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Abstract

Background: Accumulating evidence suggests that the human microbiome impacts individual and public health.
City subway systems are human-dense environments, where passengers often exchange microbes. The MetaSUB
project participants collected samples from subway surfaces in different cities and performed metagenomic
sequencing. Previous studies focused on taxonomic composition of these microbiomes and no explicit functional
analysis had been done till now.

Results: As a part of the 2018 CAMDA challenge, we functionally profiled the available ~ 400 subway
metagenomes and built predictor for city origin. In cross-validation, our model reached 81% accuracy when only
the top-ranked city assignment was considered and 95% accuracy if the second city was taken into account as well.
Notably, this performance was only achievable if the similarity of distribution of cities in the training and testing
sets was similar. To assure that our methods are applicable without such biased assumptions we balanced our
training data to account for all represented cities equally well. After balancing, the performance of our method was
slightly lower (76/94%, respectively, for one or two top ranked cities), but still consistently high. Here we attained an
added benefit of independence of training set city representation. In testing, our unbalanced model thus reached
(an over-estimated) performance of 90/97%, while our balanced model was at a more reliable 63/90% accuracy.
While, by definition of our model, we were not able to predict the microbiome origins previously unseen, our
balanced model correctly judged them to be NOT-from-training-cities over 80% of the time.
Our function-based outlook on microbiomes also allowed us to note similarities between both regionally close and
far-away cities. Curiously, we identified the depletion in mycobacterial functions as a signature of cities in New
Zealand, while photosynthesis related functions fingerprinted New York, Porto and Tokyo.

Conclusions: We demonstrated the power of our high-speed function annotation method, mi-faser, by analysing ~
400 shotgun metagenomes in 2 days, with the results recapitulating functional signals of different city subway
microbiomes. We also showed the importance of balanced data in avoiding over-estimated performance. Our
results revealed similarities between both geographically close (Ofa and Ilorin) and distant (Boston and Porto,
Lisbon and New York) city subway microbiomes. The photosynthesis related functional signatures of NYC were
previously unseen in taxonomy studies, highlighting the strength of functional analysis.
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Background
The human microbiome, i.e. the microbial communities
inhabiting various sites on and in the human body, is
increasingly recognised as a critical component of human
health [1]. Accumulating evidence associates the gastro-
intestinal (GI) microbiome with a wide range of multifac-
torial diseases, ranging from metabolic and immunological
(e.g. diabetes [2, 3], Crohn’s Disease [4, 5]) to psychiatric
(e.g. autism [6]) disorders. Skin microbiome has also gained
increasing interest due to its association with various
diseases [7–9]. City subway systems are human-dense envi-
ronments, where interactions between passengers and the
subway surfaces (i.e. handles, seats, walls and doors) pro-
vide fertile ground for microbe exchange. Notably, overall
environmental factors, e.g. temperature and humidity, vary
across different cities, contributing to the prosperity of
different types of microbiomes in different cities. It is thus
interesting from both ecological and public health perspec-
tive to study these differences. The MetaSUB project [10]
profiles subway surface microbiomes from cities across the
world via metagenomic sequencing. To date, a few studies
have described, either via marker genes, e.g. 16S rRNA, or
via genome-assembly, the microbiome taxonomic composi-
tions [11–15]. However, to the best of our knowledge, no
functional analysis has been attempted so far.
We recently created mi-faser [5], a computational

method for super-fast (minutes-per-microbiome) and
accurate (90% precision) mapping of sequencing reads to
molecular functions of the corresponding genes. Our algo-
rithmic advances are augmented by a manually curated
reference database [5] of gene/protein enzymatic function-
ality. For the purposes of the 2018 CAMDA (Critical
Assessment of Massive Data Analysis) challenge, we used
mi-faser to functionally profile 392 MetaSUB metagenome
datasets -- 310 samples from eight cities provided as the
training set and 82 samples in need of evaluation/predic-
tion, including eight training city and new city samples.
We identified microbial functional signatures for each
training city and built SVM (support vector machine)
models to predict microbiome cities of origin.
Note that the training and test (evaluation) sets

contain similar fractions of microbiomes for each of the
eight cities. We demonstrated that balancing training
data improves the performance of cities represented by
fewer samples, i.e. avoids over-estimated performance.
Notably, our balanced model made correct city assign-
ments over 90% of the time (top two ranked cities), and
correctly identified over 80% of the samples NOT from
the training cities.
Our function-based outlook on microbiomes also

allowed us to note similarities between both regionally
close and far-away cities. We identified the depletion in
mycobacterial functions as a signature of cities in New
Zealand. We also found that the “concrete jungle”, i.e.

New York City, subway microbiomes, as well as those
from Porto and Tokyo, are best described by photosyn-
thetic activity – a finding not seen via taxonomy studies.

Methods
Datasets and functional annotation
We obtained from the CAMDA (Critical Assessment of
Massive Data Analysis) servers four MetaSub metagen-
ome datasets: 1) known set, containing 310 metagenomes
from AKL (Auckland), HAM (Hamilton), NYC (New
York City), OFA (Ofa), PXO (Porto), SAC (Sacramento),
SCL (Santiago) and TOK (Tokyo) subway systems; 2)
known-unknown set, containing 30 samples from cities
in the known set (later revealed to be 10 NYC, 10 PXO,
5 SCL, and 5 OFA); 3) unknown set, containing 36 sam-
ples from three new cities (later revealed to be 12 Ilorin,
12 Lisbon, and 12 Boston); and 4) mix set, containing 16
samples without further information (later revealed to
be 3 from Boston, 5 from Bogota, 4 from Lisbon, and 4
from Ilorin).
All metagenomes were submitted to mi-faser [5] for

quality control (Trim Glore [16], a wrapper tool around
Cutadapt [17] and FastQC [18]) and function annota-
tion. The resulting EC (Enzyme Commission [19])
number-based functional profiles produced by mi-faser
were normalized by dividing the numbers of annotated
reads per function by the total number of reads in sam-
ple. The maximum number of ECs that mi-faser can an-
notate is 1257 and the actual number of ECs annotated
is microbiome dependent. For all MetaSUB samples in
our set we used the union of all ECs as a vector of func-
tions of each sample, replacing missing ECs by 0 s.
We additionally created two random sets: (1) a set of

1000 artificial metagenomes – to generate each sample
in this true random set, we randomly selected ten sam-
ples from each city in the known set and, for each EC,
picked an abundance value from these 80 samples at
random; and (2) random-label set – the samples from
the known set assigned randomly shuffled city labels
(1000 times, resulting in 1000 random-label samples).
Finally, we added one more set to our evaluation as
negative control – an unrelated SAND set – the metagen-
omes collected from the beach sands in the Pensacola,
Florida affected by the BP-oil-spill [20].

Data modelling
1) building predictors for each city using full functional (EC)
profiles
For each city in the known set, we trained an SVM (sup-
port vector machine; e1071 R package [21]) model on
the functional profiles of all samples in leave-one-out
fashion to avoid overfitting. That is, 310 raw-full SVM
models were built for each city, with one iteratively-
selected sample removed from the known set prior to

Zhu et al. Biology Direct           (2019) 14:19 Page 2 of 10



training. Note that we chose SVMs to model our data
as, in our experience, they are better fitted to the task of
dealing with sparse inputs; i.e. for each sample, many of
the functions could be non-existent (while they do exist
in other samples), thus their abundance were set to zero.
Each SVM used 1252 features (ECs) to predict whether
a given sample is from this city (positive) or any of the
other cities (negative). The performance of each city pre-
dictor was evaluated by computing the AUC (area under
curve; R pROC package [22]) under the ROC (receiver
operating characteristic; true positive vs. false positive
rate) and PR (precision vs. recall) curves (Eq. 1, 2, 3).

false positive rate ¼ False Positive
True Negative þ False Positive

ð1Þ

true positive rate ¼ recall

¼ True Positive
True Positiveþ False Negative

ð2Þ

precision ¼ True Positive
True Positiveþ False Positive

ð3Þ

2) standardizing city predictor scores for final city
assignment
We built a single SVM model for every city in the train-
ing set as described above but using the complete set of
samples. Thus, each sample in our training data had
been assigned a prediction score by each of the eight city
predictors. For a given sample, these prediction scores
were standardized individually for each city to the corre-
sponding city range of scores of all other samples. The
highest score was used for final city assignment. Note
that this same (training) range of scores, as well as the
rest of the standardization and city assignment proced-
ure was used for all other samples in our study.

3) identify city functional signatures
We further used the dkm feature selection algorithm
[23] (CORElearn R package [24]) to select the top 20
signature ECs for each city. Note that this number of
features was determined empirically by testing perform-
ance on sets of increasing numbers of ECs (5, 10, 20, 40;
data not shown). We further trained raw-select SVMs to
recognize individual cities as described above, using only
the signature ECs selected in each iteration. Note that
multiple top-20 EC sets were produced for each city
cross-validation iteration; the 20 ECs most commonly
selected in all iterations then became city functional
signatures. The final city assignment was performed as
described above by choosing the highest city score.

4) remove data bias in the training set
As machine learning models benefit from data sets balanced
for class representation [25] we resampled the known set, to
produce equal numbers of positive and negative samples.
Specifically, to avoid bias towards predominant cities (i.e.
NYC and Porto), we resampled, with replacement, each of
the city sets to 150 samples. We then resampled both nega-
tive and positive classes to produce 5000 samples each. We
performed the same feature selection procedure and trained
balance-select SVMs as described above, on the balanced
data using the selected 20 ECs.

4) build and evaluate final predictor model
Finally, we built a single final model for each city using
the same procedure as for a single run of cross-validation
of balance-select SVM model (feature selection, followed
by SVM training on selected 20 ECs), but without leaving
samples out. For all predictive evaluations reported here
we used this model. We applied the final model to the
known set of samples used in its development to obtain a
measure of maximum performance that can be expected.
We also applied it to the random label set to approximate
the random baseline performance. We further compared
the model predictions for the true random set, SAND,
known-unknown, unknown, and mix sets. The features of
the testing sets were standardized according to the train-
ing set features. For comparison purposes, we also built a
final-unbalanced model for each city using the same pro-
cedure as for a single run of cross-validation of raw-select
SVM (feature selection, followed by SVM training on
selected 20 ECs), but without leaving samples out. We
applied final-unbalanced SVM to the known-unknown set.
Note that we didn’t correct for multiple hypothesis when
we performed t-test identify enrichment and depletion of
the EC signatures, as we didn’t use t-test to select these
ECs from the entire list.

Results and discussion
City predictors are able to recognize sample cities of
origin
We obtained EC (Enzyme Commission, [19]) number-
based functional profiles of all the 392 shotgun meta-
genomic samples (all samples from the known, known-
unknown, unknown, and mix sets) using mi-faser [5].
Note that using this tool the total computation took
less than 2 days on a high-performance compute cluster
with, on average, 500 cores available. Known and known-
unknown sets contain samples from AKL (Auckland, New
Zealand), HAM (Hamilton, New Zealand), NYC (New York
City, USA), OFA (Ofa, Nigeria), PXO (Porto, Portugal),
SAC (Sacramento, USA), SCL (Santiago, Chile) and TOK
(Tokyo, Japan) subway systems, while unknown set and mix
set samples were collected from Ilorin (Nigeria), Lisbon
(Portugal), Boston (USA), and Bogota (Colombia; Fig. 1).
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Note that only the city origins of known set samples had
been provided before the challenge.
In the known set, the functional profiles of the same

city are significantly more similar to each other than to
those of different cities (Fig. 2; p-val < 10e-3, Permanova
test [27]). For each one of the eight cities in known set,
we built a raw-full SVM (Support Vector Machine; full
feature set of 1252 ECs; Methods) model [21, 28] to pre-
dict if a sample is from that city or not. We further
selected the top 20 ECs (features; Methods) that best
describe each city, and built, with only the selected ECs,

raw-select SVMs for each city. In cross-validation, the
AUCs (Area Under Curve) of the ROC (Receiver Operating
Characteristic) curves were consistently high across the eight
city predictors, for both raw-full (Additional file 1: Figure
S1; AUC= 0.95 + 0.04) and raw-select (Additional file 2:
Figure S2; AUC= 0.96 + 0.03) models. However, PR (preci-
sion vs. recall) curves varied more across cities for both raw-
full (Additional file 1: Figure S1; AUC= 0.75 + 0.23) and
raw-select (Additional file 2: Figure S2; AUC= 0.74 + 0.22)
models. Note that this behaviour is not unexpected: while
ROC curves measure how well both positive (“this city”) and
negative (“not this city”) samples are classified, PR curves
focus exclusively on the positive predictions. Hence PR mea-
surements are more prone to fall victim to biased datasets;
in our case, cities with few samples suffer (e.g. Auckland),
while well-represented cities (e.g. New York City) are pre-
dicted well (Additional file 1: Figure S1 and Additional file 2:
Figure S2).
Across our eight city predictors, the highest ranked

city (highest normalized prediction score, Methods) was
correct 78% (raw-full) and 81% (raw-select) of the time
(Table 1). When we considered the top two city hits
(instead of just one) performance was much higher, i.e.
90% (raw-full) and 95% (raw-select) (Table 1). The well-
represented cities (e.g. New York City and Porto) were
more likely to be correctly predicted by all models
(Table 1). However, while the under-represented city
samples were rarely highest ranked (e.g. Auckland raw-
select-SVM, 33% recall), they were often second best
(e.g. Auckland raw-select-SVM, 93% recall). Notably,
when the under-represented city samples were correctly
recognised as second ranked, the top hits were NYC or
PXO over half the time (Table 1). This observation

Fig. 1 The city origins of the subway metagenomic samples. In a), the colored samples are from the known and known-unknown sets; the white
samples are from the unknown and mix sets. Note that b) the known set and c) the known-unknown set are similarly dominated by NYC
and Porto

Fig. 2 The functional profiles of the same city cluster together in
the t-SNE plot [26]
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suggests that while our predictors could identify city-
specific signals, they were affected by data imbalance.

Data balancing helps with minor city identification
In an effort to address the city imbalance problem de-
scribed above, we resampled the known set to balance the
representation of each city (Methods). While the difference
in prediction scores between “this city” samples vs. “not this
city” was already significant for even the unbalanced data
models (raw-select; p-val < 10e-5, Kolmogorov–Smirnov
test), data resampling (Methods; balance-select) drastically
improved the differentiation. The distances between the
average scores of positive and negative samples increased
from 0.39 + 0.26 to 0.70 + 0.09, across the eight predictors
(Methods; Fig. 3, P vs. N difference is less obvious than for
ReP vs. ReN). As a result, the PR performance of the indi-
vidual under-represented city predictors improved (e.g. for
Auckland, the PR AUC went from 0.258 to 0.441 and for
TOK: from 0.783 to 0.842; Additional file 2: Figure S2 and
Additional file 3: Figure S3). However, the overall (final
model) accuracy of city assignments dropped from 81 to
76% (Table 1), mostly due to the decreased recall of well-
represented city samples (e.g. New York City went from 90
to 75% and Porto from 85 to 72%; Table 1). On the other
hand, the under-represented city sample assignments im-
proved (e.g. Auckland recall increased from 33 to 53%,
Tokyo increased from 75 to 95%; Table 1).
In biased datasets, such as the known set, the assign-

ment is often driven by the most common samples
(here, best represented cities). This, however, changes
performance for test sets with different city composition
ratios. Since balancing training data improves perform-
ance regardless of class distributions [25], we built our
final model using balanced data (Methods). This model
predicted the known-unknown set samples with 63% re-
call (19 of 30 samples) when the top-ranked assignments
were considered and 93% recall (28 of 30 samples) when

the second highest hit was included (Table 2). Note that
like the known training set, the known-unknown test set
is similarly biased towards over-representing New York
City and Porto (10 New York City and 10 Porto samples
of 30 total; Fig. 1b and c). Thus, nine of the misclassified
samples, which were from New York City and Porto,
could have likely been better recovered by the raw
models (Table 2). The fact that their balanced final
model top rank assignments were Auckland and Tokyo
(Table 2), however, suggests functional similarity of the
microbiomes of Auckland vs. New York City and Tokyo
vs. Porto. Note that the other 11 New York City and
Porto samples in the set were correctly ranked highest
(Table 2). To confirm our hypothesis, we trained the
final-unbalanced model on raw data (Methods). This
model correctly assigned all the previously misclassified
New York City and Porto samples, strikingly, ranking
Auckland and Tokyo second (Table 3) and reaching
deceivingly high performance (90 and 97% recall for top
and top-two hit assignments, respectively). In real life
settings, i.e. without prior knowledge of city distribu-
tions, an unknown sample is equally likely to be from
any city. Our results thus highlight the importance of
balancing data for avoiding over-estimated performance.

Predicting samples from previously unseen cities
Our final model was built to recognize samples as com-
ing from one of the eight training cities. Thus, using our
top-hit approach, ANY metagenomic sample can be
classified as coming from one of these cities – even if it
doesn’t score high with the corresponding city model.
To judge whether the sample had NOT come from any
of the eight cities, we had to reconsider the samples
where the top hit had a low score. We tested the final
model city predictors on the known set vs. the random
set (Methods). At the top-hit score = 0.65 there were
fewer than 5% of the random set samples (Fig. 4). In

Table 1 Assignment performance based on the eight city models

raw-full raw-select balance-select

Top hit Second hit Top hit Second hit Top hit Second hit

Ta Fa % Ta Fa % Ta Fa % Ta Fa % Ta Fa % Ta Fa %

AKL 5 10 33 8 7 53 5 10 33 14 1 93 8 7 53 12 3 80

HAM 11 5 69 13 3 81 3 13 19 9 7 56 7 9 44 14 2 88

NYC 113 13 90 121 5 96 114 12 90 123 3 98 95 31 75 120 6 95

OFA 11 8 58 17 2 89 14 5 74 18 1 95 15 4 79 19 0 100

PXO 45 15 75 57 3 95 51 9 85 59 1 98 43 17 72 56 4 93

SAC 26 8 76 27 7 79 31 3 91 33 1 97 31 3 91 32 2 94

SCL 17 3 85 17 3 85 17 3 85 19 1 95 18 2 90 19 1 95

TOK 15 5 75 18 2 90 15 5 75 20 0 100 19 1 95 20 0 100

All 243 67 78 278 32 90 250 60 81 295 15 95 236 74 76 292 18 94
aAssignments are correct (T, true) if the sample provenance matches either of the two predicted cities, and incorrect (F, false) otherwise
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Table 2 Final model scores for the known-unknown set

Boldface indicates correct hits. Shading indicates samples for which top hits are wrong and second hits are right

Fig. 3 Distribution of prediction scores from the city predictors trained on the selected 20 ECs. a AKL (Auckland); b HAM (Hamilton); c NYC (New
York City); d OFA (Ofa); e PXO (Porto); f SAC (Sacramento); g SCL (Santiago); h TOK (Tokyo). Positive (P) and negative (N) score distributions for
raw-select models were less obvious to their resampled model (balance-select) versions (ReP and ReN)

Zhu et al. Biology Direct           (2019) 14:19 Page 6 of 10



other words, if a given unknown sample had a top-hit
score > 0.65, we were more than 95% confident that it is
from one of the eight known cities. As a validation experi-
ment, we also note that none of the samples from the
SAND set, an unrelated metagenome dataset (Methods),
scored above this threshold.
In predicting the unknown and mix sets, both of which

contain metagenomes from new cities (Fig. 1; Methods),
our model correctly judged 81% (42 of 52) of the samples
to be not from the eight known cities (Fig. 4). In the
unknown set, two samples from Ilorin were assigned to
Ofa, possibly due to the geographic adjacency (Figs. 1, 4).
Strikingly, half of the Boston samples (6 of 12) were pre-
dicted to be from Porto (Fig. 4), which suggests strong

similarity of the two cities’ subway microbiomes. On the
other hand, despite of the regional proximity to Porto,
none of the unknown set Lisbon samples scored above the
threshold, while two mix set Lisbon samples were pre-
dicted to be from New York City (Fig. 4).

Subway microbiome functional signatures reveal signals
not seen by taxonomy studies
Here we showed that our 20 selected features/ECs are suffi-
cient to differentiate city subway microbiomes. These ECs
are, thus, the microbiome functional signatures of city
subway systems (Additional file 4), where functional signa-
tures shared by cities may indicate environmental similarity.
For example, the two New Zealand cities, Auckland and
Hamilton, share six of the 20 ECs (Fig. 5; Table 4). Two of
the shared enzymes, EC 2.4.1.288 and EC 1.8.1.15 (Table 4)
are associated with the Mycobacterium genus, a well-
known source of human pathogens, e.g. Mycobacterium
tuberculosis (MTB). Note that this association does not
directly indicate the presence of MTB. The first of these
enzymes is required for biosynthesis of arabinogalactan
[30], a critical component of the unique mycobacterial cell
wall structure essential for viability of MTB [31]. The sec-
ond enzyme, which reduces mycothione to mycothiol, has
been proposed as an MTB drug target [32]. Both enzymes
were significantly depleted (p-val < 10e-5, t-test) in New
Zealand cities as compared to the others, which is in line
with low tuberculosis (TB) burden in New Zealand (0.23
incidences per 100,000 population, as compared to America
(1.1 incidences per 100,000 population) and European (12
incidences per 100,000 population) regions) [33].
Another interesting observation is that New York City

functional signatures overlap to a large extent with Porto
and Tokyo (Fig. 5). Here, compared to other cities, NYC
and Porto are depleted in these overlapping functions,
while Tokyo is enriched in it (all enzyme p-vals<10e-5,
t-test). Strikingly, most of these overlapping functions

Table 3 The top two city with highest normalized score (final-unbalanced) for the known-unknown set

Boldface indicates correct hits. Shading indicates samples for which top hits are wrong and second hits are right

Fig. 4 Distribution of top-match scores from final-SVM. The columns
from the left are: known set, random set, SAND set, Ilorin samples
from unknown set, Lisbon samples from unknown set, Boston
samples from unknown set and mix set. The black dash line indicates
0.65, the cutoff below which the samples are likely to be random,
i.e., the sample is not from any of the eight cities with which we
trained our model
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are associated with photosynthesis (Tables 5, 6). For
example, New York City is depleted and Tokyo enriched
in two enzymes, EC 1.3.7.5 and EC 1.3.5.5, which are
involved in, respectively, porphyrin/chlorophyll metabolism
and carotenoid biosynthesis [34]. Note that carotenoid
pigments are not only able to harvest light energy on their
own, but also protect chlorophyll from photodamage [35].
Notably, another four enzymes similarly enriched/depleted

in Tokyo/NYC are associated with biochemical processes
that are, mostly or exclusively, observed in cyanobacteria –
a photosynthetic phylum (Table 5) [36–40]. On the other
hand, function signatures similarly depleted in New York
City and Porto include the photosystem II protein (EC
1.10.3.9), photosystem I iron-sulfur center (EC 1.97.1.12),
enzymes (EC 3.2.1.31 and EC 6.6.1.1) involved in porphyrin
and chlorophyll metabolism [34], and Ribulose bispho-
sphate carboxylase (RuBisCO; EC 4.1.1.39), the key enzyme
in carbon fixation (Table 6).
For New York City, thus, our results thus suggest

depletion in photosynthesis functionality (13 out of 20
signature functions). Note that mi-faser covers other bac-
terial photosynthesis-associated functions (EC 3.6.3.14 and
EC 1.18.1.2, in KEGG pathway map00195) [34]. Though
neither of these was selected as part of the New York City
functional signature, both showed significantly lower abun-
dance (p-val < 0.01, t-test), confirming our findings.
Interestingly, to the best of our knowledge and in con-

trast to our findings, none of the earlier MetaSUB taxo-
nomic studies have reported detecting Cyanobacteria
[11–15]. As these studies mostly addressed New York
City samples, in which the photosynthetic functions are
depleted, we fully expect this year’s taxonomy-focused
MetaSUB studies to identify Cyanobacteria from the
non-NYC samples. However, we are aware that they may
not confirm our expectations, particularly for Tokyo, as
no Cyanobacteria had been previously identified in the

Fig. 5 Venn diagrams [29] of city subway microbiome signature
overlaps between a) AKL (Auckland) and HAM (Hamilton), and b)
NYC (New York City), TOK (Tokyo) and PXO (Porto)

Table 4 The microbial functional signatures shared between
AKL and HAM

EC Annotation

1.8.1.15 mycothione reductase

1.8.7.1 assimilatory sulfite reductase (ferredoxin)

1.10.3.10 ubiquinol oxidase (H + -transporting)

1.2.2.3 formate dehydrogenase (cytochrome-c-553)

2.4.1.288 galactofuranosylgalactofuranosylrhamnosyl-N-
acetylglucosaminyl-diphospho-decaprenol
beta-1,5/1,6-galactofuranosyltransferase

5.4.3.5 D-ornithine 4,5-aminomutase

Table 5 The microbial functional signatures shared between
NYC and TOK

EC Annotation

1.14.19.6 Delta(12)-fatty-acid desaturase

1.2.1.80a Long-chain acyl-[acyl-carrier-protein] reductase

1.3.5.5a 15-cis-phytoene desaturase

1.3.7.5a Phycocyanobilin:ferredoxin oxidoreductase

2.5.1.115a Homogentisate phytyltransferase (HPT)

3.4.15.6a Cyanophycinase

4.1.99.5a Aldehyde decarbonylase (AD)
aPhotosynthesis-related functions

Table 6 The microbial functional signatures shared between
NYC and PXO

EC Annotation

1.10.3.9a Photosystem II protein

1.4.1.1 Alanine dehydrogenase

1.97.1.12a Photosystem I iron-sulfur center

3.2.1.31a Beta-glucuronidase (GUS)

4.1.1.39a Ribulose bisphosphate carboxylase (RuBisCO)

6.6.1.1a Magnesium-chelatase 38 kDa subunit
aPhotosynthesis-related functions
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subway microbiome of another large modernized East
Asian city, Hong Kong [41]. If indeed no Cyanobacteria
are found, horizontal gene transfer may be to blame for
the confusion. We have previously shown that, due in
large part to horizontal gene transfer, bacterial taxonomy
does not convey functional similarity [42] and that micro-
bial functional diversification is driven by environmental
factors [43]. It is also not hard to imagine that city subway
environments, i.e. artificial light and high moisture and
CO2 concentrations, select for photosynthetic activity.
Whether our results reflect taxonomy, or not, we sug-

gest that functional analyses could reveal additional signals
complementary to, if not more detailed and accurate than,
taxonomic surveys.

Conclusions
We used mi-faser to functionally profile 392 MetaSUB
shotgun metagenomic samples. We demonstrated that
1) using test data with the same systematic bias as the
training data leads to over-estimated performance and
that 2) balancing biased training data improves predic-
tion performance. Our predictor of microbiome city ori-
gins made correct city assignments > 90% of the time,
and correctly judged samples to be NOT from training
cities > 80% of the time. In addition, we found subway
microbiome similarities between cities both geographic-
ally close (Ofa and Ilorin) and far (Boston and Porto,
Lisbon and New York City). We identified mycobacterial
functions as signatures for New Zealand cities, curiously
implying persistence of public health risk in other cities.
We also found that New York City, Porto, and Tokyo
subway microbiomes are best described by both signifi-
cant enrichment and depletion of photosynthetic func-
tions, highlighting the strength of functional analysis.
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