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Abstract

Background: Lung adenocarcinoma (LUAD) is a highly malignant and
heterogeneous tumor that involves various oncogenic genetic alterations. Epigenetic
processes play important roles in lung cancer development. However, the variation
in enhancer and super-enhancer landscapes of LUAD patients remains largely
unknown. To provide an in-depth understanding of the epigenomic heterogeneity
of LUAD, we investigate the H3K27ac histone modification profiles of tumors and
adjacent normal lung tissues from 42 LUAD patients and explore the role of
epigenetic alterations in LUAD progression.

Results: A high intertumoral epigenetic heterogeneity is observed across the LUAD
H3K27ac profiles. We quantitatively model the intertumoral variability of H3K27ac
levels at proximal gene promoters and distal enhancers and propose a new
epigenetic classification of LUAD patients. Our classification defines two LUAD
subgroups which are highly related to histological subtypes. Group II patients have
significantly worse prognosis than group I, which is further confirmed in the public
TCGA-LUAD cohort. Differential RNA-seq analysis between group I and group II
groups reveals that those genes upregulated in group II group tend to promote cell
proliferation and induce cell de-differentiation. We construct the gene co-expression
networks and identify group-specific core regulators. Most of these core regulators
are linked with group-specific regulatory elements, such as super-enhancers. We
further show that CLU is regulated by 3 group I-specific core regulators and works as
a novel tumor suppressor in LUAD.
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Conclusions: Our study systematically characterizes the epigenetic alterations during
LUAD progression and provides a new classification model that is helpful for
predicting patient prognosis.

Keywords: Lung adenocarcinoma, Classification model, Epigenome, Super-enhancers,
Core regulators

Background
Lung cancer is a malignant tumor with highest mortality among all cancers worldwide

and could be further classified into small cell lung cancer (SCLC) and non-small cell

lung cancer (NSCLC) [1]. Lung cancer exhibits high heterogeneity that enables adapt-

ability, limits therapeutic success, and remains incompletely understood. Lung adeno-

carcinoma (LUAD), which accounts for most cases of NSCLC, can be classified into

several histologic subtypes based on morphological characters [2]. These subtypes are

frequently associated with patient prognosis, e.g., the micropapillary and solid predom-

inant subtypes are predictors of poor prognosis [3, 4]. The histologic classification is

most widely used in clinical practice but is also limited since it is a subjective judgment

by pathologists. Other classification methods like radiological classification can also

predict prognosis [5, 6], and with the development of targeted therapy and precision

medicine, molecular classification is becoming more and more important [7].

Targeted therapies focusing on EGFR mutation, ALK-fusion, and ROS1-fusion have

dramatically improved LUAD patient survival [8–10]. Although LUAD is one of the

most heavily mutated cancers, most mutations, such as TP53, KRAS, and STK11, are

not pharmaceutically targetable [11]. EGFR mutation is one of the most common driver

genes, but can only explain about 14% of Caucasian LUAD patients and 50% of East-

Asian patients [7, 12]. As a consequence, many patients are lacking therapeutic targets

and need to be further characterized. Another important molecular classification is

based on transcriptomic signatures. Transcriptomic classification not only defines dis-

tinct LUAD subclasses, but also reveals their relation with prognosis, critical biological

features, and potential oncogenes [7, 13–15].

The study of cancer epigenetics has radically altered our views in cancer pathogen-

esis, providing new insights in biomarker development for risk assessment, early detec-

tion, and therapeutic stratification [16–19]. DNA methylation profiling of tumor tissues

divides LUAD into distinct subsets: significantly altered CpG island methylator pheno-

type high (CIMP-H(igh)) group, normal-like CIMP-L(ow) group, and intermediate

methylation group. Among them, DNA hypermethylation of several key genes, such

like CDKN2A, GATA2, and WIF1, are observed in CIMP-H tumors [7]. On the other

hand, histone modifications are also found to play important roles in LUAD [20–23].

The histone modification status is closely connected with chromatin configuration and

cis element activity. However, it is also variable in tumors as it can be easily influenced

by abnormal genomic rearrangements, mutations, and histone modification enzymes

[24]. Recently, the Encyclopedia of DNA Elements (ENCODE) and the Roadmap Epige-

nomics Consortiums have extensively characterized human regulatory landscape across

a wide range of cell lines and tissues, expanding our understanding of cancer regulatory

abnormalities [25, 26]. Although histone modifications are widely recognized as key
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epigenetic regulators, rare study has been performed to profile and understand the dy-

namic histone modification patterns in primary tumor tissues of LUAD patients.

H3K27ac is closely linked with gene transcriptional activation and acts as a major his-

tone mark of active regulatory elements, especially for enhancers and super-enhancers

(SEs). In our previous study, we investigated H3K27ac landscape in two Chinese

patient-derived LUAD cell lines and revealed SE-associated gene RAI14 as a novel bio-

marker [27]. Here, we aim to further explore the dynamic H3K27ac landscape in LUAD

tumors. We performed high-resolution chromatin immunoprecipitation sequencing

(ChIP-seq) of H3K27ac in the tumors and normal lung tissues of 42 LUAD patients

and uncovered a high intertumoral epigenetic heterogeneity. We classified the LUAD

patients into two major subgroups based on the observed epigenetic heterogeneity and

found they have distinct prognosis and transcriptomic features. Through an extensive

co-expression network analysis, we defined the core transcriptional and epigenetic reg-

ulators for each subgroup, and identified CLU as a novel tumor suppressor from the

downstream target genes of these core regulators in LUAD. Taken together, our study

expands the understanding of LUAD complexity by a systematic analysis of epigenetic

and transcriptomic signatures, providing important supplement to current histologic

and molecular classifications.

Results
The epigenetic landscape differed between normal lung and LUAD tissues

To explore the epigenetic landscape in LUAD, we assembled a cohort of clinical sam-

ples from patients who received surgery in Fudan University Shanghai Cancer Center

(FUSCC). The histological subtype and tumor cell content of each LUAD sample were

confirmed by two independent pathologists. H3K27ac high-throughput chromatin im-

munoprecipitation sequencing (ChIP-seq) was then successfully performed in 42 paired

LUAD and adjacent normal lung samples. Among the 42 LUAD samples, 1 sample was

minimally invasive adenocarcinoma (MIA) and 41 samples were invasive adenocarcin-

omas (IACs) containing different subtypes (Additional file 2: Table S1).

We next processed the ChIP-seq data for each sample as previously described before

further analysis [28, 29]. Briefly, after data quality control, reads alignment, peak calling, and

filtering, in total we identified ~ 100 thousand H3K27ac peaks for LUAD samples and ~ 60

thousand peaks for normal samples, mostly located at intergenic and intronic regions

(Additional file 1: Figures S1A and S1C). Interestingly, the LUAD and normal lung tissues

can be well separated by their H3K27ac landscape, indicating that epigenetic alteration was

one of the major differences and might play important roles in LUAD tumorigenesis

(Fig. 1a, Additional file 1: Figure S1B). We grouped the H3K27ac ChIP-seq profiles of

LUAD and normal lung samples, and then used the MAnorm2 model to compare

these two groups of profiles [29]. By this method, we detected a huge number of differen-

tial H3K27ac sites, including 4784 tumor-specific and 7645 normal-specific ones (Fig. 1b,

c). We found that genes regulated by the normal-specific sites were enriched for basic

cellular functions, such as actin cytoskeleton organization and GTPase activity whereas

the tumor-specific sites were significantly associated with a number of genes known to be

dysregulated in cancers (Additional file 1: Figure S1D), indicating that aberrant epigenetic

modifications directly contribute to transcriptional dysregulation in LUAD.
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Fig. 1 (See legend on next page.)
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We and others have previously investigated the H3K27ac landscape in cell lines in-

stead of tissue samples to explore LUAD epigenetic alterations [27, 30]. Strikingly, we

found that the H3K27ac profiles of LUAD cell lines, including the widely used A549

cell line and two derived from Chinese patients, were quite different from those of pri-

mary tumor tissues (Additional file 1: Figure S1E). This indicated that observation ob-

tained from cell lines may not accurately represent the in vivo situation and directly

profiling the epigenetic landscape in primary tissues is of irreplaceable value to cancer

studies. Taken together, these data uncovered the dramatic difference of the H3K27ac

landscape between LUAD and normal lung tissues, which might be of functional

importance.

Super-enhancers control LUAD driver oncogenes

Previous studies have revealed that large clusters of enhancers, named super-enhancers

(SEs), have prominent roles in determining cell identity, tumorigenesis, and chronic

disease [28]. Compared to typical enhancers (TEs), SEs elicit stronger effects and pre-

dominantly exert a transactivation function to induce continuous and high expression

of target genes [31]. We thus wanted to identify the SEs in our dataset and determine

the role of SEs in LUAD tumorigenesis. To do so, we first separately identified SEs for

each H3K27ac ChIP-seq sample using ROSE, a software specifically developed for this

purpose [31, 32]. By this means, we identified ~ 800 and ~ 700 SEs for each tumor and

normal sample, respectively, leaving the other distal H3K27ac sites as TEs (Additional

file 1: Figure S1F). The SEs only accounted for a minor portion of the total enhancer

domains (median, 5.58%) but for the majority of H3K27ac signals (median, 33.76%)

(Additional file 1: Figure S1G). We merged the SEs identified from all tumors and nor-

mal samples and obtained 2,893 SEs in total. We further mapped the differential

H3K27ac sites detected between LUAD and normal lung samples to these SEs and thus

defined 205 tumor-specific and 324 normal-specific SEs (Fig. 1d; Additional file 1:

(See figure on previous page.)
Fig. 1 Distinct H3K27ac profiles in LUAD and normal lung tissues. a Unsupervised hierarchical clustering of
H3K27ac profiles for tumor and normal lung tissues of LUAD patients based on pairwise Pearson correlation
coefficients (PCCs). b An MA plot of differential H3K27ac-modified sites between tumor and normal tissues,
“M” represented log 2 fold change and “A” represented average log 2 signal intensities, sites with |M value|
≥ 1 and adjust p-value ≤ 0.05 defined as differential sites. c A heatmap of the H3K27ac signal in differential
sites identified in b. The H3K27ac signal is represented as row-normalized z-scores. d Differential H3K27ac
enrichment in super-enhancers (SE) between tumor and normal tissues. Each row represents an SE with a
different enrichment between two tissues. SE scores are represented as row-normalized z-scores. Important
differential SE-associated genes shown in the right. e Ranked plot for tumor-specific SE-associated TFs. IHC
staining validated TFs are indicated with lines. f IHC staining results of 4 tumor samples showed tumor-
specific SE-associated SOX9 were highly expressed in tumor. g The functional enrichment of tumor-specific
(left) and normal-specific (right) SE-associated genes. h Track plots of the H3K27ac signal distribution in
tumor (top) and normal (bottom) samples across the SOX9 (tumor-specific super-enhancer associated
genes), CAV1-CAV2 (normal-specific super-enhancer associated genes), and MET (other super-enhancer
associated genes) loci. “SOX9-SE” represented this super-enhancer associated with SOX9. “CAV2&CAV1-SE”
represented this super-enhancer associated with CAV2 and CAV1. “MET-SE” represented this super-enhancer
associated with MET. Heatmap of log2 fold change indicates the H3K27ac signal differences between tumor
and normal tissues. i An example of super-enhancer hijacking. Number of junction reads from RNA-seq
supported EML4 and ALK gene fusion showed in the top left panel. Model of super-enhancer hijacking
through chromosome translocation showed in the top right panel. Track plots of the H3K27ac signal
distribution and gene expression in fusion and non-fusion samples across the EML4 and ALK loci (bottom)

Yuan et al. Genome Biology          (2021) 22:156 Page 5 of 26



Figure S2A - S2C). Interestingly, > 50% of the 11,574 differential H3K27ac sites at distal

regions were located within SEs (Additional file 1: Figure S2D). This finding emphasizes

that SE abnormalities might play an important role in LUAD development.

Generally, SEs and TEs regulate spatially closed genes, but they can also contact dis-

tant gene transcription start sites (TSSs) by forming long-range enhancer-promoter in-

teractions [33]. While the most widely used method for annotating the target gene of

each regulatory element is to map it to gene with the nearest TSS, we used a more reli-

able gene annotation method here which considered the correlation between the nor-

malized H3K27ac intensities of each SE and those at gene promoters within 500 kb of

the SE across all tumors and normal samples (Additional file 1: Figure S3A - 3C show-

ing the SE at MAX-FUT8 gene locus as an example). In this way, we found that a num-

ber of well-known oncogenes, including MYC and SOX9, were annotated as targets of

tumor-specific SEs, while several tumor suppressor genes in LUAD, such as DLC1 and

RB1, were linked to normal-specific SEs (Fig. 1d; Additional file 3: Table S2, Additional

file 4: Table S3). Among tumor-specific SE-associated genes, lots of genes were import-

ant transcriptional factors (TFs). Then, we ranked all the TFs and found SOX9 was

ranked as top one tumor-specific SE-associated TF (Fig. 1e). We performed immuno-

histochemistry (IHC) staining of tumor-specific SE-associated transcription factor

SOX9 on patient tissue samples and found that higher level of SOX9 was observed in

tumors than adjacent normal lung tissues (Fig. 1f). We also performed IHC staining of

other top-ranked TFs including SIX1, RUNX1, and SOX4 and again found higher ex-

pression level of these TFs in tumor tissues (Additional file 1: Figure S3E). The tumor-

specific SE-associated genes were enriched in important pathways, such as chordate

embryonic development (RUNX2, FOXA1), regulation of cell adhesion (RUNX1, SOX2

and VEGFA), and epithelial cell differentiation (SOX9, ELF3) (Fig. 1g). Some of these

pathways are related to cancer stem cell (CSC) or LUAD cancer cell migration and in-

vasion, including chordate embryonic development, cell fate specification, regulation of

cell adhesion, and collagen catabolic process [34, 35]. In particular, the activity of SOX9

was known to be associated with the primitive transcriptional programs spanning stem

cell-like to regenerative pulmonary epithelial progenitor states during metastasis in

LUAD, consistent with a lot of epithelial differentiation and embryonic related path-

ways enriched in tumor-specific super-enhancer associated genes [34]. Genes associated

with normal-specific SEs were enriched in cell growth regulation (DLC1, RB1, GATA6)

and other basic cellular functions, such as cell morphogenesis, GTPase-mediated signal

transduction and regulation of phosphate metabolic process (Fig. 1g). For example,

CAV1 and CAV2 were marker genes of lung alveolar cells [36], and the H3K27ac levels

at their nearby SEs were significantly upregulated in normal lung tissues compared to

LUAD (Fig. 1h). Thus, in both normal lung and LUAD samples, SEs regulated key cell

identity genes, and the SE abnormality contributed to tumorigenesis.

Previous studies have revealed that genomic rearrangement is highly associated with

SE abnormality in cancers, and thus we focused on the most frequent fused oncogene

ALK in LUAD [37]. ALK-fusion is a powerful driver mutant and important therapeutic

target that occurs in ~ 5% of LUAD patients, especially in advanced stage patients [8].

The malignant behavior caused by ALK-fusion can be strongly inhibited by receptor

tyrosine kinase inhibitors (TKIs), thus dramatically improved patients’ prognosis [38].

Three of the 42 patients involved in our study were detected with ALK-EML4 gene
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fusion, which hijacked (or translocated) the SE located upstream of EML4 (Fig. 1i). It

was suggested that the fusion protein can activate several canonical signaling pathways,

including RAS/MEK/ERK pathway and PI3K/AKT cascades [39], and our results

indicated that the hijacked SE probably maintained aberrant expression of ALK-EML4.

Similar SE hijacking was also found in one patient with ROS1-SLC34A2 fusion

(Additional file 1: Figure S3F). These data suggested that SE abnormality could also

directly get involved in LUAD oncogenesis through SE hijacking of driver oncogenes,

and thus, the hijacked SE might be a potential target for LUAD therapy, especially for

TKIs-resistant patients [32].

LUAD is composed of two different epigenetic states

Our data thus far highlighted the key epigenetic differences between normal lung and

LUAD tissues. However, a high epigenetic heterogeneity was also observed among

LUAD tissues from different patients (Fig. 1a). We next quantitatively evaluated the

intertumoral variations of H3K27ac signals normalized by MAnorm2 on genome scale.

In order to remove the mean-variance dependence, we fitted a mean-variance curve

and selected those peaks with significant deviations above the curve [29]. By this

method, we identified 4615 hyper-variable H3K27ac peaks (HVPs) among the tumor

samples (Fig. 2a). We downloaded the susceptible SNPs of lung cancer identified by a

previous genome-wide association study (GWAS) [40] and found they were highly

enriched in the HVPs of LUAD samples (Additional file 1: Figure S4B). This finding

suggests that the fluctuations of H3K27ac levels at these HVPs might provide valuable

insights in understanding the epigenetic heterogeneity of LUAD. We further noticed

that the vast majority of the tumor HVPs were not identified as HVPs across normal

samples (Fig. 2b; Additional file 1: Figure S4C). It indicated that most of the intertu-

moral epigenetic heterogeneity observed at the tumor HVPs could hardly be explained

by the epigenetic variations already existed in the patients’ normal lung tissue and it

predominantly emerged during tumorigenesis. Meanwhile, there was little overlap be-

tween the tumor HVPs and the peaks upregulated in tumor samples compared to nor-

mal samples (previous identified tumor-specific peaks) showing consistent H3K27ac

changes between tumors and normal tissues (Fig. 2b), suggesting that a very large frac-

tion of them may be peaks specific to a subset of tumor samples. Thus, further investi-

gation on the observed intertumoral epigenetic heterogeneity was needed and might

provide insights into LUAD progression.

We next performed principal component analysis (PCA) on the normalized H3K27ac

intensities of tumor HVPs across all tumor ChIP-seq samples. Surprisingly, we found

that, for each sample, its score on the first principle component (PC1) was significantly

associated with the lymph node invasion status of corresponding patient (Fig. 2c).

Hierarchical clustering of the tumor samples’ PC1 scores clustered them (and thus the

corresponding patients) into two subgroups, namely group I and group II (GI and GII,

Fig. 2d). Of note, LUAD can be classified into several subtypes which are important

predictors of prognosis by its predominant histologic component [41–43]. Based on

that, we have divided the 42 LUAD patients in our cohort into three pathological sub-

groups: low-risk, median-risk, and high-risk (Additional file 2: Table S1). Here, after a

comprehensive comparison of the pathological subtype, tumor size, and lymph node
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metastasis status of patients in two subgroups, we observed a weak difference in tumor

size and a significant difference in lymph node invasion between GI and GII patients

(Fig. 2d). More importantly, we found that the tumor samples’ PC1 scores were

strongly associated with the patient pathological subtypes and could largely distinguish

the more aggressive tumors (GII) from the less aggressive ones (GI) (Fig. 2d). High-risk

pathological subgroup composed of micropapillary and solid predominant LUAD tu-

mors was only contained in GII patients (Additional file 2: Table S1). In contrast, GI

contained more low-risk pathological subgroup patients (Fig. 2d, Additional file 2:

Table S1). Survival analysis of these two groups of patients further supported that GII

patients had a significantly poorer prognosis than GI patients (Fig. 2e). In summary, by

Fig. 2 Epigenetic heterogeneity differentiates LUAD patient clinical outcomes. a The hyper-variable peaks
(HVPs) identified based on the global trend of means and variances. The dots are colored according to the
significance of the variance test performed by MAnorm2. Variable peaks with p-value less to 0.01 were
defined as tumor hyper-variable peaks. b Venn diagram showed overlap between tumor hyper-variable
peaks (hyper-variable peaks identified in tumor samples), peaks upregulated in tumor samples compared to
normal samples (previous identified tumor-specific peaks), and normal hyper-variable peaks (hyper-variable
peaks identified in normal samples). c The first 5 significant principle components and their correlation with
lymph node invasion, gender, and smoking history; asterisk represented significant association (p-value of
ANOVA less to 0.05). d Unsupervised hierarchical clustering using PC1 from a PCA on hyper-variable peaks
identifying two subgroups, group I and group II. The associations between clinical characteristics and
subgroups showed in the bottom, the p-values of rank-sum test were indicated to show the significance of
associations. e Survival analysis of the two subgroups: relapse-free survival, RFS (top) and over-all survival,
OS (bottom), and p-value of log rank test showed in the plot
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systematically dissecting the inter-tumor epigenetic heterogeneity, we were able to clas-

sify the LUAD samples into two subgroups that correlated with clinical outcomes.

In addition to clinical features, we also compared the gene mutation patterns between

GI and GII patients. EGFR mutation occurred in > 50% of Asian LUAD patients and

was the most frequent driver mutation in our cohort (27 of all 42 patients). However,

we found no difference in the EGFR mutation frequency between GI and GII (Add-

itional file 1: Figure S4E). Our previous studies revealed that patients with ALK-fusion

are more likely to be in advanced stages, and the EML4-ALK variant 3 usually indicates

a poor prognosis [44]. Consistently, all 3 ALK-fusion positive patients were found in

GII and had a solid predominant subtype (Additional file 1: Figure S4E). In conclusion,

based on the intertumoral heterogeneity of H3K27ac profiles, we successfully classified

LUAD into two distinct subgroups with different pathological subtypes and clinical

outcomes.

Epigenomic and transcriptomic changes underlie distinct pathways and malignancy

between two LUAD subclasses

Our data suggested that patients in GI had better prognosis than patients in GII, as evi-

denced by the significant prolonged relapse-free survival (RFS) and over-all survival

(OS) time (Fig. 2e). To investigate the reasons underlying these differences in survival,

we performed RNA sequencing (RNA-seq) of the tumor samples and determined the

differentially expressed gene (DEG) signatures for each group. In total, we identified

2501 significant DEGs between GII and GI (Fig. 3a). Functional enrichment analysis re-

vealed that GII-upregulated genes were enriched in the cell cycle and DNA replication

pathways, both of which were signatures of highly malignant tumors. Besides, FOXM1

pathway and E2F pathway which were both enriched in GII have been proven to be re-

lated to LUAD invasion and metastasis [45, 46]. Conversely, a number of genes in-

volved in maintenance of normal cell functions and metabolic processes were

significantly downregulated from GI to GII (Fig. 3b). Consistent with GI-specific genes

signatures, several independent studies have shown that KRAS-driven murine LUAD

preferentially arises from alveolar type II (AT2) cells, supported by the IHC staining of

alveolar markers in early-stage tumors [47]. Surfactant metabolism-related pathways

were usually highly activated in AT2 cells but significantly decreased in GII compared

to GI, indicating that GI might somehow represent early-stage tumors. Next, we moved

to test the epigenomic differences between GI and GII. After a quantitative comparison

of the H3K27ac profiles between GI and GII tumors using MAnorm2, we defined 17,

713 GII-specific and 13,408 GI-specific H3K27ac peaks, which then led to the identifi-

cation of 194 GII-specific and 437 GI-specific SEs. We further found that these SE were

highly correlated with the genes differentially expressed between GI and GII (Fig. 3c, d;

Additional file 1: Figures S6 and S7A). We chose two subgroup-specific SE-associated

genes, RUNX2 and NKX2-1(thyroid transcription factor 1, also known as TTF1), for

IHC staining to assess their protein levels in GI and GII tumors. The LUAD maker

NKX2-1 was reported to suppress LUAD progression, whereas RUNX2 was reported as

key regulator to promote cancer progression [47, 48]. In our study, higher RUNX2 ex-

pression was detected in GII tumors compared to GI tumors, whereas NKX2-1 seemed

to be specifically expressed in GI tumors (Additional file 1: Figure S7C and D).
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To further investigate the significant pathways changed with epigenetic alterations,

we ranked genes by the correlation of gene expression with PC1 scores across all tumor

samples and performed gene set enrichment analysis (GSEA). The analysis confirmed

the positive enrichment of gene sets related to cell cycle and DNA repair. On the con-

trary, the negative enrichment of genes set was associated with immune-cell signaling

related pathway, such as asthma, complement, and coagulation cascades in aggressive

Fig. 3 Transcriptomic and epigenetic alterations uncovered pathological pathways. a A volcano plot of the
gene expression changes between group I (GI) and group II (GII). Genes with adjusted p-value less to 0.05
were defined as DEGs. b Functional enrichment of GII-specific (left) and GI-specific (right) genes. c A
heatmap of the H3K27ac signals in group-specific peaks. The data were represented as row-normalized z-
scores; each row represented a group-specific peaks, and each column represented a LUAD sample. d
Genes ranked based on the correlation of gene expression and PC1 in hyper-variable peaks in tumor
samples. The purple and orange bars (bottom) indicate GII-specific and GI-specific distal enhancers or SEs
linked genes, respectively. e The convergence of GII-specific distal enhancers on cell cycle genes. f
Comparison of ssGSEA-score of cell cycle pathway genes and embryonic stem cell core genes between GI
and GII, t-test was performed between two different groups. g DEGs between GI and GII were used to
group TCGA samples into GI-like, GII-like, and intermediate groups, and the K-M plot of patients’ survival in
three groups, p-value determined by log rank test. ***p < 0.001. h The K-M plot of patients’ survival in GI-
like and GII-like LUAD patients in stage I and stage II-IV, p-value determined by log rank test. *p < 0.05. i
The distribution of GI-like, GII-like and intermediate samples across different tumor stages in the TCGA
samples. j Top 30 bias somatic coding mutations in GI-like and GII-like LUAD patients. The middle panel
showed somatic mutation by individuals (column) and by genes (row). The histogram on the top showed
the number of mutations in each sample. The histogram on the right showed the differences in mutation
frequency between GI-like and GII-like LUAD patients. Genes sorted by the p-value of Fisher-exact test
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tumors (Additional file 1: Figure S7B). These results indicated the strong connection

between epigenetic alterations with transcriptional changes during LUAD progression.

Accordingly, we found that more GII-specific enhancers were associated with cell cycle

genes than GI-specific enhancers, indicating that epigenetic alterations might lead to

group-specific transcription signatures (Fig. 3e; Additional file 1: Figure S8A).

We noticed that a number of lineage-specific TFs were upregulated in GI group and

associated with GI-specific SEs, such as NKX2-1 (LUAD marker), FOXA2 (regulating

surfactant protein production), and CEBPD (AT2 cell marker) (Fig. 3d). Loss of lineage

identity during tumor development was shown in a recent study [47]. Thus, we used

gene single sample set enrichment analysis (ssGSEA) to evaluate the activities of these

two important pathways related to stem cell characteristics in GI and GII (Fig. 3f), and

then performed GSEA analysis to verify the differential activation of stem cell related

pathways between GI and GII (Additional file 1: Figure S8C and D). Compared with

GI, the GII-upregulated genes were enriched in processes associated with rapid cell

proliferation and a de-differentiated state (Additional file 1: Figure S8C and D). These

results suggested that GI represented as more differentiated state while GII displayed a

more stem cell-like phenotype. However due to the lack of temporal relationship be-

tween samples, we could not perform a trajectory analysis to check whether GI and GII

corresponded to early and late-stage during tumor progression.

In order to investigate the epigenomic and transcriptomic changes in the continuum

progression from differentiated state to de-differentiated state, we further divided GII

tumor samples into GII.1 and GII.2 based on previous hierarchical clustering result and

re-analyzed the epigenetic and transcriptomic changes among these three subgroups

(Additional file 1: Figure S7E and F). GII.1 and GI had great differences in epigenome

but not in transcriptome (Additional file 1: Figure S7G, third column), compared to the

differential analysis between GII.2 and GI (Additional file 1: Figure S7G, first column).

The epigenetic alterations in GII.1 compared to GI seemed like prior to the transcrip-

tional changes between them during the progression. These results indicated that epi-

genetic regulators might be involved in the epigenome remodeling in GII.1 during the

progression. Taken together, epigenetic heterogeneity led to the discovery of two

LUAD subgroups and then different driver genes and biological pathways enriched in

each LUAD subgroup, which can greatly help to explain the differences in clinical out-

comes among patients.

DEGs between GI and GII tumors can predict LUAD prognosis

To verify the utility of our LUAD classification model, we incorporated the transcrip-

tomic data of 504 LUAD patients in TCGA database from diverse populations and tried

to map each patient to GI or GII based on transcriptome similarity. We first calculated

the ssGSEA scores of GI-specific and GII-specific genes in the RNA-seq profile of each

TCGA-LUAD patient’ tumor sample, which were called the GI and GII scores, respect-

ively. We designated the TCGA patients with high GI score and low GII score samples

as GI-like, and the patients with low GI score and high GII score samples as GII-like,

leaving the remainder as the intermediate group (intergroup). In total, we defined 143

GI-like, 142 GII-like, and 219 intergroup patients. Consistently, GI-like patients had

significantly better OS than GII-like patients (Fig. 3g). We also noticed that the
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majority of GI-like patients were labeled as stage I patients by TCGA, while most GII-

like patients were at later stages (II-IV, Fig. 3i). In particular, even for the stage I pa-

tients, the GII-like ones showed clearly worse prognosis compared to the GI-like ones

(Fig. 3h). These findings indicated that our LUAD classification model could be poten-

tially used as a reference to predict tumor progression and risk.

Additionally, genomic mutation analysis of TCGA-LUAD datasets revealed more

gene mutations in GII-like patients than in GI-like patients (Fig. 3j). Especially, some

tumor suppressor genes (TSGs) including DLC1 and SYNE1, which have been found to

be downregulated in our GII tumor samples compared to GI samples, were predomin-

antly mutated in GII-like TCGA patients (Fig. 3j). This result indicated that loss of

TSG function caused by gene mutation and downregulation can directly contribute to

progression in tumorigenesis. Taken together, these results supported our new classifi-

cation model and showed pronounced transcriptomic changes in these two epigenetic

subgroups that correlate with the OS rate. The GI-GII score derivative from our classi-

fication model could be used to identify high-risk patients, especially in stage I, and,

therefore, constituted an important supplement to current TNM staging system.

Subgroup-specific core regulators determined transcription characteristics in GI and GII

In order to explore key regulators driving the transcriptional differences between two

subgroups, a co-expression network was constructed based on the differential expressed

epigenetic regulators and transcription factors between GI and GII, which were consid-

ered regulators here, as well as their target genes identified by co-expression analysis.

We found that the network formed two different sub-networks, which correspond to

the two subgroups and were named as GI-specific network and GII-specific network,

respectively (Fig. 4a). More importantly, GI-specific network contained 539 (50.4%) GI-

specific genes, and GII-specific networks covered 947 (66.2%) GII-specific genes

(Additional file 5: Table S4, Additional file 6: Table S5). These results indicated that

the transcriptional characteristics of GI and GII were driven by different regulatory

modules. We also found that the degrees of the transcription and epigenetic regulators

showed a power law distribution (Additional file 1: Figure S9A), indicated that a small

set of them had very high connectivity in the network, and thus might play important

roles in driving the transcription characteristics of GI and GII. Then, we constructed

the co-expression network of regulators and identified the core regulators of GI and

GII, which not only had high connectivity with each other but also with other regula-

tors (see methods). By this means, we identified 6 core regulators for GI and 18 core

regulators for GII (Fig. 4b, c). In addition, 9 of the 18 GII-specific core regulators were

annotated to cell cycle pathway (Additional file 1: Figure S9B), such as MYBL2,

FOXM1, previously known to be related to cancer abnormal cell cycle [49]. In contrast,

GI-specific core regulators were assigned to complement and coagulation cascades and

metabolic related pathways (Additional file 1: Figure S9B), such as POU2F3, which has

been identified as a good prognosis marker of LUAD. The better prognosis of high

POU2F3 expression patients was confirmed by The Human Protein Atlas [50], with a

46% 5-year survival rate compared to 34% 5-year survival rate of low POU2F3 expres-

sion patients. The shift of core regulators might happen at the initial stage and drives

the transition from GI to GII. We observed an upregulation of GII-specific core
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regulators EZH2 and EHMT2 in GII.1 compared to GI, and they were further upregu-

lated in GII.2 (Additional file 1: Figure S9C). We also detected a progressive downregu-

lation of GI-specific core regulators HLF and IRX1 (Additional file 1: Figure S9C).

Compared with GI samples, GII.1 upregulated genes were highly enriched in epigenetic

regulation of gene expression, consistent with the function of GII-specific core regulators

Fig. 4 Co-expression networks for LUAD subgroups and group-specific core regulators. a Co-expression
network (bipartite network) constructed in GI (orange) and GII (purple) based on gene expression
correlations between differentially expressed transcription factors or epigenetic regulators and their target
genes. b Co-expression network of differentially expressed regulators. Core regulators in GI (6 core
regulators, left panel) and GII (18 core regulators, right panel), core regulators formed a highly connected
clique in the regulator co-expression networks. c Core regulators(red) and other regulators(grey) with their
degrees calculated from the bipartite networks in a, p-value determined by rank-sum test. d Upstream
differential epigenetic elements participate in regulation in group-specific core regulator, including
differential distal enhancers, differential proximal peaks, and differential super-enhancers
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(Additional file 1: Figure S9D). Moreover, by integrating with our previously defined links

from super-enhancers, distal enhancers and proximal H3K27ac peaks to gene s[51], a

large fraction of the GI and GII-specific core regulators were found to be directly assigned

to at least one differential epigenetic element (Fig. 4d). In summary, the transcriptional

characteristics of the LUAD subgroups identified here were driven by a number of

subgroup-specific core regulators, which potentially influenced the biological pathways re-

lated to clinical prognosis and contributed to LUAD progression. Meanwhile, subgroup-

specific epigenetic elements acted as upstream factors driving the differential expression

of these core regulators.

Screening of genes regulated by GI-specific core regulators and in vivo validation reveals

CLU as a potential tumor suppressor

After constructing a co-expression network dominated by the core regulators com-

prised of two subgroup-specific sub-networks, we asked whether the function of down-

stream genes regulated by these core regulators were directly linked with subgroup

biological features. Making use of a previously compiled list of 49 TSGs whose expres-

sion was consistently downregulated in 11 different cancer types [52], we found that

the GI core regulators target genes enriched more TSGs than GII core regulators target

genes and the expression of these TSGs predominantly showed a positively correlation

with GI-specific core regulators but a negatively correlation with GII-specific core regu-

lators (Additional file 1: Figure S10A). Group-specific distal enhancers or SEs could

control TSGs such as DLC1 and MAPK10 directly or indirectly via group-specific core

regulators, which might help to explain the downregulation of these TSGs and tumor

progression in GII (Fig. 5a). We then screened the genes directed linked with GI-

specific core regulators to discover new candidate TSGs that can inhibit LUAD pro-

gression. As the top 3 GI core regulators were also regulated by SEs, we firstly searched

the downstream genes co-regulated by HLF, KLF15, and POU2F3 (Fig. 5b). A total of

38 protein-coding genes were identified (Additional file 7: Table S6). Interestingly,

there were multiple well-known TSGs, including MAPK10, a well-studied TSG in

esophageal cancer, cervical cancer, and breast cancer (Additional file 1: Figure S10B)

[53–55]. To screen for progression associated TSGs, we further selected the candidate

genes whose expression was only downregulated from GI-like to GII-like TCGA-LUAD

tumor samples, but not from normal to GI-like ones. Three GI-specific genes were fil-

tered out and we noticed CLU, one potential LUAD TSG which was included in our

previous TSGs screening study [56]. During LUAD progression, CLU was significantly

downregulated from GI-like to GII-like samples. However, there was no significant dif-

ference between normal and GI-like samples (Fig. 5c). The epigenetic analysis also

showed that CLU was directly regulated by GI-specific enhancers (Fig. 5d). These re-

sults suggested that CLU might act as a TSG to inhibit LUAD progression. Our previ-

ous study showed that CLU knockout mediated by CRISPR/Cas9 technique in

KrasG12D-based genetically engineered mouse model (GEMM) promoted LUAD malig-

nant progression [56]. We further found that ectopic CLU expression in CRL-5803 and

PC9 cells significantly inhibited cell proliferation and suppressed colony formation in

soft agar (Fig. 5e–g). Conversely, CLU knockdown in CRL-5872 cells accelerated cell

proliferation and promoted colony formation in soft agar (Fig. 5h–j). We also assessed
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Fig. 5 (See legend on next page.)
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the protein levels of CLU as well as Ki-67, a proliferation marker, in our cohort using

IHC staining. Compared with GI tumors, the CLU level was significantly downregu-

lated in GII tumors. In contrast, the Ki-67 level was conversely upregulated in GII

tumors (Fig. 5k, l). We here identified CLU as a new TSG in LUAD which was related

to tumor progression.

We then further investigated the regulatory relationship between CLU and associated

enhancers. Using dual gRNA CRISPR system [57], we successfully performed knockout

of a GI-specific enhancer, which contains the binding motif of GI core regulator HLF,

in CRL-5872 cells (Fig. 5m, n). Consistent with our CLU knockdown results, CLU en-

hancer knockout significantly downregulated the expression of CLU and accelerated

cell proliferation (Fig. 5o, p). Taken together, these data support that GI tumors display

relatively high expression of TSGs, which may be directly regulated by GI-specific en-

hancers to suppress malignant progression and contribute to better patient prognosis.

Discussion
In this study, we described the active H3K27ac landscape of 42 LUAD samples and

paired normal lung tissues. Our data added new knowledge on pathogenic LUAD

mechanisms at the epigenetic level and proposed a classification model based on inter-

tumoral H3K27ac heterogeneity. Although genomic classification is mostly related to

the current target therapy of LUAD, a majority of patients are lacking known thera-

peutic targets and need to be further characterized. The transcriptomic classification is

also widely used. Various classification models in LUAD cohorts revealing morphologic

features, gene expression signatures, and gene mutation landscapes in each subgroup

were reported [15, 58, 59]. Although these subclassifications vary considerably from

study to study, most of them can effectively predict patient prognosis and provide new

insight on LUAD progression [60]. Recently, proteogenomics studies revealed LUAD

molecular signatures and therapeutic vulnerabilities, which provided new insights of

(See figure on previous page.)
Fig. 5 In vivo and in vitro validation of potential function of identified TSGs. a A schematic diagram
illustrated how core regulators and epigenetic regulatory elements (including H3K27ac-marked distal
enhancers, promoters, and super-enhancers) regulated well-known TSGs. Bar plot in the right indicated that
there were more active TSGs in GI core regulator target genes than GII core regulator target genes. The p-
value of Fisher-exact test showed in the plot. b The strategy used for selecting TSG candidates. Three super-
enhancer-associated GI core regulators co-regulated genes were selected as TSG candidates. c Gene
expression level of CLU in GI-like, GII-like, and normal samples in TCGA-LUAD cohort. The p-value of t-test
showed in the plot. ns, not significant. d Track plots revealed CLU gene expression was regulated by GI
upregulated distal enhancers. The CLU gene expression in GI and GII samples was shown on the right. e
Real-time PCR quantification and Western blot detection of CLU in CRL-5803 (upper panel) and PC9 (lower
panel) cells with or without CLU ectopic expression. f Cell proliferation assay in CRL-5803 (upper panel) and
PC9 (lower panel) cells with or without CLU overexpression. g Soft agar colony formation assay in CRL-5803
(upper panel) and PC9 (lower panel) cells with or without CLU overexpression. h Real-time PCR
quantification and Western blot detection of CLU in CRL-5872 cells with or without CLU knockdown. i Cell
proliferation assay in CRL-5872 cells with or without CLU knockdown. j Soft agar colony formation assay in
CRL-5872 cells with or without CLU knockdown. k Representative photos of HE and IHC staining of CLU and
Ki-67 in GI and GII samples. l Statistical analyses of CLU and Ki-67 IHC scores in group I and group II
samples. Data were shown as mean with S.E.M. Statistical analyses was calculated by two-tailed, unpaired t-
test. m The TF binding motifs on the enhancer region. Grey boxes indicate TFs; red arrows, predicted
sgRNAs; and yellow arrows, PCR primers for testing knockout efficiency. n Sequencing of the PCR products
by reverse (R) primers to validate dual gRNA knockout efficiency. o CLU expression of the indicated sgRNAs
by real-time PCR quantification. p Cell proliferation analysis of the indicated sgRNAs
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LUAD classification models [61, 62]. Other classification criterions like CpG island

methylation were also investigated but still needed more comprehensive study [63].

Compared with previous methods, our H3K27ac-based classification provides new in-

sights of epigenetic alterations in LUAD and investigates the transcriptomic features,

co-expression network and core regulators which maintain the biological behavior in

each subclass. Our epigenetic classification is highly associated with tumor histological

features defined by previous reports and effectively predicts patient prognosis. Further-

more, our GI-GII score evaluating method can also effectively predict the prognosis of

patients in the same TNM stage, thus could work as critical supplements to current

TNM staging system in clinical application [7]. Plenty of biomarkers of LUAD have

been found by our and others’ previous studies including many oncogenes, but few of

them are valuable therapeutic targets as most biomarkers lacking effective and specific

inhibitors, thus hindering the application of these findings. The relevant epigenetic

elements and upstream core regulators, which are identified in our study, seem to be

alternative targets to inhibit the expression of oncogenes. BRD4 and CDK7 are key

factors for the function of epigenetic elements such as enhancers, and their inhibitors,

JQ1 and THZ1, globally inhibit the expression of associated genes and suppressed lung

cancer cell proliferation [32, 64]. Recently, the FDA has approved tazemetostat, the first

inhibitor of EZH2 (a top core regulator in GII), for treating epithelioid sarcoma, indi-

cating EZH2 as a potential target in LUAD [65].

In our study, a transformation process might occur from GI to GII during tumor pro-

gression, including the loss of expression of the LUAD differentiation marker and grad-

ually inactivation of TSGs. This potential transformation process might explain the

invasive behavior and worse prognosis in GII. Similar transformation process has been

reported by Lindsay et al. in mouse model [47], but the transformation process from

GI to GII seems very complicated. The identification and intervention of early changes

are important because the prognosis of lung cancer is completely different between

early-stage and late-stage patients [66]. The existence of a GII.1 subgroup hints that

epigenetic alterations might act as pioneers in lung cancer progression, consistent with

a recent study [47]. However, further studies by more extensive investigations in larger

cohorts, direct tracer study, and pioneer gene screening are necessary to confirm this

hypothesis.

In this study, we have identified CLU as a potential LUAD TSG. Previous study has

proposed controversial functions of CLU in tumorigenesis, e.g., CLU works as a proto-

oncogene in prostate cancer and colorectal cancers whereas as a TSG in lung cancer

[67–71]. In a functional screening of the TSGs using CRISPR/Cas9 knockout platform

in KrasG12D-based GEMM, we have previously identified CLU as an important tumor

suppressor. Interestingly, we here find that CLU is simultaneously regulated by 3 top

SE-associated GI core regulators, highlighting the potential function of CLU in LUAD

malignant progression. Our in vitro study further supports the tumor-suppressive func-

tion of CLU. Future efforts will be interesting to look into in-depth link between CLU

and SE-associated core regulators.

There were some limitations of this study. Previous studies reported several forms of

histone modification, mainly involving the methylation or acetylation on K4, K9, K27,

K36, and K79 on histone3 [24]. Due to the limitation of tissue samples, our study only

focuses on H3K27ac, a hallmark of active of enhancer and promoter. Of course, other
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histone modifications such as H3K27me3 level will be interesting to explore in future

in context of H3K27ac dynamic changes. We have used the transcriptomic profiles of a

total 504 TCGA-LUAD patients without the H3K27ac profiling to validate our classifi-

cation. More comprehensive study involving multiple histone modifications like

H3K27me3 will be interesting to investigate in larger cohorts. Moreover, the traditional

method of ChIP-seq to detect epigenetic changes requires high quality and quantity of

tumor samples. However, the amount of available tissue is highly restricted especially

in early-stage tumors and biopsy samples, which is also a main restriction to cohort size

in such studies [72]. Future efforts will be interesting to take advantage of some newly

developed techniques including CUT&Tag which requires only a small amount of sam-

ples or even single cells [73].

Conclusions
We here describe the epigenetic alterations during LUAD tumorigenesis and provide a

new classification model to predict patients’ prognosis. Through comprehensively ana-

lyses of epigenomic and transcriptomic features, we have constructed the co-expression

networks that determine subgroup-specific biological characteristics. We also reveal

epigenetic modifications, especially super-enhancers, and core regulators in regulating

tumor progression, which potentially serve as novel therapeutic targets of LUAD. Loss

of function of various TSGs is prominent in GII group, which might promote the

LUAD progression. Our data further identify CLU as an important TSG in inhibiting

LUAD progression.

Methods
Sample collection

This study was approved by the Ethics Committee of Fudan University Shanghai

Cancer Center. A consent form was signed by every patient who received surgical re-

section for LUAD or by his/her legal representative before surgery. The tumor samples

and adjacent normal samples (> 2 cm from the tumor) were collected immediately after

resection of the tumor and stored in liquid nitrogen before subsequent analyses. Tumor

tissues were subjected to a pathological review to confirm the histology and the tumor

cell content of each tumor tissue. Forty-two patients were included in this study.

ChIP-seq in tissues

H3K27ac ChIP-seq was performed using an anti-H3K27ac antibody (abcam, ab4729).

In brief, frozen LUAD and normal tissues were submersed in RPMI-1640 medium

(Corning, 10-040-CVR), cut into small pieces, and homogenized on ice with a Dounce

homogenizer. The tissue homogenate was filtered with a 70-μm cell strainer and fixed

in 1% formaldehyde at room temperature for 10 min. The tissue pellet was collected

through centrifugation, washed twice with cold PBS, and then incubated with lysis buf-

fer on ice for 20 min. The tissue lysate was sonicated, and DNA was sheared to an

average size of 100–300 bp. Approximately 10% of the total tissue lysate was collected

as input, while the other portion was first precleared with uncoupled Protein-A Dyna-

beads (Novex, 10002D) and incubated with H3K27ac-coupled Protein-A Dynabeads for

6 h in a cold room. Then, the Dynabeads were collected using a magnet track, and
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chromatin was eluted. The immunoprecipitant (IP) and input chromatin were incu-

bated at 65 °C overnight and treated with RNase A and proteinase K, and then the

DNA was purified (Tiangen, DP214-03). The DNA was then processed for NGS library

construction and sequenced.

Peak calling and classification of LUAD patients

H3K27ac ChIP-seq reads were mapped to the human reference genome hg19/GRCh37

using Bowtie v1.2.2. Only uniquely mapped reads were retained. Duplicated reads were

removed before downstream analysis. H3K27ac peaks were called by using MACS

v1.3.7, and the 30,000 most significant peaks associated with each sample were

retained. All H3K27ac peaks were merged into a consensus list of peaks, and reads fi-

nally within these peaks were counted by using MAnorm2-utils [29]. Differential

H3K27ac sites between tumor and normal samples (or between GII and GI) were iden-

tified using MAnorm2 [29]. Those sites with adjusted p-value below 0.05 and fold

change greater than 2 were defined as differential ones.

To perform a classification of tumor ChIP-seq samples, we first identified peaks that

were associated with hyper-variable signals across all the tumor samples by using MAn-

orm2 (p-value ≤ 0.01) [29]. These peaks were defined as tumor hyper-variable peaks

(HVPs). Peaks in sex chromosomes were removed for downstream analysis, and principle

component analysis (PCA) was performed on the tumor HVPs. Permutation analysis was

used to determine significant principal components (PCs). Among the significant PCs,

which were the first 5 PCs, only PC1 showed significant association with clinical informa-

tion of patients (e.g., ANOVA test for lymph node invasion gave a p-value of 0.04). We

therefore used only PC1 for hierarchically clustering the tumor samples. ConsensusClus-

terPlus algorithm was used to determine the optimal number of clusters [74], and we

observed that k = 2 led to clearly more stable clustering results compared to k = 3

(Additional file 1: Figure S5A). Considering the limited cohort size, we have chosen k = 2

and have classified the tumor samples into group I (GI) and group II (GII).

Peak saturation analysis

To better understand whether our epigenetic profiling adequately captured the epige-

nome landscape of paired primary LUADs and normal samples, we used the peaks of

interest (not in the black list from https://www.encodeproject.org/files/ENCFF001

TDO/) in each sample to calculate the number of discrete peaks and the number of

novel peaks gained with increasing sample number. This was performed across 100

permutations of the tumor and normal samples (Additional file 1: Figure S1A).

Super-enhancer analysis

ROSE was employed to identify super-enhancers (SEs) in each sample. A 12.5-kb

stitching distance was used to connect the proximal cluster of H3K27ac peaks into con-

tinuous enhancer regions, and regions around the TSS within 2.5 kb were excluded.

We found that tumor-specific peaks and normal-specific peaks were mutually exclusive,

and with increasing SE size (the length of SE), the fraction of differential H3K27ac sites

was reduced. Thus, we used Fisher’s exact test to define differential SEs based on the

relative enrichment of differential H3K27ac sites compared to the background
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(Additional file 1: Figure S2). SEs were mapped to genes based on the correlation be-

tween the SE score and H3K27ac signal intensities of the promoter (peaks within 2.5

kb of the TSS) or the gene expression level within ± 500 kb using a adjusted p-value of

0.01 and 0.05, respectively. Any SE without a linked gene was linked to the most highly

correlated or closest gene. For each SE, SE score is the average normalized signal inten-

sities of enhancers within this SE.

Identification of distal enhancer-linked genes

To assign distal enhancers to genes, we used a correlation-based method. All possible

interactions between the distal enhancers and TSSs within 500 kb were identified. For

each interaction, we calculated the Pearson’s correlation coefficient (PCC) between

H3K27ac signal intensities and gene expression levels (Additional file 1: Figure S6A).

And we constructed a null distribution of non-specific correlations using random pairs

of distal enhancers and genes (not within ± 500kb or not in the same chromosome) to

determine the significance of PCC (Additional file 1: Figure S6B). Then, we calculated

the mean and standard deviation of these non-specific correlations. We used a normal

distribution with the previously calculated mean and standard deviation to compute

the p-value for each correlation and adjusted for multiple hypotheses using the

Benjamini-Hochberg procedure (false discovery rate, FDR). Then, all correlations with

an FDR below 0.05 were defined as distal enhancers linked genes.

Pathway enrichment analysis

To identify the epigenetic signatures, GSEA was performed based on the PCC of PC1

and gene expression using the gseapy Python package, which implements GSEA on a

preranked gene list, and the Molecular Signatures Database (MsigDB). For the func-

tional characterization of differential enhancers-associated genes, DEGs, and differential

SE-associated genes, we used DAVID [75] and Metascape [76] to identify pathways that

were significantly represented in the gene list from our dataset.

RNA-seq and data analysis

Tissue samples were homogenated in lysis buffer and RNA was extracted as user man-

ual (AllPrep DNA/RNA Mini Kit, Cat.no 80204, Qiagen). RNA samples were then

processed to library construction. RNA and library DNA quantity were evaluated with

Qubit 3.0 and suitable kit. RNA and library size distributions were measured with Agli-

ent Bioanalyzer 2100 or QIAxcel system. High-throughput sequencing was performed

with Illumina Hi-seq X10 system. RNA-seq reads were aligned to hg19 human genome

and transcript annotation (GENCODE). Gene raw read counts were calculated via fea-

ture counts in R package Subread. Differentially expressed genes (DEGs) analysis was

perform using DESeq2 [77]. DESeq2 was run with the formula “~ group + gender”,

where group has levels “Group I” and “Group II” and “gender” has levels “male” and

“female”. Genes with adjusted p-value less than 0.05 defined as DEGs.

TCGA sample classification based on RNA-seq

GI- and GII-specific genes were identified using DEseq2, and ssGSEA was used to cal-

culate the sample wise gene set enrichment score of GI- and GII-specific genes in each
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TCGA sample (called the GI score and GII score, respectively). We used 1/3 and 2/3

quantiles of the GI score and GII score across all samples to divide the TCGA samples

into three groups, high GI score and low GII score samples as GI-like group, low GI

score and high GII score samples as GII-like group, and the remainder as the in-

tergroup. Then, the R package survminer was used to perform a survival analysis

of these groups. Gene expression matrix of TCGA-LUAD was downloaded via

TCGA-biolinks [78].

Co-expression networks construction

We identified transcription factors(TFs) and epigenetic regulators based on functional

annotation databases [74, 79] and selected those were DEGs as regulators, we used

these regulators as key nodes to expand the networks based on significant positive

correlation in gene expression (FDR ≤ 0.01) of these regulators and other genes. Co-

expression network visualized using Python package networkx. To identify core regula-

tors among these differentially expressed regulators, which not only had high connect-

ivity with each other but also with other regulators, the co-expression network of

differentially expressed regulators was constructed based on significant gene expression

correlation (FDR ≤ 0.01). Core regulator clique was defined as regulator clique with the

highest clique score in the regulators co-expression network and regulators in this

clique were defined as core regulators. Two important definitions: “regulator score”

was defined as the number of cliques that in which regulator participated. “clique

score” for a clique was defined as the sum of “regulator score” of all regulators in that

clique. We first calculated the “regulator score” of each regulator in the regulators co-

expression network, then we calculated the “clique score” of each clique in this

network, finally selected regulators from the clique with highest “clique score” as core

regulators.

Cell culture and functional assay

The HEK-293T cell and human NSCLC cell lines including PC9, CRL-5803, and CRL-

5872 were purchased from the American Type Culture Collection and cultured in

DMEM supplemented with 8% FBS. All cell lines used in this study were mycoplasma-

free. The HEK-293T cells were used for lentivirus production for ectopic CLU expres-

sion and CLU knockdown as previously described [56]. MTT assay was performed fol-

lowing the manufacture manual. Briefly, 2000 cells were seeded on 96-well plates, and

the viability of cells was measured daily for 5 days. All experiments were performed in

triplicate. The CRL-5803 and PC9 cells were virally infected for ectopic CLU expression

and the CRL-5872 for shCLU knockdown. These cell lines together with the parental

cells were then used for MTT assay and the colony formation in soft agar. For soft agar

assay, 5000 cells were mixed with 0.2% agar containing growth medium and layered

onto 1% agar containing growth medium in 6-well plates. Medium were changed every

3 days and the colonies were stained with 0.005% crystal violet and counted in 3 weeks.

Plasmid construction

For gene expression in cell lines, the coding sequences of CLU were PCR amplified and

cloned into pCDH-puro vector. For dual gRNA CRISPR screening, we insert another
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U6-filler-TA into pSECC, thus two gRNAs can be cloned into one vector. Briefly, the first

gRNA, sg2, was cloned into BsmBI sites of pSECC vector. For the second gRNA, sg5, the

U6-filler-TA sequence was amplified from pSECC and inserted into the vector pCDNA3.1

between EcoRI and XhoI which we then called pCDNA3.1-linker. The sg5 was cloned

into BsmBI sites of pCDNA3.1-linker and then the U6-sg5-TA was cloned into pSECC-

sg2 using ECoRI and XhoI. All primers used are listed as follows: For q-RT PCR analysis:

qF-CLU: CCAATCAGGGAAGTAAGTACGTC, qR-CLU: CTTGCGCTCTTCGTTTGT

TTT. For PCR sequencing: primer-F: CCATTCAGAACTAGGTTCTGACC, primer-R:

GTGGCCTCTGTGTGCTTGTCT. Dual sgRNA target sites: sg2: ACTACTTCCAAAT

TAGACTG, sg5: CTGAGCTGGATGGTTCACCA. ShRNA target sites: shCLU-1: AAC

CAGAGCTCGCCCTTCTAC, shCLU-2: AGCAGCTGAACGAGCAGTTTA.

Quantitative real-time PCR

Total RNA was extracted using TRIzol reagent (Invitrogen) and retrotranscribed into

first strand cDNA using PrimeScript RT reagent Kit with gDNA Eraser (TaKaRa). The

cDNAs were subjected to real-time PCR with gene-specific primers using SYBR-Green

Master PCR mix (Roche). Actin was served as internal controls.

Immunohistochemistry (IHC)

IHC was performed as described previously [80]. Paraffin-embedded clinical tissues

were incubated with the following antibodies: anti-SOX9 (abcam, ab185966; 1:1000 di-

lution), anti-RUNX2 (abcam, ab192256; 1:1000 dilution), anti-TTF1 (abcam, ab76013;

1:250 dilution), anti-Ki67 (Proteintech, 27309-1-AP; 1:5000 dilution), anti-SOX4

(abcam, ab243041, 1:1000 dilution), anti-RUNX1 (abcam, ab240639, 1:2000 dilution),

anti-SIX1 (abcam, ab252224, a:100 dilution), and anti-Clusterin (abcam, ab92548; 1:200

dilution). The immunostaining was reviewed and scored blindly. The scoring system

for grading expression level was reported previously [81]. The score of each sample was

multiplied by the grading of intensity and staining area.
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