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OPINION

Understanding p53 tumour suppressor 
network
Emanuele Panatta1, Carlotta Zampieri1, Gerry Melino1   and Ivano Amelio1,2*   

Abstract 

The mutation of TP53 gene affects half of all human cancers, resulting in impairment of the regulation of several 
cellular functions, including cell cycle progression and cell death in response to genotoxic stress. In the recent years 
additional p53-mediated tumour suppression mechanisms have been described, questioning the contribution of 
its canonical pathway for tumour suppression. These include regulation of alternative cell death modalities (i.e. fer-
roptosis), cell metabolism and the emerging role in RNA stability. Here we briefly summarize our knowledge on p53 
“canonical DNA damage response” and discuss the most relevant recent findings describing potential mechanistic 
explanation of p53-mediated tumour suppression.
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Canonical tumour suppression signalling: 
apoptotic cell death
Every second cancer carries an inactivating mutation in 
the TP53 gene. Nonetheless, despite 40  years of high-
quality studies, the p53-regulated tumour suppressive 
programme is still a puzzle, and cell death/cell cycle arrest 
are still considered among the most relevant regulatory 
aspects (Fig. 1). Apoptosis is an ordered and tightly regu-
lated form of cell death and is highly associated to pre-
vention of tumorigenesis. Sequence and homology of p53 
are evolutionarily conserved in Drosophila melanogaster 
(named dmp53) and Caenorhabditis elegans (named cep-
1) [1–3], although debate is still open on whether the 
mammalian p53 family member, p63 better resembles 
biochemically and functionally the ancestor form of the 
protein [4–10]. The response to DNA damage, respon-
sible of activating p53-mediated cell cycle arrest and 
apoptosis, is a dominant mechanism of p53-mediated 
network and strongly conserved across species, includ-
ing Drosophila melanogaster and Caenorhabditis elegans. 

Experimental evidence however emerged over the past 
decade, questioning the simplistic interpretation that p53 
tumour suppression mainly rely on the regulation of cell 
cycle arrest and apoptosis. Mouse models carrying DNA-
damage insensitive p53 forms have shown that p53 can 
suppress tumour development in absence of cell cycle 
arrest and/or apoptosis induction [11–15]. In further 
support of this, p53 can prevent tumour development in 
the mouse lacking p21, Puma and Noxa, the major p53 
downstream targets responsible for cell cycle arrest and 
apoptosis in DNA damaged cells [16]. Thus, these data 
have questioned the specific contribution of p53-medi-
ated DNA damage response (here referred as “canonical” 
p53 tumour suppressive signalling), indicating that p53 
network might be more complex and unexplored that 
previously anticipated [17].

The “non-canonical” p53 tumour suppressive signal-
ling includes several biological processes that in stressed/
damaged cells can influence tumour initiation or progres-
sion; these includes metabolic stress, epigenetic repro-
gramming, regulation of reactive oxygen species (ROS) 
response, autophagy [18]. Multiple stress signalling can 
indeed control p53 activation. Conditions such as nutri-
ent deprivation, hypoxia, nucleotide depletion can lead 
to different degree of p53 activation, impinging on the 
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biology of the cell at different level, with different mecha-
nisms (Fig. 1) [19–23].

Although there is consensus that p53 acts by cooperat-
ing with a network of executors of its tumour suppres-
sion function, the spectrum and relative importance of 
individual players and the nature of their overlap and 
complementarity are unknown. Even less clear is the 
mechanism of the p53 mutant and its gain-of-function 
effects [24–28] and how interaction with extrinsic fac-
tors, such as microenvironment, microbiota and others, 
influences its function [29–32]. Thus, the mechanisms 
underlining the p53-dependent maintenance of genome 
integrity and tumour suppression remain fundamentally 
only partially known.

p53 in ferroptotic cell death
Ferroptosis is associated to an iron-dependent peroxi-
dation of membrane lipids [33] and can be triggered by 
GSH depletion or by direct inactivation of GPX4 [34–
37], both involved in reduction of peroxidic species of 

polyunsaturated fatty acids. p53 has been implicated 
in both activation/inhibition of this cell death modal-
ity. Despite p533KR (K117R/K161R/K162R) mutant is 
transcriptionally inactive on p53 pro-apoptotic target 
genes, mice carrying p533KR do not develop tumours 
[38]. This phenotype was associated to the ability of 
p533KR to repress the cystine/glutamate antiporter xCT 
(SLC7A11), responsible for GSH synthesis, promoting 
ferroptosis. Hence, p53 tumour suppressive function 
was postulated to rely on the regulation of ferroptosis.

The calcium-independent phospholipase iPLA2β was 
also recently shown to critically regulate p53-depend-
ent ferroptosis upon reactive oxygen species (ROS)-
induced stress, a classic regulator of cellular functions 
[39–41]. Peroxidized lipids detoxification mediated by 
iPLA2β is sufficient to suppress p53-driven ferroptosis, 
while iPLA2β inhibition sensitizes tumour cells to p53-
driven ferroptosis, promoting p53-dependent tumour 
suppression in xenograft mouse models [42].
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Fig. 1  P53 drives the cellular adaptation to stress. Different types of cell stressors, such as DNA damage, nutrient deprivation, and replicative stress, 
can activate p53 which in turn drives specific responses depending on type and magnitude of stress. For example, in mild/moderate reversible DNA 
damage p53 can stop cell cycle progression and promote the DNA repair. When the DNA damage is severe p53 promotes apoptosis
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p53 is also implicated in the metabolism of polyamines. 
The SAT1 gene is transcriptionally controlled by p53 [43]. 
SAT1 is an enzyme that regulates the rate of conversion 
of spermidine and spermine to putrescine. The transcrip-
tional induction of SAT1 correlates with the expression 
of arachidonate 15-lipoxygenase (ALOX15), that partici-
pates in the peroxidation process. A recent study identi-
fied a p53-dependent ferroptosis pathway mediated by 
another member of the lipoxygenase family, ALOX12, an 
enzyme involved in lipid peroxidation. Following redox 
stress, p53 downregulates SLC7A11 and indirectly acti-
vates the ALOX12, increasing the intracellular levels of 
lipid peroxides [44]. Also, the p53 family transcriptional 
target glutaminase-2 (GLS-2) was associated to activa-
tion of ferroptosis. GLS2 converts glutamine into gluta-
mate in a process called glutaminolysis [45–48]. GLS2 
inhibition affects the ferroptosis process in fibroblasts 
[49]. How and whether GLS2 regulation of ferroptosis 
correlates with p53 tumour suppression is not clearly 
defined.

p53 was also implicated in the opposite role of repress-
ing ferroptosis. A first example is the inhibition of the 
(dipeptidyl peptidase-4) DPP4 activity. DPP4 is an 
enzyme expressed on the cell surface where it can acti-
vate lipid peroxidation interacting with NADPH oxidase 
1 (NOX1). In human colorectal cancer, p53 was shown 
to form a complex with DPP4, translocating it into the 
nucleus. Loss of p53 prevents DPP4 accumulation in the 
nucleus and facilitates plasma-membrane-associated 
DPP4-dependent lipid peroxidation, which finally results 
in ferroptosis [50].

p53 metabolic regulation and lipids biosynthesis
The function of p53 in tumour suppression has emerged 
as a complex integration of multi biological processes 
[51]. Within these the regulation of cellular metabolism 
and autophagy in addition to influencing the ferroptosis 
process strongly impacts the ability of cell to respond and 
adapt to perturbation, preventing accumulation of dam-
age that can lead to cancer.

p53 supports mitochondrial respiration by limiting 
glycolysis. p53 represses expression of the glucose trans-
porters GLUT1, GLU3 and GLUT4 [52–54]. Moreover, 
p53 reduces expression of TIGAR, a regulator of glucose 
breakdown [55], and of PDK2 (pyruvate dehydrogenase 
kinase 2), which inactivates the pyruvate dehydroge-
nase complex [56], regulating access of pyruvate into the 
Krebs cycle.

p53 plays also in the metabolism of fatty acids and 
cholesterol. p53 promotes the oxidation of fatty acids, 
making them no longer available to cancer cells. In fact, 
it induces the expression of Lipin-1 which activates 
other genes involved in the oxidation of fatty acids [57]. 

Moreover, p53 blocks maturation of SREBP2 (sterol 
regulatory element binding protein 2) the master tran-
scriptional regulator of biosynthesis of cholesterol and 
nonsterol isoprenoids. By using a mouse model of liver 
cancer the groups of Carol Prives and Scott Lowe dem-
onstrated that downregulating mevalonate pathway p53 
suppresses tumorigenesis of premalignant hepatocytes 
[58].

p53 control of mRNAs processing via Zmat3
More recent genomic techniques are helping in dissect-
ing the functional p53 tumour suppressing network. 
Through a shRNA in vivo screen, 166 known p53 target 
genes were silenced [59]. This experiment demonstrated 
that extensive functional overlap of several p53-regulated 
processes delineates a defence against cancer develop-
ment and in particular DNA repair plays an essential 
role. Depletion of the DNA repair gene Mlh1 could reca-
pitulate lymphoma in wt mice and enforced expression of 
Mlh1 was able to delay the tumour phenotype of p53−\− 
mice. From this approached also Zmat3 was implicated 
in development of lymphoma/leukaemia, but only when 
also Puma and Cdkn1a were depleted. Knockdown of 
Zmat3 in p53−/− hematopoietic stem/progenitor cells did 
not accelerate lymphoma in mice, reinforcing the hypoth-
esis that this gene acts downstream of p53 [59]. Also, lack 
of Zmat3 per se is not sufficient to cause lymphoma/leu-
kaemia, confirming that its loss can only promote tumour 
development when p53-dependent apoptosis or cell cycle 
arrest (via Puma and p21 respectively) are impaired [59].

A second in  vivo genetic screening using RNAi and 
CRISPR technologies against 87 p53 targets, confirmed 
the importance of Zmat3 in p53-dependent cancer 
biology [60]. Induction of tumour in KrasG12D-driven 
mouse lung adenocarcinoma and hepatocellular carci-
noma depleted for Zmat3 leads to larger tumour and 
greater tumour burden than in control mice, only when 
p53 was expressed. No alterations of the tumour size 
were observed in the same cancer models with p53 
depletion [60]. By analysing a cohort of breast cancer 
patients, it was observed that low level of ZMAT3 cor-
relates with a reduction in the survival, only in wild-type 
TP53 tumours. Furthermore, mutations and deletions in 
ZMAT3 locus are mutually exclusive with mutations and 
deletions in TP53 gene in uterine corpus endometrial 
carcinoma [60].

Mechanistically, Zmat3 locus contains a perfectly 
matched p53 responsive element (RE) in the first intron 
of both human and mouse gene, and it is directly 
bound by p53 in ChIP-seq data [61, 62] (Fig.  2). The 
disruption of the p53 RE by using specific sgRNAs in 
E1A;HrasG12V;Cas9 MEFs, significantly reduces either 
p53 binding to Zmat3 locus and the levels of its RNA 
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and protein [60]. ZMAT3 is a 32 KDa zinc-finger protein 
containing an RNA binding domain highly conserved 
across the evolution [63–65]. It localizes in the nucleus, 
where interacting with AU-rich 3′ untranslated regions, 
it can stabilize the mRNA targets [66] or promotes their 
decay [67]. One of the best characterized ZMAT3-target 
is CD44, potent oncogene and stem cell marker [68]. 
ZMAT3 silencing led to the upregulation of the onco-
genic and longer CD44v variant and downregulation of 
the standard, non-oncogenic, CD44s isoform (Fig.  2). 
Furthermore, TP53 silencing recapitulates this pheno-
type, suggesting an important role for TP53 in regulat-
ing the splicing of CD44 in cancer biology. These studies 
underline the importance of Zmat3 in the p53-dependent 
tumour biology, but above all, underline the complex-
ity behind p53 function(s), which is still only partially 
understood.

Conclusion
Despite over 40  years of studies dedicated to under-
standing the role of p53 in cancer, there are still key 
unanswered questions. These include for example the 

exact mechanisms by which p53 protects integrity of 
the somatic cell genome. Based on the dispensable role 
for tumour suppression of p53 mediated DNA damage 
response, the mechanism by which genomic instability 
is prevented remains elusive. The last decade has seen a 
massive expansion of cancer genomics studies, includ-
ing development of predictive model of gene network 
[69–75] and improvement of experimental model of 
studies, including effective genetic editing techniques 
and 3D cell culture models [76–79]. With the sup-
port of the expansion of cancer genomics studies [70, 
80–86] and methodological improvements [77, 87, 88], 
the determination of the p53 mediated gene network 
can lead not only to a greater understanding of tumour 
biology but also to design of more accurate anti-cancer 
therapies.
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Fig. 2  p53 in the control of mRNA stability. p53 can transcriptionally regulate Zmat3 by binding a p53-responsive element in the first intron of 
Zmat3 gene. Zmat3 is localised in the nucleus and can bind AU-rich region of CD44 mRNAs. The binding on the long and oncogenic CD44 isoform 
(CD44v) promotes its degradation by mRNA decay process. Conversely, by binding the shorter and non-oncogenic isoform (CD44s) Zmat3 promotes 
the mRNA stabilization. In this context, modulating the expression of Zmat3, p53 regulates the balance of CD44 isoforms
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