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Abstract

Background: Stepped wedge cluster randomised trials introduce interventions to groups of clusters in a random
order and have been used to evaluate interventions for health and wellbeing. Standardised guidance for reporting
stepped wedge trials is currently absent, and a range of potential analytic approaches have been described.

Methods: We systematically identified and reviewed recently published (2010 to 2014) analyses of stepped wedge
trials. We extracted data and described the range of reporting and analysis approaches taken across all studies. We
critically appraised the strategy described by three trials chosen to reflect a range of design characteristics.

Results: Ten reports of completed analyses were identified. Reporting varied: seven of the studies included a
CONSORT diagram, and only five also included a diagram of the intervention rollout. Seven assessed the balance
achieved by randomisation, and there was considerable heterogeneity among the approaches used. Only six
reported the trend in the outcome over time. All used both ‘horizontal’ and ‘vertical’ information to estimate
the intervention effect: eight adjusted for time with a fixed effect, one used time as a condition using a Cox
proportional hazards model, and one did not account for time trends. The majority used simple random effects to
account for clustering and repeat measures, assuming a common intervention effect across clusters. Outcome data
from before and after the rollout period were often included in the primary analysis. Potential lags in the outcome
response to the intervention were rarely investigated. We use three case studies to illustrate different approaches
to analysis and reporting.

Conclusions: There is considerable heterogeneity in the reporting of stepped wedge cluster randomised trials.
Correct specification of the time-trend underlies the validity of the analytical approaches. The possibility that
intervention effects vary by cluster or over time should be considered. Further work should be done to standardise
the reporting of the design, attrition, balance, and time-trends in stepped wedge trials.
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Background
The stepped wedge cluster randomised controlled trial
design (SWT) has been used to evaluate interventions to
improve health, as well as other aspects of wellbeing [1].
Although SWTs are increasingly used [2], unlike cluster
randomised controlled trials (CRT), no standards exist
for reporting or for analysis.
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The reporting and analysis of SWTs pose many of the
same challenges as for CRTs, and the guiding principles
developed for CRTs can be applied. However some chal-
lenges are unique to SWTs, and guidance to overcome
them is currently absent. One issue is standardised report-
ing of the design of SWTs, and Copas et al., in this series,
addresses terminology and a taxonomy of stepped-wedge
trials for clearer presentation of the designs [3]. In this art-
icle we focus on two further issues: reporting of results of
SWTs, and selecting an optimal analysis strategy that is
statistically efficient and leads to unbiased estimates of the
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effect of the intervention with appropriately characterised
confidence levels.
We first discuss the two issues outlined above in more

detail. We then describe how ten recently reported
SWTs approached these two issues. Finally, we critically
appraise the analytic approach taken by three ‘case stud-
ies’ that represent a range of different elements of SWT
design. We conclude by discussing issues raised by this
investigation and identify some potential ways forward.

Issues in the reporting and analysis of an SWT
Aspects of the design of SWTs are described in detail in
Copas et al. [3]. Clusters are collections of individuals,
such as schools, homes, or hospitals. SWTs randomly al-
locate clusters to ‘groups’ of clusters that cross over the
intervention at different ‘crossover points’. SWTs have
up to three main phases [3]. For all SWTs there will be a
‘rollout period’ during which time groups of clusters are
crossing over from the control condition (often ‘business
as usual’) to the intervention condition [4]. At any one
time during this rollout period, some groups of clusters
will have been allocated to be receiving the intervention
condition while others will have been allocated to be re-
ceiving the control condition. The time period between
the crossover of successive groups is referred to here as
the time between successive crossover points, and some-
times elsewhere as ‘step length’. Outcome data may be
collected before the rollout period, when all clusters are
in the control condition, or later, when all clusters are in
the intervention condition.
SWTs are characterised by the timing of the partici-

pants’ enrolment and exposure to control and/or
intervention conditions within the trial, the duration of
follow-up, and the measurements collected during follow-
up. For example, individuals may be enrolled and outcome
data may be collected by following individuals over time
until some event occurs, such as death or becoming a dis-
ease case, or until any other ‘censoring’ event when they
become ineligible for follow-up. Alternatively, data may be
collected at discrete time points over the course of follow-
up. Analysing and reporting the data arising from this
array of study design characteristics pose some common
and some unique challenges.

Reporting of SWTs
Standardisation of reporting practices has greatly aided
the interpretation and synthesis of results from CRTs
[5]. In contrast, there is no standard reporting template
for SWTs in public health or any other field.
Two features make SWTs more complex to report

than the equivalent CRTs, requiring adaptation of the
approaches to reporting CRTs. First, SWTs randomly al-
locate clusters to groups that determine the timing of
introduction of the intervention, rather than, as in CRTs,
to the study control and intervention conditions [3].
There may be many groups to which clusters are allo-
cated, and the number of groups will always be greater
than the number of conditions. Second, in SWTs, the
data corresponding to the intervention condition will be,
on average, collected later than data corresponding to
the control condition [3].
Participant flow, or CONSORT diagrams [6], are very

often used in the reporting of CRTs [7]. These diagrams
include rates of recruitment, refusal, drop-out, loss to
follow-up, and missing outcome data by study condition
among clusters and individuals [8, 9]. The large number
of allocation groups and the crossover from control to
intervention allocation can make it less straightforward
to present a participant flow (that is, CONSORT dia-
gram) for SWTs relative to CRTs.
Another almost universally supported characteristic of

CRT reporting is an assessment of whether or not the
randomisation procedure has resulted in study condi-
tions that are balanced at baseline in terms of important
covariates [6]. This is because although randomisation
ensures that there is no systematic bias in allocation, the
number of clusters may not be large enough to assume
that there are no chance imbalances [10]. The large
number of groups, and correspondingly small number of
clusters per group, may mean that presentation of group
characteristics is infeasible. Researchers may prefer to
present an assessment of balance by condition. However,
balance between the conditions of SWTs often also de-
pends on the presence of secular trends in the outcome.
To assess the risk of bias, it may be important to differ-
entiate between imbalances that are due to chance and
imbalances that are systematic.
The presence of a secular trend in the outcome will

bias an unadjusted comparison between outcomes corre-
sponding to intervention and control conditions [4]. Ac-
counting for the potential bias from secular trends in
the outcome is a key feature of the analysis methods (see
below). Reporting and assessment of the trend is import-
ant for understanding the extent of the risk of bias, and
the appropriateness of the analysis method.

Analysis of an SWT
Ideally, the analysis method for a SWT will result in (1)
an unbiased estimate of the intervention effect, (2) ap-
propriately reflect the level of uncertainty in the point
estimate, and (3) be as statistically efficient as possible.
Since SWTs are types of CRTs, principles of analysis

for CRTs can be used to guide the analyses in SWTs. For
instance, data on individuals, or any other sub-cluster
unit, are likely to be correlated with data from others in
the same cluster [11]. There is a rich literature on this
issue because it also arises in parallel CRTs [10, 11].
However, analysis of SWTs poses some additional
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challenges. In particular, in SWTs the effect estimate is
potentially confounded by secular changes in the out-
come [4]. This is rarely an issue for CRTs as clusters al-
located to the intervention and control conditions are
usually followed up (that is, data are collected) over the
same time period.
Taking these issues into consideration, there are sev-

eral ways to analyse data from a SWT. These are primarily
individual-level analyses and adopt one of two broad
approaches to address potential bias from secular trends.
The first approach compares outcomes associated with

the control and intervention conditions within the pe-
riods between successive crossover points, implicitly
taking into account secular trends by conditioning on
time. Observations corresponding to periods when all
clusters are in the control or intervention condition do
not contribute to the effect estimate (except indirectly
to increase the precision by adjustment using outcome
data from before randomisation). Parametric or semi-
parametric models available include Cox regression or
conditional logistic regression. Alternatively, re-
searchers could calculate the intervention effect size for
each of several time intervals, such as the periods be-
tween successive crossover points, and plot or summar-
ise these. The advantage of this approach is that it
preserves the randomization; it is sometimes referred
to as a ‘vertical’ analysis [12]. This approach also avoids
the need to specify time trends in the outcome. A dis-
advantage of a vertical analysis is that it is unclear how
to acknowledge appropriately the clustering of partici-
pants over time within clusters. For this reason, we
have not observed any strictly vertical analyses in the
literature. While we have observed analysis by Cox re-
gression conditioning on time [12], this was in conjunc-
tion with a random (frailty) effects analysis; so that, in
order to account for clustering, the analysis used infor-
mation over time and not solely vertical information in
the estimate of the effect.
A second approach explicitly takes into account secu-

lar trends by producing an intervention effect adjusted
for time trends, which are also estimated. This method
compares outcomes corresponding to the control and
intervention conditions within the periods between suc-
cessive crossover points as well as between these periods
in the same clusters, and maximises efficiency [4, 13].
This comparison includes, along with the vertical com-
parison, a controlled before-after comparison, sometimes
referred to as a ‘horizontal comparison’, that is not,
strictly speaking, a randomised comparison. The validity
of this horizontal comparison therefore requires that the
secular trend of the outcome be accounted for in each
cluster. Secular trends may arise from changes in the
level of the outcome in the population and also from
changes in the constituents of the sample in the trial, for
example, from attrition from a closed cohort. Time
trends are commonly entered into the model as fixed ef-
fects, often as factors simply reflecting the periods be-
tween crossover points, with the assumption that the
trend is the same in all clusters. This assumption may
not be correct: the trend may vary across clusters and
also may change in form when clusters cross over to the
intervention condition. In some cases, the secular trend
can be described using a linear trend (or higher orders)
so as to reduce the number of parameters to be esti-
mated; however, a companion paper in this series found
that the number of parameters estimated does not sub-
stantially affect the power [13]. Researchers sometimes
include outcome data in the dependent variable that
was collected while all clusters are allocated to the ei-
ther control or intervention conditions, which will
introduce before-after comparisons that are not con-
trolled and could introduce bias if the analysis model is
badly mis-specified. This design decision is discussed in
Copas et al. [3]
Individual-level models can gain efficiency and appro-

priately reflect the level of uncertainty in the point esti-
mate reflecting the clustering in the data using random
effects [4], generalized estimating equations (GEE) with
a working correlation matrix (for example, exchangeable
or autoregressive), or through robust standard errors.
Multiple levels of clustering (for example, wards within
hospitals or repeated measures of the same individuals)
can be taken into account with these methods [14]. Ad-
justment for individual and cluster-level covariates can
be made.
The standard mixed model approach to estimating the

intervention effect, as described by Hussey and Hughes
and ignoring further covariates for adjustment [4], in-
volves fitting a model of the form:

Y ijk ¼ β0 þ βj þ βeffectXij þ ui þ εijk

where the outcome Y is measured for individual k at
time j within cluster i, βj and βeffect are fixed effects for
the j time points (often the periods between successive
crossover points) and the intervention effect, respect-
ively; Xij is an indicator of whether cluster i has been al-
located to start the intervention condition by time j
(taking the value 0 if not and 1 if it has changed), and ui
is a cluster random effect with mean zero across clus-
ters. The assumptions made by this model are not dis-
cussed in detail in Hussey and Hughes [4], and can be
assessed. These include the lack of any interaction be-
tween the intervention and either time or duration of
intervention exposure, and an assumption of exchange-
ability: that any two individuals are equally correlated
within cluster regardless of whether in the same or dif-
ferent exposure conditions and regardless of time. A key
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further assumption is that the effect of the intervention
is common across clusters. An important implication
following from these assumptions - and the inclusion of
comparisons of different periods between successive
crossovers in the same clusters - is that, unlike in the
typical CRT, much information concerning the popula-
tion intervention effect can be gained from a small num-
ber of clusters if these have a large number of
participants [4]. However, if the effect of the intervention
is assumed to be, but is not, common across clusters,
then the estimate of the intervention effect from the
mixed effect model may have spuriously high precision.
In mixed model analyses, varying intervention effects
across clusters need to be explicitly considered, whereas
the GEE approach is robust to mis-specifying the correl-
ation of measurements within clusters, so it is less im-
portant to consider whether the effect varies across
clusters in a GEE analysis.

Lag in the intervention effect
Many interventions delivered at the cluster level will
have a delay between the time when a cluster is allocated
to start the intervention, and when changes in the out-
come are likely to happen. This time is referred to here
as the ‘lag-period’ and can be considered similar to a
short-term ‘carry-over’ seen in one-way crossover trials
[15]. In a SWT, lags may be due to training or installa-
tion time or because there is a lag in outcome response
(for example, the delay in disease response to interven-
tion). Although a lag in changes to the outcome in the
intervention condition of a parallel trial may occur, it
can be addressed by restricting measurement of out-
comes, in both conditions, until after the lag-period is
over. In SWTs, this is not so simple because the time be-
tween crossover points may not be long enough to avoid
collecting data during the lag-period.
To account for hypothesised lags, investigators may

consider including a fractional term for the intervention
- that is, ranging from 0 to 1 - to reflect the time to
reach full fidelity [16]. Alternatively, lags could be
accounted for by excluding observations during the lag-
period (similar to the ‘wash-out’ period in cross-over tri-
als [17]), or shifting the crossover point so as to corres-
pond with the end of the lag-period and assigning
outcomes during the lag-period as corresponding to the
control condition. Decisions about how to account for
lags should be pre-specified so that they can be inter-
preted as ‘intention-to-treat’ analyses [18], as opposed to
commonly conducted ‘on-treatment’ analyses, where be-
ing ‘on treatment’ is determined post hoc [19].
Ensuring fidelity of the intervention over time may be

more challenging for an SWT than a CRT because many
SWTs are conducted due to limitations in the capacity
of the implementation set-up staff [20] and take place
over long periods of time [1, 2]. Loss of fidelity may arise
from the turnover of staff, degradation of equipment, or
from an acquired ‘resistance’ to the intervention, for ex-
ample, as would be expected with a behaviour-change
advertisement campaign. This could be assessed analyt-
ically with an interaction between time since crossing
over to intervention and the intervention effect (al-
though this will have low power to detect a difference)
or graphically.
Unlike for CRTs, no clear framework exists to guide

when and how particular methods should be used that
account for the challenging characteristics of SWTs de-
scribed above. We therefore reviewed recently published
SWTs to investigate the range of methods used by re-
searchers to analyse and report these trials, appraise
them, and make recommendations for future research.

Methods
We systematically identified published SWT protocols
and articles. The following sources were searched:
PubMed, PsycINFO, CINAHL, Web of Knowledge,
Cochrane Library, and the Current Controlled Trials
Register on 14 May 2014. All English language papers
published since 1 January 2010 that used a stepped
wedge design were eligible. Studies that applied the
stepped wedge method post hoc were excluded. The
search returned studies with any of the following in the
abstract: ‘stepped wedge’, ‘step wedge’, ‘experimentally
staged introduction’, ‘delayed intervention’, or ‘one direc-
tional cross over design’. The results papers correspond-
ing to protocols in the Mdege review were considered
for inclusion [1]. Further details are found in the review
paper in this series [2]. Two reviewers extracted data
into a standardised form from all trials on the ap-
proaches to reporting and analysis used, with differences
of opinion resolved through consultation. The risk of lag
in the effect of the intervention or loss of fidelity over
time was assessed subjectively from the description of
the interventions, the timescale, the outcomes, and the
context. We then selected and undertook a critical ap-
praisal of three ‘case studies’. The three case studies were
purposively selected to represent three designs used in
different settings. These studies included many of the
strengths and weaknesses that were found in the other
studies reviewed. The purpose of this was to examine in
more depth the approaches taken by these authors to re-
port and analyse the studies.
This research was informed by published literature

and therefore did not require ethical review.
Results
We identified 10 articles published between 2010 and
2014 [2] (see Table 1).



Table 1 Reporting approaches used in the description of the trial results

Author, year Diagram of
SWT rollout

CONSORT-
style diagram

Assessment of balance Reported k/ICC Group summaries
between crossovers

Secular trend reported

Bacchieri, 2010 [29] No No No No No Yes, graph

Bashour, 2013 [22] No Yes Yes: individual-level covariates at
enrolment between conditions

Yes No Yes, fixed effects from model and a graph
of the Likert responses by group

Durovni, 2013 [12] No Yes No Yes No No

Fuller, 2012 [23] Yes Yes No No No Yes, graphed modelled effect by condition

Gruber 2013 [21] Yes Yes Yes: individual and household-level covariates
at baseline by condition, weighted for time
in condition

No No Yes, graphed by condition

Horner, 2012 [27] Yes No Yes: cluster-level at baseline by group No Yes Yes, model parameters, sub-groups,
and graphs by group

Mhurchu, 2013 [24] Yes Yes Yes: all schools described, with group
indicated, but not summarised by group

No Yes Yes, using step-group summaries

Roy, 2013 [25] Yes Yes Yes: cluster-level covariates and individual-level
covariates at enrolment by condition

No No No

Schultz, 2014 [28] Yes No Yes: individual-level at enrolment by condition No No No

Stern, 2014 [26] Yes Yes Yes: cluster-level covariates at baseline
and individual-level covariates at enrolment
by condition

No No No

Note: This table only includes information included in the main publication. Some articles included additional material in a supplement
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Reporting
Seven of the studies adapted the CONSORT diagram for
CRTs [12, 21–26]. Three studies with closed-cohort
designs adapted the CONSORT diagram to show the
number of clusters and/or analysis units in each condi-
tion between successive crossovers [21, 22, 24]. Two
studies with continuous recruitment of participants pre-
sented the number of participants followed up in each
condition [12, 26]. The remaining two studies did not
present either the length of follow-up in each condition
or the number of participants contributing data from
the control and intervention conditions [23, 25]. Seven
studies presented a diagram of the rollout of the inter-
vention [21, 23–28], and five studies– half of the studies
– also included a CONSORT diagram [21, 23–26].
Seven of the studies reported an assessment of balance

[21, 22, 24–28]. Of the three that did not, one was a
closed-cohort design [29], and two were open-cohort de-
signs [12, 23]. Of the seven that assessed balance, three
reported balance by group at baseline [24, 26, 27]. Two
of these assessed balance using cluster-level covariates
only [26, 27]. The remaining study of the seven,
Mhurchu et al., reported baseline characteristics of all
clusters and indicated which group they belonged to
without summarising group-level statistics [24]. Five
studies reported other assessments of balance by condi-
tion. Of these, one used a closed-cohort design and
assessed balance between the conditions by weighting
the baseline characteristics of each cluster and individual
by the time spent allocated to each condition [21]. The
remaining four reported balance between the conditions
in terms of the characteristics of the participants when
recruited since they used either an open-cohort design
[6, 22, 26] or continuous recruitment [25].
Only two of the studies reported the extent of correl-

ation between individuals in the same clusters [12, 22].
Only two reported simple summaries of the outcome in
periods between successive crossovers [24, 27]; this was
despite only three studies having more than 10 groups,
beyond which it might be impractical to present the
cluster summaries.
Six of the studies described the secular trend in the

primary outcome [21, 22–24, 27, 29]. Five of these used
a graph [21, 22, 23, 27, 29], with four of these present-
ing some disaggregation by condition [21, 23] or group
[22, 27]. Only two of the nine studies that explicitly ad-
justed for time trends reported the secular trend par-
ameter from the outcome analysis [22, 27].

Analysis strategy
All studies analysed units at the sub-cluster level. In the
majority of studies the units were individuals, but one
study used households [21], another used pressure ulcers
[26], and one used hand-hygiene opportunities [23]. Two
studies collected data as time-to-event [12, 29], five col-
lected repeated measures on individuals [21, 23, 24, 26, 27],
and three collected single measures on individuals
[22, 25, 28]. The measures of intervention effect in-
cluded five odds ratios estimated using logistic regres-
sion [23–25, 27, 28]; one risk ratio estimated by log-
Poisson regression (which also calculated risk differ-
ence using linear regression) [21]; two rate ratios, one
estimated using Poisson regression [29] and the other
using Cox regression [12]; and two mean differences
estimated using linear regression [22, 26].
The correlation between observations on the same in-

dividuals (if relevant) and between individuals within the
same cluster, was accounted for using random effects in
the majority of cases, GEE in one case [21], and robust
standard errors in two [21, 29]. One study did not ac-
count for correlation in the data within clusters due to
convergence issues [28]. To account for potential con-
founding, eight of the studies adjusted their analysis for
potentially confounding covariates [12, 21–27].
All studies used both vertical and horizontal informa-

tion to estimate the effect of the intervention. Eight
studies accounted for secular trends with a fixed effect
term in the regression model, and one tested for inter-
action between the secular trend and intervention [26].
One did not account for secular trends [25]. Nine stud-
ies used data from before or after the rollout period in
the outcome analysis. The remaining study analysed a
time-to-event outcome by Cox regression, conditioning
on time [12]. Since the model included a gamma-
distributed random effect to account for within-cluster
correlation, information from multiple periods between
successive crossover points was used alongside the verti-
cal analysis. One study [27] graphed the outcome over
time by group and marked on the graph the time that
the intervention was introduced, similar to a crude time-
series approach.
In six studies, our reviewers judged that there was at

least minor risk that the intervention effect would lag
behind the introduction of the intervention (see Table 2).
Only one study accounted for this in the analysis using
fractional terms for intervention strength in a ‘per-proto-
col’ analysis [23]. In eight studies, reviewers believed that
the effect may change over time because of either lapse
in the fidelity of the delivery or desensitization of the
population to the intervention’s effect.
Case studies
Case study 1
Mhurchu et al. investigated the effect of providing free
school breakfasts at school on pupils’ attendance [24].
The clusters were defined as schools. The design is de-
scribed in Copas et al. [3]



Table 2 Primary outcome analysis methods

Author, year Model fitted Effect
estimated

Vertical and/or
horizontal
analysis

Method to account
for clustering

Repeated measures
on individuals?
Method used

Adjustment for
confounding?

Adjustment for
secular trends

Risk of
lag

Accounting
for lags

Risk of
fidelity loss

Bacchieri, 2010 [29] Poisson regression Rate ratio Both Robust standard
errors

Time-to-event No Fixed effect
(no interaction)

None None Minor

Bashour, 2013 [22] Linear regression Mean difference Both Random effects No Yes Fixed effect None None Major

(no interaction)

Durovni, 2013 [12] Cox regression Rate ratio Within-step
only, plus frailty

Random effects Time-to-event Yes Conditional Major None Minor

Fuller, 2012 [23] Logistic regression Odds ratio Both Random effects Yes, not explicitly
accounted for

Yes Fixed effects Major None (per-protocol
analysis using
observed lags)

Major

(no interaction)

Gruber 2013 [21] Linear regression, Log-
Poisson regression

Risk difference,
risk ratio

Both Robust standard
errors, GEE

Yes, not explicitly
accounted for

Yes, in
secondary
analyses

Fixed effect Major None Low

(no interaction)

Horner, 2012 [27] Logistic regression Odds ratio Both Random effects Yes, not explicitly
accounted for

Yes Fixed effect Minor None Minor

(no interaction)

Mhurchu, 2013 [24] Logistic regression Odds ratio Both Random effects Yes, pupil-level
summaries and
random effect

Yes Fixed effect None None Minor

(no interaction)

Roy, 2013 [25] Logistic regression Odds ratio Both Random effects No Yes None None None Minor

Schultz, 2014 [28] Logistic regression Odds ratio Both None: GEE not
possible, and RE
did not converge

No No Fixed effect Minor None None

(no interaction)

Stern, 2014 [26] Linear regression Mean difference Both Random effects Yes, multiple level
random effects

Yes Fixed effect
with interaction

Major None Minor
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In terms of reporting, a modified CONSORT diagram
was included in the article showing participant flow in all
four allocation groups. The article reported the number of
pupils who withdrew or were lost over the school year in
each group. Age, sex, and ethnicity at baseline were re-
ported for the schools, but not attendance, for example,
from previous term, and not aggregated by group. There
was evidence from a table of attendance in each group that
attendance reduced over the study period under both inter-
vention and comparison conditions. There also appeared to
be a decrease over time in the fidelity of the intervention
after crossover (measured as the number of pupils actually
attending breakfast). Time lags in intervention implementa-
tion or effect seemed unlikely to our reviewers, and no ac-
count was made for this in the analysis.
The primary outcome analysis model, inferred from

the article, is shown below. Mhurchu et al. used logistic
regression to model the log odds of good attendance,
with a random intercept to account for clustering at
school-level and another random effect to account for
measurement of the same pupils within each school.

log Y ijk
� � ¼ μþ βj þ ageik þ genderik þ ethnicityik

þ θXij þ αi þ γ ik þ eijk

where
Yijk is the odds of poor attendance of pupil k over term

j from school i;
μ is the log odds of poor attendance in the reference

group (1st term in the control group with no free
breakfasts);
βj is a fixed effect adjusting for being in term j;
ageik, genderik, and ethnicityik are fixed effects adjust-

ing for the age, gender, and ethnicity of pupil k in school
i;
Xij is a fixed effect for whether or not school i has the

intervention in term j (0 for no breakfasts, 1 for having
free breakfasts);
θ is the log odds ratio for free school breakfasts on

attendance;
αi ~ N(0, τ2) is the random effect for clusters

(schools);
γik ~ N(0, φ2) is the random effect for each pupil; and
eijk ~ N(0, σ2) is the error term for each attendance

record.
Given the design parameters, this analysis method

seems appropriate. However, the inclusion of data cor-
responding to the final term where all pupils were in
clusters allocated to receive breakfast constitutes an un-
controlled before-after comparison. The description of
the participant flow could have been more detailed, for
example by giving the number of schools as well as the
number of pupils. Because participants experienced
both the control and intervention phases, attrition may
have affected the balance between the conditions: 12 %
of participants withdrew or were lost to follow-up. Al-
though the authors did describe the baseline character-
istics of the schools, these were not aggregated by
allocation group. Having only four time points limited
the capacity to describe the time trend and the authors
may have more efficiently captured secular trends with
the day-level attendance records. The authors did not
provide evidence that the secular trend was adequately
captured by the fixed effect terms, for example, whether
time trends changed on crossover to the intervention
condition.

Case study 2
Durovni et al. (THRio study) [12] studied the effect of
increased tuberculosis (TB) screening and preventive
therapy on TB incidence among HIV clinic attendees,
with clusters being the health clinic. The THRio study
contained 29 clusters randomly allocated to 15 groups
of 1-2, with a median time between successive cross-
over points of 2 months. Individual data were collected
from an open cohort of HIV clinic attendees newly
visiting these clinics over time. Outcome data were
collected from patient records. A participant’s follow-
up time corresponded to the control condition until
after the participant visited a clinic that had initiated
the intervention.
Durovni et al. included a simple participant flow dia-

gram, giving the number of clusters in the trial and num-
ber of participants contributing to control and intervention
periods. They did not report any losses to follow up. No in-
formation was provided on differences in important covari-
ates between the 15 randomised groups or between the
study conditions.
The primary outcome analysis model inferred from

the article is shown below. Durovni et al. used Cox re-
gression to model the hazard ratio for TB incidence and
mortality, with calendar day being the underlying time-
frame and a gamma-distributed random effect to ac-
count for clustering at the clinic level.

hik tð Þ ¼ h0 tð Þexp θXi tð Þ þ αi þ eikð Þ

where
hik(t) is the hazard of person k in clinic i being diag-

nosed with TB at time t;
h0(t) is the ‘baseline’ hazard of being diagnosed with

TB at time t without the intervention, and is not
specified;
Xi(t) is a fixed effect for whether or not clinic i has the

intervention at time t;
θ is the hazard ratio for the intervention on TB

diagnoses;
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αi ~ log gamma(1, τ2) is the random effect for clusters
(clinic); and
eik ~ N(0, σ2) is the error term for each person.
The authors used a model that was closely aligned

to the manner of data collection. While Durovni et al.
did not explore how the underlying trend in TB inci-
dence was changing over the study period, the Cox
analysis was conditional on the time of observation.
However, whether or not the intervention effect chan-
ged over time, that is, the appropriateness of the pro-
portional hazards assumption, was not shown. The
primary analysis was unadjusted, but Durovni et al.
also conducted a sensitivity analysis adjusting for age,
gender, HIV antiretroviral therapy and CD4. Deaths or
cases of TB within 60 days of the first clinic visit were
excluded from the analysis; however, the authors did
not account for any lag between control and
intervention.

Case study 3
Fuller et al. investigated the effect of a hand-hygiene
intervention for doctors and nurses on hand-hygiene
compliance in hospitals [23]. The design is described in
Copas et al. [3]
In terms of reporting, Fuller et al. provides a partici-

pant flow diagram, although several key elements are
missing. The diagram is at a cluster level, and no infor-
mation is given about the number of participants or
which observations were conducted and when. It is also
unclear whether or not there were any occasions on
which visits to undertake hand-hygiene observation were
not completed. No balance assessment table is present.
A graphical assessment of the trend estimated by their
primary analysis model showed a downward trend in
compliance. This does not constitute a transparent pres-
entation of the trends in the conditions, and appears not
to present data from the post rollout period. The model
did not include an interaction to assess whether the
intervention effect changed over time.
The primary outcome model inferred from the article

is given below. They used logistic regression with an
interaction between ward type and intervention phase
and two random effects for wards and hospitals to
model the odds of good hand-hygiene.

log Y imjk
� � ¼ μþ βj þ nstaf f im þ staffratioim þ θXimj

� typeim þ αi þ γ im þ eimjk

where
Yimjk is the odds of person k in hospital i, on ward m,

complying with hand-hygiene at time j;
μ is the log odds of complying with hand-hygiene in

the first observation;
βj is a fixed effect adjusting for month j;
nstaffim, staffratioim are fixed effects adjusting for
number of staff, and the ratio of actual to expected staff
in hospital i, ward m;
Ximj is a fixed effect for whether or not the hospital i,

ward m had the intervention at time j (0 if observations
were not being fed back to staff, 1 if they were);
θ is the log odds ratio for feeding back hand-hygiene

compliance on hand-hygiene;
typeim is a fixed effect for the type of ward m in

hospital i;
αi ~ N(0, τ2) is the random effect for hospitals;
γim ~ N(0, φ2) is the random effect for ward m within

hospital i; and
eimjk ~ N(0, σ2) is the error term for each observation.
The analysis fitted a fixed effect term for the month of

observations, and as a result, they included a large num-
ber of secular trend parameters. The analysis may have
been more efficient if Fuller et al. had characterised the
secular trend using a linear or other shaped trend, espe-
cially since they collected considerable data before and
after the rollout period. Furthermore, in using consider-
able data from long periods both before and after the
rollout period, the analysis appears to include a substan-
tial degree of uncontrolled before-after comparison that
may have biased the effect estimate or led to inappropri-
ate precision as the assumptions of the analysis model
need to be realistic throughout the period of data collec-
tion. The random effect for ward and hospital will have
accounted for repeat measures of staff members and
avoided imprecise random effects because of the small
number of observations per staff member. Fuller et al.
conducted a ‘per-protocol’ analysis with a time period
corresponding to the observed delay in each cluster be-
tween allocation to the intervention and actual initiation
of the intervention. This was intended to account for the
lags in implementation, but does not correspond to a pre-
hypothesised lag time as it was a post hoc ‘on treatment’
analysis based on the observed delay in implementation.

Discussion
Summary
We identified ten recent reports of SWTs. We found
that several important aspects of SWTs were often not
reported and that reporting practise was heterogeneous.
While some of this heterogeneity arose from differences
in the design of the studies, we conclude that standar-
dised guidelines for reporting some of the more complex
aspects of SWTs would be helpful. We offer some fur-
ther ideas in this area below. Individual-level statistical
models were used for the primary analysis of all included
studies. Most of the models accounted for clustering in
the outcome data for reported point estimates and asso-
ciated confidence intervals. They also sought to adjust
for secular trends in the outcome. This was usually done
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with a categorical variable corresponding to the periods
between successive crossover points. Methods such as
cubic splines and fractional polynomials could be useful
to improve the estimations of time trends and, where
data are sparse over time, would be more efficient. No
studies explicitly anticipated potential time lags between
intervention implementation and effect in the intention-
to-treat analysis. No studies considered the possibility of
different intervention effects across clusters.

Reporting
The reporting of recent stepped wedge trials is heteroge-
neous and often inadequate. Only half of the studies re-
ported both a diagram of rollout and a CONSORT style
diagram and often with very little detail. This may be be-
cause of difficulty in adapting the CONSORT template,
especially when the number of groups is large, although
several studies failed to provide the details expected for
reporting a CRT.
Only one study reported an assessment of balance using

summaries of potential confounders by randomly allo-
cated groups of clusters [27]. The others presented sum-
maries by correspondence to control and intervention
condition. In all but one of these studies, the potential
confounders were measured in participants as they were
enrolled into an open cohort and then summarised as cor-
responding to intervention or control depending on what
condition the cluster was in at the point of enrolment.
Any differences between the summaries of potential
confounders corresponding to the two conditions may
arise from the randomisation unsuccessfully balancing
the groups at the start, or from changes in the partici-
pants who are enrolled over time. In other words: the
summaries are affected by secular trends. Although not
observed in our review, an analogous issue would arise
for closed cohorts if the same method was applied (that
is, summaries of potential confounders corresponding
to the time when the clusters are in the intervention
and control conditions). Differential attrition and time-
varying confounders would result in summaries corre-
sponding to each condition that differ because of trends
as well as the allocation scheme. In contrast, the one
exception - a closed-cohort study by Gruber et al. -
summarised potential confounders measured at base-
line, weighted by the time that each participant spent
in clusters allocated to each condition [21]. This
method assessed the extent of balance achieved be-
tween the conditions by the random allocation only -
that is, without implicitly incorporating secular
changes. This method can be applied only to variables
available at baseline, for example, individual and
cluster-level variables in closed-cohort designs and
cluster-level variables only in open-cohort designs.
Summaries by group, however, can incorporate data on
participants enrolled throughout the trial since corres-
pondence to any particular group is not time-
dependent so long as enrolment is not affected by the
intervention.
Summaries by group may help assess the likelihood

that the randomisation successfully balanced expected
outcomes, which is a requirement of the CONSORT
statement [9]. As with CRTs, balance at baseline is the
basis of the validity of vertical - that is, truly randomised
- analyses. Summaries by group may be impractical
when the number of clusters per group is small, and in
such cases appraisal of the randomisation may be lim-
ited. Where possible, reporting both balance between
groups and balance between conditions might be advis-
able so as to identify imbalances arising by chance as
well as by secular changes.
As SWTs continue to be conducted and reported, fur-

ther work will be required to advise how researchers
should present data to assess imbalances due to the ran-
domisation, as well as CONSORT diagrams, outcome
frequencies, and balance between conditions. The ap-
propriate adaptation of the CONSORT diagrams will
depend on the design of the trial, in particular, whether
participants are continuously recruited, exposed to
more than one condition, and the number of crossover
points.

Analysis
All but one study used a method to account for clus-
tered outcome data. A key question for analyses of
SWTs is as follows: Has the secular trend been ad-
equately adjusted for? The Cox regression used in
Durovni et al. for a time-to-event is likely relatively ro-
bust to secular trends, so long as the model assumptions
are met (for example, proportional hazards) because it
conditions on time. Besides that approach, time trends
were modelled explicitly. Few of the articles that we
reviewed explored in detail how well modelling of secu-
lar trend was specified, all assumed that the trend was
the same in all clusters, and only one assessed if it chan-
ged on crossover from control to intervention condition.
To assess whether a secular trend has been properly

specified, we recommend presenting a graph of sum-
mary measures of the outcome in each condition in each
of several appropriate time slices (for example, periods
between successive crossover points), such as that used
in Gruber et al. [21]. Confidence intervals or other mea-
sures of precisions should account for within-cluster
correlation within the time slice. We recommend that
particular care is taken to assess secular changes in the
composition of the participants in a closed cohort and
any attrition or censoring is reported clearly.
We found that only one of the studies tested for inter-

action between the intervention and calendar time or
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duration of intervention [26]. Potential interactions
should be explored and reported. The interaction be-
tween the intervention effect and duration of the inter-
vention could be explored as a primary parameter of
interest itself. This possibility is a side-effect of the
multiple data collection points and crossover points
that are necessary in an SWT, a possibility that would
not be available to a parallel CRT that did not have
those features.
All of the studies except Durovni et al. included data

from before and/or after the rollout period in the
dependent variable. In the case of Fuller et al., this appears
to have constituted as much as 60 % of the data in the
analysis [23]. Inclusion of data before and after the rollout
period incorporates a before-after comparison that is un-
controlled, but is unlikely to lead to substantial bias if the
effect of time is modelled in a flexible way. Data on the
outcome from before the rollout period may be usefully
used as a covariate to increase precision - for example, in
an ANCOVA or logistic regression with baseline outcome
data as a covariate - which is analogous to how these data
are typically used in the analysis of CRTs, and could be ap-
plied to vertical analyses [10].
When the number of clusters is small, researchers

need to be cautious with the use of random effects
models to take into account between-cluster variability.
Authors have advised against using such models in
CRTs when there are small numbers of clusters per con-
dition, with small being less than around 10-15 per con-
dition [10, 11, 30]. GEE models with fewer than 40
clusters have been shown to be problematic [31], and
Scott et al. have explored GEE methods suited to a
modest numbers of clusters [32]. We believe that fur-
ther work could examine the potential use of a cluster
summary analysis approach, as recommended for CRTs
with a modest number of clusters [10, 11]. None of the
studies used a controlled time-series approach to ana-
lysis and further research could look into the potential
gain from a richer analysis of longer-term trends in the
data before rollout, where available. This approach may
not circumvent many of the issues described previously;
however, it has been shown to be effective in some
circumstances [33].
All studies assumed that the intervention effect was

the same in each cluster. However, in community trials
in particular there is often a potential for the interven-
tion to be implemented in a variety of different ways
across clusters, indeed to be barely implemented at all in
some clusters. In scenarios such as these, assuming a
common effect of the intervention across clusters is in-
appropriate. This is crucial at the design stage (see Baio
et al. [13]) because it suggests sample size calculation
such as in Hussey and Hughes [4] may substantially
underestimate the number of clusters required. It is also
important not to report spurious precision in analysis,
and when variation in intervention effect over clusters is
likely, we strongly recommend methods that allow this
are used such as GEE or mixed models with a random
intervention by cluster term. An informal alternative
may be to conduct an initial test of a common effect,
and if this is not rejected, then apply a method that as-
sumes a common effect.
We did not find an example of a strictly vertical ana-

lysis because even the example that used a Cox regres-
sion included a frailty to account for clustering.
Identifying an efficient vertical analysis and comparing
this to the results of mixed effects analysis in real SWTs
is an important area for future research. Researchers
looking for an analysis method that maintains the ran-
domisation completely might consider calculating effects
in each period between successive crossover points
(using individual-level models accounting for clustering,
or cluster summaries, as appropriate) and summarising
these vertical analysis effects with a pre-specified
method (for example, inverse variance weighting, or
weighting by the balance between the number of clusters
in the intervention and control conditions). To generate
evidence against the null hypothesis, researchers can
permute the allocation of clusters to groups according to
the rules of the randomisation (for example, stratifica-
tion), calculating an ‘effect’ of the intervention under
each permutation, and locate the empirical effect esti-
mate in the distribution of effects estimated under ran-
dom chance. Permutation tests have been used in the
analysis of CRT [34] and can be preferable to parametric
methods [35]. A strictly vertical analysis is analogous to
accepted methods for analysing CRTs. A limitation of a
vertical approach is lower power relative to the mixed-
effect or GEE model.
In this review, we have summarised and critiqued

current practice in the reporting and analysis of SWTs.
The review was limited to papers published after 2010,
which may have reduced the capacity to observe emer-
ging trends and innovations in analysis. The in-depth
review of the case studies demonstrated the peculiarity
of each case and identified idiosyncratic analysis and
reporting elements, but these cannot be considered
representative of all recent SWT reports. We have
identified a number of questions for analysis and
reporting of SWTs, and further work will be required
to inform the literature.

Conclusion
The reporting and analysis of recently conducted SWTs is
varied. Substantial scope exists for improvement and
standardisation in the reporting of trial parameters, in-
cluding balance at baseline and attrition. We make recom-
mendations for reporting in panels 1 and 2. The analysis
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of SWTs is often susceptible to bias if secular trends in
the outcome are mis-specified in the analysis model.
Trends, however, are rarely described in detail, and
only a few reports of SWTs have cautiously explored
the potential for bias. We make recommendations for
how the analysis should be approached. Further re-
search could explore the potential for bias with differ-
ent analysis methods in more detail.

Appendix
Panel 1: Recommendations for reporting
Reporting recommendations
Reports of SWTs should aim to achieve the following:
1. Include a diagram of study design with clusters, groups, and

crossover points indicated on a calendar time-scale.
2. Include an adapted CONSORT diagram with cluster-level and

individual-level participation and attrition. The adaptation should
account for the follow-up time or the participant number corresponding
to each condition, as appropriate to the design.
3. Unless impractical, include an assessment of balance between

allocation groups on cluster-level characteristics at baseline and
participant-level characteristics at recruitment.
4. Include an assessment of balance by condition, weighting any

participants that contribute to both conditions by the time spent in
each.
Panel 2: Recommendations for analysis
Analysis recommendations.
Analyses of SWTs should aim to accomplish the following:
1. Use appropriate methods to adjust for clustering
2. Account for confounding from secular trends using an appropriate

term for the trend in models for the outcome, and investigate potential
effect modification of the intervention effect by time through including
an interaction term.
3. Base the primary analysis of the intervention on data from the

rollout period, together with data from exposure just before or after if
collected. Data from just before the rollout period can be used for
adjustment for differences at baseline.
4. Use Cox regression for time-to-event outcomes as this may be the

more robust to secular trends.
5. Include a chart or table of outcome summaries by condition for

each of several time intervals, to help check the form assumed for
secular trends, and to investigate possible interaction between
intervention and time.
6. Remember the assumptions made when applying mixed effect

models and in particular consider whether it is appropriate to assume
the intervention effect is common across all clusters.
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