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Abstract

Background: The PVC super-phylum gathers bacteria from seven phyla (Planctomycetes, Verrucomicrobiae,
Chlamydiae, Lentisphaera, Poribacteria, OP3, WWE2) presenting different lifestyles, cell plans and environments.
Planctomyces and several Verrucomicrobiae exhibit a complex cell plan, with an intracytoplasmic membrane
inducing the compartmentalization of the cytoplasm into two regions (pirellulosome and paryphoplasm). The
evolution and function of this cell plan is still subject to debate. In this work, we hypothesized that it could play a
role in protection of the bacterial DNA, especially against Horizontal Genes Transfers (HGT). Therefore, 64 bacterial
genomes belonging to seven different phyla (whose four PVC phyla) were studied. We reconstructed the evolution
of the cell plan as precisely as possible, thanks to information obtained by bibliographic study and electronic
microscopy. We used a strategy based on comparative phylogenomic in order to determine the part occupied by
the horizontal transfers for each studied genomes.

Results: Our results show that the bacteria Simkania negevensis (Chlamydiae) and Coraliomargarita akajimensis
(Verrucomicrobiae), whose cell plan were unknown before, are compartmentalized, as we can see on the
micrographies. This is one of the first indication of the presence of an intracytoplasmic membrane in a Chlamydiae.
The proportion of HGT does not seems to be related to the cell plan of bacteria, suggesting that
compartmentalization does not induce a protection of bacterial DNA against HGT. Conversely, lifestyle of bacteria
seems to impact the ability of bacteria to exchange genes.

Conclusions: Our study allows a best reconstruction of the evolution of intracytoplasmic membrane, but this
structure seems to have no impact on HGT occurrences.

Reviewers: This article was reviewed by Mircea Podar and Olivier Tenaillon.
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Background
The PVC super-phylum gathers seven bacterial phyla
(Planctomycetes, Verrucomicrobiae, Chlamydiae, Lenti-
sphaerae, Poribacteria, OP3, WWE2) [1–4], and comports
37 species of bacteria whose genome was entirely se-
quenced. The monophyly of this super phylum have been
discussed a lot in the last years, due to the difficulty to ob-
tain a consensual phylogeny [5–14]. Recently, it seems
that a global consensus was reached, that include all these
bacteria in a same super-phylum [2, 5]. This idea is

confirmed by the discovery in 2012 and 2014 of a molecu-
lar signature conserved in all PVC bacteria [1, 15]. The
phylogenetic relations between PVC and other bacteria
are still a controversial subject [5, 13]. PVC bacteria are
present in an important variety of environments: water,
soils, vertebrates, amoeba, insects… [5, 16–21].
The bacteria of this super-phylum show different in-

teresting characteristics [11, 22]. Some of these fea-
tures can be found in other bacteria: some
Planctomycetes are implicated in carbon and nitrogen
cycles [23, 24] or synthesize special sterols [25], many
Chlamydiae are pathogens of mammals [26, 27], some
Chlamydiae and Verrucomicrobiae are symbionts [19].
But PVC present also genetic and cellular features
unusual among bacteria: compartmentalization in
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Verrucomicrobiae and Planctomycetes [28, 29], ab-
sence of tubulin like protein FtZ in Planctomycetes
and Chlamydiae [30, 31], crateiform surface and bud-
ding reproduction [32] in Planctomycetes. Among
these characteristics, we were specifically interested in
the compartmentalization of bacteria. This feature is
characterized by a specific cell plan, and concerns all
the Planctomycetes [29, 33, 34], some Verrucomicro-
biae [28], one Lentisphaera and one Poribacteria [35].
An intracytoplasmic membrane (ICM) separates the
cytoplasm of bacteria into two distinct compartments:
the pirellulosome inside (containing the DNA [36]),
and the paryphoplasm outside (the size and shape of
these two compartments varied a lot among PVC
bacteria). This ICM is a lipid bilayer in contact with
proteins [29, 32, 33] presenting structural similarities
with some proteins from eukaryotic membranes, such as
clathrins [37, 38]. Some compartmentalized bacteria also
present a more complex cell plan, with the presence of an-
other compartment, like the anamoxosome in Candidatus
Kuenenia Stuttgartiensis [32, 39, 40], or a double internal
membrane with ribosomes [41] in the same compartment
that DNA [36] in Gemmata obscuriglobus [42].
Compartmentalization in PVC bacteria is still debatable
and three opinions are defended actually : 1- As some fea-
tures of PVC bacteria are current in Eukaryota [15], this
observation allows some people to assume that the
compartmentalization of PVC is the precursor of
Eukaryotic nuclei, but this idea is not very popular
[34, 43–48]. 2- Another proposition is that the compart-
ment is structurally and functionally similar to a nucleus
but that these two structures appeared independently [49].
3- Some people identify the membrane as an invagination
of a Gram negative external membrane [50].
Considering the reality of the existence of a

compartmentalization in PVC bacteria, it would be in-
teresting to determine the function of this specific cell
plan; indeed, no previous studies had been able to deter-
mine it. Here we assumed that this membrane could be
a protection against Horizontal Gene Transfers (HGT).
This hypothesis was based on observations of the impact
of different membranes already studied : the role of the
internal membrane in Eukaryotes, or the influence of
host membrane on genomes from intracellular bacteria
(which limits the contact between foreign elements and
DNA). We used a phylogenomic strategy of HGT detec-
tion to reconstruct the history of HGT during the evolu-
tion of PVC bacteria, before and after appearance and
disappearance of compartmentalization.

Results
Lifestyle of species and evolution of cell plan
PVC bacteria present two different cell plan, compart-
mentalized by an intra cytoplasmic membrane (ICM)

or non compartmentalized. They also present two dif-
ferent lifestyles: allopatric lifestyle, for bacteria isolated
from other microorganisms (obligate intracellular bac-
teria living in non amoeba cells) and sympatric, for bac-
teria in contact with other microorganisms. The studies
already published allowed determining cell plan of 26
PVC bacteria: PVC super phylum presented 18 com-
partmentalized species distributed in three phyla
(Verrucomicrobiae, Planctomycetes and Lentisphaerae)
and eight non compartmentalized bacteria in one phyla
(Chlamydiae). These bacteria were used in our study,
but we also selected seven bacteria with an unknown
cell plan, distributed in two phyla (Verrucomicrobiae
and Chlamydiae). These data allowed the reconstruc-
tion of cell plan evolution with a good reliability, how-
ever it was still difficult to conclude about ancestral
state at different nodes of the tree, especially in Chla-
mydiae phylum (their common ancestor presented a
probability of 80.2 % to be compartmentalized). It was
interesting to add new information in the dataset, in
order to improve this reconstruction.
The electron microscopic pictures obtained for the

thin sections of Simkania negevensis (Fig. 1a) and
Coraliomargarita akajimensis (Fig. 1b, c), revealed the
presence of a potential intracytoplasmic membrane in
these two bacteria. In both cases, cells contain structures
identified as a pirellulosome and a paryphoplasm, sepa-
rated by the intracytoplasmic membrane. The nucleoid
is contained within the pirellulosome. For S.negevensis,
we noticed some differences compared to the other
compartmentalized species: we identified the membrane
of the phagocytic vacuole surrounding the Chlamydiae,
related to the phagocytosis of S.negevensis by the
amoeba. An important presence of internal membranes
is also detected. C.akajimensis presents a compartmen-
talized cell plan with an intracytoplasmic membrane
close to the external membrane.
These microscopic observations revealed cell plan infor-

mation about two bacteria, whose a Chlamydiae. allowing
us to better reconstruct the ancestral state of cell plan all
along the PVC super-phylum evolution (Fig. 2). The
compartmentalization of S.negevensis induces an increase
in the probability of compartmentalization in the Chla-
mydiae last common ancestor to 86.1 % (against 80.2 %
without this information). The ancestral reconstruction
permitted to date the appearance of intracytoplasmic mem-
brane to the root of PVC super-phylum with a probability
of 99.8 % (against 96.1 % without our new data). The eight
non compartmentalized Chlamydiae form a monophyletic
group and represents all the allopatric bacteria of the
super-phylum, their ancestor was supposed to be allopatric
and was predicted as non compartmentalized, suggesting a
disappearance of compartmentalization in this ancestor
(with a probability of 99.4 %).
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Relation between cell plan and genomes contents
HGT were detected by phylogenomic methods, the
position of HGT in species tree allows to differentiate
HGT occurred only in modern species (specific HGT)
and HGT occurred in their ancestors (non specific
HGT). We identified 27275.0 proteins acquired by
HGT (13.2 % of all proteins in proteomes studied). The
proteomes of sympatric compartmentalized bacteria
present 13040.0 HGT with 7259.0 specific HGT (6.2 %
of proteomes) and 5781.0 non specific (4.9 % of pro-
teomes). The proteomes of sympatric non compart-
mentalized bacteria contain 12686.0 HGT, whom
5466.0 specific (6.7 % of proteomes) and 7220.0 non
specific (8.9 % of proteomes). Allopatric non

compartmentalized bacteria present 1549 proteins ac-
quired by HGT in their proteomes, with 160 specific
HGT (2.0 % of proteomes) and 1389 non specific HGT
(17.7 %). When we compared their HGT propor-
tions (Fig. 3), we detected a significantly lower propor-
tions of specific HGT in allopatric bacteria, compared
to sympatric bacteria (ANOVA test: p-value = 3.0*10-4).
In species tree, an important decrease of HGT propor-
tions was identified after the conversion of Chlamydiae
to intracellular allopatric lifestyle. Among sympatric
bacteria, we could not identify a significant difference
of HGT proportion according cell plan, regardless the
type of HGT studied (total / specific / non specific
HGT; Kruskal test or ANOVA test, p-value = 3.1*10-1 /

Fig. 1 a Transmission electron micrograph of thin section of cell of Simkania negevensis. Pirellulosome (PI) and paryphoplasm (P) are separated
by the intracytoplasmic membrane (ICM). The nucleoid (N) is contained within the pirellulosome. The bacterium lives in the cytoplasm of an
amoeba and is surrounded by the membrane of phagocytic vacuole (VM). Bar marker, 0.2 μm. b) c): Transmission electron micrograph of thin
section of cell of Coraliomargarite akajimensis. Pirellulosome (PI) and paryphoplasm (P) are separated by the intracytoplasmic membrane (ICM).
The nucleoid (N) is contained within the pirellulosome. Bar marker, 0.2 μm
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Fig. 2 (See legend on next page.)
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9.8*10-1 / 5.1*10-1 respectively) (Fig. 3). The quantities
of HGT were compared between the ancestors of stud-
ied bacteria, according to their most probable cell plan.
This comparison did not allow to detect a significant
differences between ancestral bacteria depending on
cell plan (ANOVA test, p-value = 6.2*10-1). These ob-
servations suggest that intracytoplasmic membrane has
no impact on HGT frequency.
The compartmentalization of bacteria could disturb

only some particular mechanisms of HGT processes,
leading to a low impact on HGT global proportions.
The study of mobilome revealed that no element
present proportions varying significantly according cell
plan (Additional file 1). The lifestyle of bacteria seems
to clearly influence the variations of some mobilome el-
ements; indeed, the intracellular bacteria present more
abundant proportions of transposases than extracellular
bacteria (Kruskal test : p-value = 2.0*10-2). Conjugation
genes are significantly over represented in the genomes
of Intracellular allopatric bacteria, and underrepre-
sented in extracellular compartmentalized bacteria
(Kruskal test : p-value = 3.0*10-2).

Discussion
Lifestyle of species and evolution of cell plan
The results of electronic microscopy allowed to defined
S.negevensis and C.akajimensis as compartmentalized
bacteria. The Chlamydiae is characterized by an import-
ant presence of internal membranes. This observation is
probably related to the folds of the intracytoplasmic
membrane, as it is visible for the G.obscuriglobus in the
micrographies and the three dimensional reconstruction
published by Santarella-Mellwig et al in 2010 [38] and
2013 [37] respectively. Conversely, the cell plan observed
is different from that identified in the cryotomographies
realized by Pilhofer et al in 2014 [51]. The differences
could be related to the variations in methodology used
and in the growth stage observed. The possible
compartmentalization of S.negevensis is very interesting
because the cell plan is unknown in a large majority of
sympatric Chlamydiae. C.akajimensis presents a more
classical compartmentalized cell plan, as it was already
observed in some PVC bacteria by Santarella-Mellwig in
2013 [37] and Kuo-Chang Lee and al in 2009 [28]. These
micrographies allowed an improving in reconstruction
of cell plan evolution among PVC bacteria, especially in
Chlamydiae. They permitted to analyze the impact of
ICM in the phyla of intracellular sympatric Chlamydiae,

with two bacteria presenting a known cell plan and the
probable presence of compartmentalization in their last
common ancestor (with a probability of 71 %, against
57 % without the information about S.negevensis). The
micrography of C.akajimensis completes the studies
already realized on the Verrucomicrobiae and reinforces
the probability of compartmentalization in the last com-
mon ancestor of Verrucomicrobiae (probability of
compartmentalization = 83 %, against 79 % without the
cell plan of C.akajimensis). These observations allowed
to conclude with fewer uncertainties our study concern-
ing the HGT in compartmentalized bacteria.
Cell plan evolution reconstruction indicated that

compartmentalization appeared at the root of PVC
super-phylum and disappeared once, in the group of
allopatric intracellular bacteria. This disappearance
seems to occurred simultaneously with bacteria conver-
sion to intracellular allopatric lifestyle. Intracellular allo-
patric bacteria are isolated from other bacteria, so their
genomes are protected against HGT. Conversely, extra-
cellular and intracellular sympatric bacteria are more ex-
posed to exchanges because they are in contact with
many microorganisms. An hypothesis could be that the
intracytoplasmic membrane plays a role in protection of
genomes against HGT, as host membrane of intracellular
bacteria or eukaryotic membrane [52]. This intracyto-
plasmic membrane became useless in allopatric bacteria,
due to the absence of HGT, leading to its disappearance.
However, this hypothesis needs to be confirmed by data
concerning genomes evolution in compartmentalized
and non compartmentalized bacteria.

Relation between cell plan and genomes contents
The analysis of HGT in the different groups of bacteria
highlighted the role of lifestyle on HGT process and the
absence of impact of compartmentalization. The import-
ant decrease of HGT proportions observed in Chlamydiae
after their conversion to the intracellular allopatric lifestyle
is probably due to the physical isolation from other micro-
organisms, which prevents the opportunities of HGT [52].
This agrees with previous studies showing that the pre-
dominant evolutionary process in intracellular bacteria is
genome reduction leading to small genome sizes [53, 54]
with the bacteria from amoeba as the exception [55, 56].
The similarity of HGT proportions between compartmen-
talized and non compartmentalized bacteria suggests that
the presence on an intracytoplasmic membrane has no
impact on HGT process. We could imagine that this

(See figure on previous page.)
Fig. 2 Phylogeny of PVC super-phylum with indications of cell plan and lifestyles for studied species. The points at the nodes indicate the cell
plan: black for compartmentalization, white for no compartmentalization and red for unknown cell plan. The color squares indicate the lifestyles of
bacteria. The probabilities of the different cell plan states in ancestors are presented by diagrams, the portions of the different colors indicates
their probabilities

Pinos et al. Biology Direct  (2016) 11:38 Page 5 of 12



Fig. 3 (See legend on next page.)
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absence of difference is due to a problem of our strategy
but three observations demonstrate the efficiency of our
method: Chlamydiae present an important rate of ancient
HGT with eukaryotes, significantly higher than other bac-
teria (ANOVA test p-value = 3.3 × 10-6). This observation
is consistent with the existing literature dedicated to
transfers between plants and Chlamydiae [57, 58] that
supports a role of Chlamydiae in chloroplast endosymbi-
osis; The HGT proportions detected in two Planctomy-
cetes (Planctomyces maris and Candidatus Kuenenia
stuttgartiensis) correspond to these observed by Kamneva
et al in 2012 [5]; Spirochaetes seem to exchanges more
with Firmicutes as it was already detected in previous
studies [59, 60].
A similar HGT proportion in compartmentalized

and non-compartmentalized bacteria does not neces-
sary contradict the hypothesis of protection against
HGT by compartmentalization. Indeed, the intracyto-
plasmic membrane of PVC bacteria can represents a
barrier to HGT by disturbing only some transfers
mechanisms mediated by mobilome elements. This
perturbation could lead or not to a decrease of HGT
level, depending if the deficiency of some mechanisms
are offset by the others. The absence of difference in
mobilome elements quantities and proportions be-
tween the different groups of bacteria indicated that
the compartmentalization has no impact, not only on
HGT proportions, but also on elements implicated in
HGT process. The lifestyle seems to have an influence
on two mobilomes elements, proportions of transpo-
sases and conjugation genes. The high proportion of
transposases in intracellular allopatric bacteria could
be related to the importance of transposable elements
in genomes of intracellular bacteria [61, 62]. However,
conjugation genes present other uses in bacteria than
conjugation [63, 64]. So we can assume that the
abundance of conjugation genes in bacteria has prob-
ably no influence on the HGT.
The function of compartmentalization in PVC bacteria

remains unknown and the causes of intracytoplasmic
membrane disappearance in intracellular isolated bac-
teria is still unresolved.

Conclusions
The different pictures obtained for Verrucomicrobiae
and Chlamydiae allow a best definition of ancestral and
modern states of compartmentalization and so, permit
to reconstruct intracytoplasmic membrane evolution in

PVC bacteria. But this compartmentalization seems have
no significant impact on HGT quantity, HGT proportion
or partners of transfers.

Methods
Bacteria selection and genomes recovery
We selected bacteria from 4 phyla of PVC super-
phylum: Planctomycetes, Verrucomicrobia, Lentisphaerae,
and Chlamydiae. Bacteria from three phylogenetically
close phyla were chosen as negative controls, based on a
reference tree [5]: Bacteroidetes, Spirochaetes and
Chlorobi. We retrieved the proteomes of all bacteria
selected in genomes NCBI database (Additional file 2).

Lifestyle and cell plan determination
The lifestyle of selected bacteria is determined by a bib-
liographic study of each bacterium. Two types of life-
styles are known for bacteria, according the possibility of
exchanges with other microorganisms: allopatric or sym-
patric bacteria [65, 66]. Sympatric bacteria are bacteria
living in community with other microorganisms, they
exchange easily genes by lateral transfer through their
interactions. Allopatric bacteria are living in cells and
are not in contact with other microorganisms, more spe-
cialized, with a reduced genome size and less genetic ex-
changes. They are obligate intracellular bacteria, living
in non amoeba cells.
Cell plans of bacteria are determined thanks to trans-

mission electron microscopy pictures already available in
bibliography [28, 29, 34, 35] and microscopic observations
of the bacteria whose cell plan is unknown. First, the spe-
cies Simkania negevensis (DSM27360T, type strain) was
grown within a culture of its amoebal host A. castellanii.
At H6, and H16 post-infection, cultures were centrifuged
at 2000 rpm/min during 10 min, and the pellets were fixed
for electron microscopy in a fixative solution (2.5 % glutar-
aldehyde in 0.1 M sodium cacodylate buffer). The second
species, Coraliomargarita akajimensis (DSM 45221T, type
strain) was cultivated directly into Bacto Marine Broth
medium (Difco). Growth occurred after 6 days of cultiva-
tion, and when the bacterial suspension reached the expo-
nential growth phase, it was centrifuged at 5500 rpm/min
during 30 min, and fixed for electron microscopy in the
same fixative solution. An aliquot of each culture was kept
for DNA extraction, followed by a standard 16S rRNA
PCR and sequencing, in order to confirm the bacterial
identification. For both bacteria, Electron microscopic
observations were realized in different steps: for

(See figure on previous page.)
Fig. 3 Proportion of genes acquired by transfer in the genomes of the 64 bacteria studied. This figure presents the proportion of HGT that occurred
recently and formerly, in each genome of studied bacteria. The points at the nodes of phylogeny show the quantity of HGT occurred between the
node and the following. The rates of recent and ancient HGT are presented in tables, a high rate of HGT is indicates by a red color, a low rate by green
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embedding, cells were fixed for 1 h with glutaraldehyde
2.5 % in 0.1 M sodium cacodylate buffer and washed three
times. Cells were post-fixed for 1 h with 1 % OsO4 diluted
in 0.2 M Potassium hexa-cyanoferrate (III) / 0.1 M sodium
cacodylate solution. After four 5 min washes with distilled
water, cells were gradually dehydrated with ethanol by
successive 10 min baths in 30, 50, 70, 96, 100 and 100 %
ethanol. Substitution was achieved by successively placing
the cells in 25, 50 and 75 % Epon solutions for 15 min.
Cells were placed for 1 h in 100 % Epon solution and in
fresh Epon 100 % over-night under vacuum at room-
temperature. Polymerization took place with cells in fresh
100 % Epon for 24 h at 60°. Ultrathin 70 nm sections were
cut with a UC7 ultramicrotome (Leica) and placed on
HR25 300 Mesh Copper/Rhodium grids (TAAB, UK).
Electron micrographs were obtained on a Tecnai G20
TEM operated at 200 keV equipped with a 4096 ×
4096 pixels resolution Eagle camera (FEI)).

Phylogeny and cell plan evolution reconstruction
We reconstructed the species tree of PVC bacteria and
Bacteroidetes-Chlorobi-Spirochaetes thanks to 12 markers
common to the 65 species (three ribosomal proteins (16S,
23S, 30S), two elongation factors (Tu and Ts), two DNA
polymerase subunits, CTP synthetase, and four tRNA
ligases). The selected sequences were concatenated and
Mega5 [67] software is used to perform the phylogeny
(alignment by Muscle algorithm, manual removal of non-
conserved positions, tree building with NJ and ML
methods with 150 bootstraps, comparison of phylogenies
and selection of a consensus (Additional file 3)).
Thanks to information about compartmentalization in

bacteria, we reconstructed the ancestral state of cell plan
with parsimony method (Mesquite software [68] and
Phytools package on R software [69]. Phytools allowed
the reconstruction of ancestral sates of discrete character
by a method of Maximum likelihood). The tree obtained
allowed us to date the different events occurred during
evolution of the phyla studied (appearance and dis-
appearance of compartmentalization, conversion to
intracellular allopatric or sympatric lifestyle).

Mobilome study
We studied 9 elements directly or indirectly implicated
in the horizontal transfers: phages (complete or incom-
plete), conjugation genes and plasmids, these three ele-
ments are involved in entrance of foreign sequences in
bacteria; Transposases, integrases and CRISP (candidate
or confirmed), regulating positively or negatively the se-
quences integration in recipient genome; and tRNA used
for sequences translation. Different databases were used
as RepBase [70] and CRISPfinder [71] to detect the
mobilome elements (the complete list of databases used
is presented in the Additional file 4). For each element

we counted the quantity in each species; if this quantity
is related to the genome size (CRISPs, transposases, inte-
grases and conjugation genes), we calculated the propor-
tion of these elements in the genomes. We used the
same statistical tests as those used for HGT analysis, in
order to determine the elements overrepresented in the
different classes of bacteria.

HGT detection
OrthoMCL [72] was used for construction of orthologous
groups. Genes absent to all orthologous groups are either
acquired by HGT or generated de novo (ORFans). Blast
against nr database allowed the identification genes pre-
senting no identifiable homologous genes (e-value < 10-4
and coverage > 50 %), considered as ORFans.
Phylopattern [73] pipeline allowed the detection of gen-

etic events in four steps: comparison between species tree
and each orthologous groups; detection of missing species
in orthologous groups; reconstruction of ancestral state
for each proteins, based on the pattern of presence/ab-
sence of sequences in modern species; identification of
two types of genetic events: gains and losses. Gains could
be HGT, de novo genes, or artifacts. We focused on gene
gains and Blast [74] each sequences against nr database
(NCBI). HGTcandidates were identified thanks to filtering
on Blast results: For each blast results, sequences derived
from phylum where gene gain was detected were removed
(for example, if gain was identified in Akkermansia muci-
niphila (Verrucomicrobiae), all sequences in Blast results
derived from Verrucomicrobiae were removed). Sequences
with e-value > 10-5, coverage < 60 % or identities < 30 %
were also removed. Then, species of the first ten
sequences remaining in Blast result were identified. If
species identified do not belong to one of the sister phyla
studied, gene gain is probably an HGT (for example if gain
was identified in Akkermansia muciniphila, gain is consid-
ered as HGT only if the first ten hits do not belong to the
phyla Planctomycetes or Chlamydiae). The position on
gains in species tree allows to differentiate HGT occurred
only in modern species (specific HGT) and HGT occurred
in the ancestor (non specific HGT). We calculated the
quantity of HGT and the percentage of proteins present in
each species, due to transfers. For each HGT detected
(recent or ancient), we determined with which organism
the transfers were realized.
For each elements studied (HGT quantity, propor-

tions, partners and mobilome), we performed a compari-
son of variances between the different groups of bacteria
(based on cell plan). We tested the normality of data dis-
tribution by the shapiro-Wilk test and the homogeneity
of variance by Levene test. These tests were followed by
a comparison of variance between the different classes,
in order to evaluate if there was a significant difference
between them (Kruskal test for data without a normal
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distribution and ANOVA test for data with a normal dis-
tribution). Tests of Nemenuyi (data not normally distrib-
uted) or Tukey (data normally distributed) were
performed to obtain a comparison of each pairs of clas-
ses. We realized also these statistical analysis with bac-
terial groups based on the phyla, to determine if classes
based on phyla present the same results that classes
based on cell plan. If it had been the case, it would have
been impossible to determine if differences observed
were related to cell plan or to phylogenetic relations.

Reviewers’ comments
Reviewer summary
Reviewer 1 (Mircea Podar)
“In their study, Pinos et al tested their hypothesis that
cellular compartmentalization, observed in some repre-
sentatives of the PVC super phylum, is correlated to the
frequency of horizontal gene transfer. The authors
performed ultrastructural analyses of a representative
from the Chlamydia and one from Verrucomicrobiae,
which were shown to be compartmentalized. That
information was combined with results from literature
on other PVC species and was correlated with
phylogenomic analyses on HGT frequencies, based
on completed genomes. The result indicates that
compartmentalization is in fact not significantly
impacting HGT, which has a stronger correlation with
the organismal life-style.
The study is interesting and original, even though the

conclusion did not support the original hypothesis. It
does provide a foundation for additional tests and fo-
cused study of related organisms/genomes, which may
increase the signal to link compartmentalization to more
subtle evolutionary genomic effects.”

Reviewer 2 (Olivier Tenaillon)
“In the manuscript entitled “Compartmentalization in
PVC super-phylum: evolution and impact”, Sandrine
Pinos and colleagues use both microscopy and a phylo-
genetic approach to study Compartmentalization and its
potential impact on horizontal gene transfer.
The idea is interesting, but the paper is not very clear

in its present form. The usage of microscopy is not in-
troduced properly, statistics and methods are over-
simplified and impossible to reproduce. I would consider
therefore that the paper needs very substantial rewriting
and the phylogenetic analysis should include uncertainty
in the phylogeny.”

Reviewer recommendations to authors
Reviewer 1 (Mircea Podar): The manuscript needs ex-
tensive work in correcting the many language errors
(spelling, syntax, grammar). It also does not provide

sufficient detail to evaluate the power of the phyloge-
nomic analyses that were performed. While I like the
concept of this study and the overall approach, the
manuscript requires a complete overhaul.
Reviewer 2 (Olivier Tenaillon): How robust is the

tree? Before being able to conclude on the ancestry of a
trait, the robustness of the phylogeny has to be tested. In
my experience a 16S phylogeny is not very robust and
much more loci should be involved in the reconstruc-
tion, bootstrap values should be presented. Character re-
construction should also take into account the tree
uncertainty. This is critical for both figures and both
character mapping procedures.
Reviewer 2 (Olivier Tenaillon): line 219: “If species

identified do not belong to one of the close phyla stud-
ied, gene gain is probably an HGT” how close is close,
the threshold use should be clearly defined?”
Author’s response: The different comments and ques-

tions concerning our phylogenomic strategy indicate an
important problem in our presentation of this method
and its results. In order to correct these problems, we ex-
panded the methodology part of phylogenomic strategy,
by adding indications and some examples (we detailed
some points, as what we want to say by “If species identi-
fied do not belong to one of the close phyla studied, gene
gain is probably an HGT”, in this case, “close phyla” re-
fers to species belonging to the sister phylum). We also
added, in the Additional file 3, phylogenies of PVC bac-
teria and Bacteroidetes-Spirochaetes-Chlorobi, with the
indication of bootstrap values. These phylogenies are
more robust than those of the first version, due to the use
of ten supplementary markers, for alignment and phylo-
genetic reconstruction. We want to underline that some
results obtained by our phylogenomic method are conver-
gent with results already observed in previous studies
(line 155–161), this is an indication of the relative effi-
ciency of our method.
The improvement of the phylogeny allowed a better re-

construction of cell plan evolution in PVC bacteria. How-
ever, In order to take into account the problem of
phylogenetic uncertainties, we used another method of
ancestral reconstruction that not only considers these un-
certainties, but also provides the probabilities of each
state of cell plan at each nodes of the tree. The results of
this analysis were included in the Figure 2, they led to a
better vision of PVC bacteria evolution and highlighted
the importance of microscopic data.
Reviewer 2 (Olivier Tenaillon): Introduction -

The link between horizontal gene transfer and
compartmentalization is not clearly stated in the intro-
duction. Two arguments are mentioned, the second one
a physical limit is somehow simple to understand, but
the first one remains enigmatic: “the presence or absence
of compartmentalization in the different PVC bacteria
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and the reconstruction of ancestral states”. What is meant
by this sentence is not clear to me. I think developing
more on the subject would improve the introduction.
Author’s response: This sentence is difficult to explain

without the knowledge about the compartmentalization
and the lifestyle of PVC bacteria, however, it could be long
to detail all these information in introduction. Conse-
quently, we decided to remove this sentence from the intro-
duction, we presented and explained it in the results part.
This sentence resumed the idea that if Chlamydiae
are the only non compartmentalized PVC bacteria
sequenced and also the only intracellular bacteria
of this super-phylum, if the compartmentalization
protects genomes against HGT, its lost in the intracel-
lular species could be related to the isolation of these
bacteria that induces a low proportion of HGT, and
leads to the uselessness of compartmentalization. So,
the bibliographic knowledge about the presence or
absence of compartmentalization in species suggests the
hypothesis of a role of the ICM in protection against HGT.
Reviewer 2 (Olivier Tenaillon): Results - The result

section starts with the description of microscopic struc-
tures. It is not introduced in anyway. The two first para-
graphs should be inverted: first mention that the
compartmentalization is unknown in some species, then
present the evidence for the ones lacking information.
Discussion - again no clear explanation of the interest

of the microscopy.
Author’s response: As the result of the comments of re-

viewers, we decided to reorganize the results of microscopic
analyzes to improve our presentation. We insisted on the
importance of these data in our study by adding explana-
tions of their use in ancestral reconstruction (71–80) and
their role in the study of the relation between HGT and
compartmentalization (97–99). We realized a more de-
tailed ancestral state reconstruction, with a more complex
method (analysis performed thanks to R software, with
phylotools package, by a maximum likelihood method)
that provided the probabilities of each cell plan states at
each nodes of the tree. These analyzes highlighted the im-
portance to add our data to the study, indeed our supple-
ment of information allowed to improve significantly the
probability of compartmentalization for several nodes of
tree.
Reviewer 2 (Olivier Tenaillon): Results - The term

allopatric and sympatric should clearly be defined in
the present context and not in the method. Being an
evolutionary biologist rather than a microbiologist, I
do not support the use of these terms that refer to
speciation and not to accessibility of foreign DNA,
but as the author have previously used them… It
should nevertheless be explicitly defined, with the
present definition it is not clear who has access to
other microbes.

Author’s response: Indeed the terms allopatry and
sympatry needed to be clearly defined, we added the
complete definition in methodology part and we also put
a short definition in the results part.
Reviewer 2 (Olivier Tenaillon): The mobilome ana-

lysis are not described enough to be reproducible.
Author’s response: We improved the paragraphs dedi-

cated to the mobilome analysis by adding explanations
about our strategy (elements selected and calculation of
proportions). We completed these explanations by a table
of the databases used to retrieve the mobilome elements,
available in the Additional file 4.
Reviewer 2 (Olivier Tenaillon): “line 206 “Genes ab-

sent to all orthologous groups are either acquired by HT
or generated de novo”: this sentence is not clear. Some-
times HT is used sometimes HGT.
Author’s response: The term HT indicates an horizon-

tal transfer of sequence, this sequence could contain one
or more genes (average of genes implicated by transfer is
1.5). The term HGT refers to a transfer of one gene. As
the use of these two terms complicated our manuscript,
we decided to use only the term of HGT, and we adapted
our data in consequence.
Reviewer 2 (Olivier Tenaillon): line 206 NR database:

the author should say what it is and use either nr or NR.
Author’s response: Indeed we used the nr database, we

corrected this mistakes in manuscript.
Reviewer 2 (Olivier Tenaillon): Figure - species

names should be written in full and in italic with no
underscore. Line 70–75 Statistics should be given to
compare “sympatric” groups.
Author’s response: The figures were corrected and we

added the statistics for sympatric bacteria comparison in
the paragraph.

Additional files

Additional file 1: Mobilome distribution in the different bacterial
groups according lifestyle and cell plan. The different graphics allow a
better sight of the different levels for each mobilome feature. Red stars
show significant differences between groups. (PDF 175 kb)

Additional file 2: Characteristics of studied species. This table presents
the lifestyles, genomes and proteomes features of each species studied.
(PDF 125 kb)

Additional file 3: Phylogeny of PVC bacteria and phylogeny of
Bacteroidetes-Chlorobi-Spirochaetes. The phylogenies of studied bacteria
were realized with Maximum likelihood method, thanks to Mega6
software, the bootstraps values are indicated at each node. (PDF 234 kb)

Additional file 4: Databases used for the mobilome study. The
mobilome elements studied are indicated in the first column, the second
column contains the corresponding database and the third column
presents the url of websites for these databases. (PDF 177 kb)
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