Fabre M, Parmentier C,
Frigui W, Simeone R, Boritsch EC, Debrie A-S, Willery E, Walker D, Quail MA,
Ma L, Bouchier C, Salvignol G, Sayes F, Cascioferro A, Seemann T, Barbe V,
Locht C, Gutierrez M-C, et al: Genomic analysis of smooth tubercle bacilli
provides insights into ancestry and pathoadaptation of Mycobacterium
tuberculosis. Nat Genet 2013, 45:172–179.

33. Hartkoorn RC, Sala C, Neres J, Pojer F, Magnet S, Mukherjee R, Uplekar S,
Boy-Röttger S, Altmann K-H, Cole ST: Towards a new tuberculosis drug:
pyridomycin - nature’s isoniazid. EMBO Mol Med 2012, 4:1032–1042.

34. Sun G, Luo T, Yang C, Dong X, Li J, Zhu Y, Zheng H, Tian W, Wang S, Barry
CE 3rd, Mei J, Gao Q: Dynamic population changes in Mycobacterium
tuberculosis during acquisition and fixation of drug resistance in
patients. J Infect Dis 2012, 206:1724–1733.

35. Grzegorzewicz AE, Pham H, Gundi VAKB, Scherman MS, North EJ, Hess T,
Jones V, Gruppo V, Born SEM, Korduláková J, Chavadi SS, Morisseau C,
Lenaerts AJ, Lee RE, McNeil MR, Jackson M: Inhibition of mycolic acid
transport across the Mycobacterium tuberculosis plasma membrane.
Nat Chem Biol 2012, 8:334–341.

36. Casali N, Nikolayevskyy V, Balabanova Y, Ignatyeva O, Kontsevaya I, Harris SR,
Bentley SD, Parkhill J, Nejentsev S, Hoffner SE, Horstmann RD, Brown T,
Drobniewski F: Microevolution of extensively drug-resistant tuberculosis
in Russia. Genome Res 2012, 22:735–745.

37. Tahlan K, Wilson R, Kastrinsky DB, Arora K, Nair V, Fischer E, Barnes SW,
Walker JR, Alland D, Barry CE 3rd, Boshoff HI: SQ109 targets MmpL3, a
membrane transporter of trehalose monomycolate involved in mycolic
acid donation to the cell wall core of Mycobacterium tuberculosis.
Antimicrob Agents Chemother 2012, 56:1797–1809.

38. La Rosa V, Poce G, Canseco JO, Buroni S, Pasca MR, Biava M, Raju RM,
Porretta GC, Alfonso S, Battilocchio C, Javid B, Sorrentino F, Ioerger TR,
Sacchettini JC, Manetti F, Botta M, De Logu A, Rubin EJ, De Rossi E: MmpL3
is the cellular target of the antitubercular pyrrole derivative BM212.
Antimicrob Agents Chemother 2012, 56:324–331.

39. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J,
Niemann S, Gagneux S: Whole-genome sequencing of rifampicin-resistant
Mycobacterium tuberculosis strains identifies compensatory mutations
in RNA polymerase genes. Nat Genet 2012, 44:106–110.

40. Manjunatha UH, Boshoff H, Dowd CS, Zhang L, Albert TJ, Norton JE, Daniels
L, Dick T, Pang SS, Barry CE 3rd: Identification of a nitroimidazo-oxazine-
specific protein involved in PA-824 resistance in Mycobacterium
tuberculosis. Proc Natl Acad Sci U S A 2006, 103:431–436.

41. Sokurenko EV, Feldgarden M, Trintchina E, Weissman SJ, Avagyan S,
Chattopadhyay S, Johnson JR, Dykhuizen DE: Selection footprint in the
FimH adhesin shows pathoadaptive niche differentiation in Escherichia
coli. Mol Biol Evol 2004, 21:1373–1383.

42. Chattopadhyay S, Paul S, Dykhuizen DE, Sokurenko EV: Tracking recent
adaptive evolution in microbial species using TimeZone. Nat Protoc 2013,
8:652–665.

43. Shapiro BJ, David LA, Friedman J, Alm EJ: Looking for Darwin’s footprints
in the microbial world. Trends Microbiol 2009, 17:196–204.

44. Alam MT, Petit RA, Crispelll EK, Thornton TA, Conneely KN, Jiang Y, Satola
SW, Read TD: Dissecting vancomycin intermediate resistance in
Staphylococcus aureus using genome-wide association. Genome Biol Evol
2014, 6:1175–1185.

45. Park DJ, Lukens AK, Neafsey DE, Schaffner SF, Chang H-H, Valim C, Ribacke
U, Van Tyne D, Galinsky K, Galligan M, Becker JS, Ndiaye D, Mboup S,
Wiegand RC, Hartl DL, Sabeti PC, Wirth DF, Volkman SK: Sequence-based
association and selection scans identify drug resistance loci in the
Plasmodium falciparum malaria parasite. Proc Natl Acad Sci U S A 2012,
109:13052–13057.

46. Wichman HA, Badgett MR, Scott LA, Boulianne CM, Bull JJ: Different
trajectories of parallel evolution during viral adaptation. Science 1999,
285:422–424.



Farhat et al. Genome Medicine 2014, 6:101 Page 14 of 14
http://genomemedicine.com/content/6/11/101
47. Luca D, Ringquist S, Klei L, Lee AB, Gieger C, Wichmann H-E, Schreiber S,
Krawczak M, Lu Y, Styche A, Devlin B, Roeder K, Trucco M: On the use of
general control samples for genome-wide association studies: genetic
matching highlights causal variants. Am J Hum Genet 2008, 82:453–463.

48. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-Y, Freimer NB, Sabatti C,
Eskin E: Variance component model to account for sample structure in
genome-wide association studies. Nat Genet 2010, 42:348–354.

49. Zhou X, Stephens M: Genome-wide efficient mixed-model analysis for
association studies. Nat Genet 2012, 44:821–824.

50. Jombart T, Devillard S, Balloux F: Discriminant analysis of principal
components: a new method for the analysis of genetically structured
populations. BMC Genet 2010, 11:94.

51. Limpiti T, Intarapanich A, Assawamakin A, Shaw PJ, Wangkumhang P,
Piriyapongsa J, Ngamphiw C, Tongsima S: Study of large and highly
stratified population datasets by combining iterative pruning principal
component analysis and structure. BMC Bioinformatics 2011, 12:255.

52. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E,
Savine E, De Haas P, Van Deutekom H, Roring S, Bifani P, Kurepina N,
Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S,
Skuce R, Kremer K, Locht C, Van Soolingen D: Proposal for standardization
of optimized mycobacterial interspersed repetitive unit-variable-number
tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol
2006, 44:4498–4510.

53. Didelot X, Lawson D, Darling A, Falush D: Inference of homologous
recombination in bacteria using whole-genome sequences.
Genetics 2010, 186:1435–1449.

54. Marttinen P, Hanage WP, Croucher NJ, Connor TR, Harris SR, Bentley SD,
Corander J: Detection of recombination events in bacterial genomes
from large population samples. Nucleic Acids Res 2012, 40:e6.

55. Yahara K, Didelot X, Ansari MA, Sheppard SK, Falush D: Efficient inference
of recombination hot regions in bacterial genomes. Mol Biol Evol 2014,
31:1593–1605.

56. Eyre-Walker A, Keightley PD: The distribution of fitness effects of new
mutations. Nat Rev Genet 2007, 8:610–618.

doi:10.1186/s13073-014-0101-7
Cite this article as: Farhat et al.: A phylogeny-based sampling strategy
and power calculator informs genome-wide associations study design
for microbial pathogens. Genome Medicine 2014 6:101.


	Abstract
	Background
	Methods
	Phylogeny construction
	Campylobacter
	Analysis

	Results and Discussion
	Literature search
	Phenotype
	Sampling
	Analysis

	Sampling and analysis strategy
	Power calculations to optimize genotype-phenotype association studies
	Application to genomic data from MTB and Campylobacter species

	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

