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Abstract

Background: The majority of pancreatic ductal adenocarcinomas (PDAC) are
diagnosed at the metastatic stage, and standard therapies have limited activity with
a dismal 5-year survival rate of only 8%. The liver and lung are the most common
sites of PDAC metastasis, and each have been differentially associated with
prognoses and responses to systemic therapies. A deeper understanding of the
molecular and cellular landscape within the tumor microenvironment (TME)
metastasis at these different sites is critical to informing future therapeutic strategies
against metastatic PDAC.

Results: By leveraging combined mass cytometry, immunohistochemistry, and RNA
sequencing, we identify key regulatory pathways that distinguish the liver and lung
TMEs in a preclinical mouse model of metastatic PDAC. We demonstrate that the
lung TME generally exhibits higher levels of immune infiltration, immune activation,
and pro-immune signaling pathways, whereas multiple immune-suppressive
pathways are emphasized in the liver TME. We then perform further validation of
these preclinical findings in paired human lung and liver metastatic samples using
immunohistochemistry from PDAC rapid autopsy specimens. Finally, in silico
validation with transfer learning between our mouse model and TCGA datasets
further demonstrates that many of the site-associated features are detectable even in
the context of different primary tumors.

Conclusions: Determining the distinctive immune-suppressive features in multiple
liver and lung TME datasets provides further insight into the tissue specificity of
molecular and cellular pathways, suggesting a potential mechanism underlying the
discordant clinical responses that are often observed in metastatic diseases.
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Introduction
Pancreatic cancer, mostly comprised of pancreatic ductal adenocarcinoma (PDAC), is

now the third leading cause of death in the USA with over 45,000 deaths this year [1].

Over 70% of PDAC patients are diagnosed with metastatic disease at diagnosis, and the

5-year survival rate for these patients has only modestly risen to 10% [2]. PDAC most

commonly metastasizes to liver and lung [3], and the site of metastatic involvement has

prognostic implications. Specifically, multiple institutional reviews have observed that

isolated pulmonary metastatic disease has significantly better prognosis than patients

with liver metastases [4–6]. This clinical distinction is not unique to PDACs. Similar

prognostic contrast has been noted for melanomas and lung cancers, and patients with

liver metastases have poorer survival outcomes when treated with PD-1 immune check-

point therapy when compared with patients who have disease involvement in other vis-

ceral sites including lung [7, 8].

These differences have generally been attributed to clonal heterogeneity of the tumor

itself, as well as tissue-specific features of the tumor microenvironment (TME) [9]. A

deeper understanding of the distinctive features within different metastatic TMEs has

the potential to inform future therapeutic strategies and/or identify novel targets for

therapy against metastatic PDAC. However, the ability to study these site-specific dif-

ferences has been challenging for two reasons. First, patient samples from matched

metastatic sites are generally of limited availability since there is rarely ever a need for

simultaneous multisite biopsy for clinical decision-making, and second, animal models

of sporadic metastases pose the logistic challenge of establishing controlled cohorts and

are subject to clonal heterogeneity.

In this study, we employed intraportal/hemispleen and intravenous injection mouse

models of hepatic and pulmonary metastatic PDAC, respectively, to directly compare

the liver and lung TMEs of metastatic PDAC. We analyzed the immune compartment

of the TMEs by high-dimensional mass cytometry and immunohistochemistry, and the

non-immune, magnetically enriched compartment of the TMEs by bulk RNAseq. To

correlate these observations with human disease, we also used five pairs of matched hu-

man liver and lung metastatic samples from our pancreatic cancer rapid autopsy bio-

bank to perform immunohistochemistry evaluating canonical immune cell markers.

Finally, we utilized our transfer learning methodology ProjectR [10] to computationally

test whether the differences are site-driven by comparing lung and liver cancer in

TCGA and additional metastatic models in MetMap [11]. Based on these investigations,

we identified immune regulatory processes resulting from microenvironment and

tumor cell interactions that are enriched in specific metastatic sites both at the tumor-

bearing and normal baseline states, highlighting the importance of understanding the

tissue-intrinsic factors that may impact tumor behavior.

Results
Establishing models of hepatic and pulmonary metastatic pancreatic ductal

adenocarcinoma

To establish directly comparable lung and liver PDAC metastasis, we utilized a murine

pancreatic adenocarcinoma cell line driven by Kras and Trp53 mutations (KPC) [12]

injected into the two most common visceral sites of metastatic disease, liver, and lung.
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The use of this cell line was particularly important given its genetic similarity to human

disease [13] and reflects the critical impact that mutations have on the immune re-

sponse [14]. Similar to human disease, KPC cells are thought to be intrinsically limited

in immunogenicity. A relatively low mutational burden in our KPC cell line was verified

by whole exome sequencing and mutational analysis (Additional file 1: Figure S1A).

The carcinogen-induced mouse pancreatic cancer cell line Panc02, which is known to

harbor a high number of mutations including those that yield immunologically

recognizable neoantigens [15], was used as a comparator. As a gross assessment of

neoantigens related to the driver mutations in the KPC model, predicted MHC binding

affinities for Kras(G12D) and Trp53(R172H) were also analyzed; no mutations in either

of these genes were identified in the Panc02 cell line. As expected, neither driver muta-

tion produced a putatively strong neoantigen as defined by a strong binding affinity of

the mutant type peptide or by comparison of the mutant type to wild type binding af-

finity (Additional file 1: Figure S1B, C). To establish metastasis, KPC cells were injected

intraportally by the hemispleen method [16] and intravenously via tail vein, leading to

robust tumor burdens in the liver and lung by day 21 from the time of injection that

could be validated by both gross and histological examination (Additional file 1: Figure

S2). Using these models, both the immune and non-immune compartments of lung

and liver microenvironments were analyzed with high-throughput molecular profiling

to fully interrogate the differences between the two metastatic tissue sites.

Immune profiling with mass cytometry reveals enhanced immune activation in lung

metastases

To characterize the microenvironment of the metastases, we profiled the immune com-

partment of normal liver, normal lung, KPC-bearing liver, and KPC-bearing lung with

mass cytometry (Cytometry by Time-of-Flight; CyTOF). The CyTOF panel consisted of

a total of 33 mass channels, including 16 for subtyping, 11 for functional analysis, 4 for

barcoding, 1 for cell identification, and 1 for viability (Additional file 2: Table S1). By

using four unique CD45 barcodes, we employed a batching strategy to enable multi-

plexed staining and data acquisition for robust analysis (Fig. 1a). The high-dimensional

CyTOF data was then clustered using FlowSOM algorithm into a total of 20 metaclus-

ters, which were then annotated into 13 final immune cell types (Fig. 1b and Additional

file 3: Table S2). Annotations were based on known canonical expression profile of the

different immune cell types, e.g. CD3+CD4+ clusters are annotated as helper T cells.

When comparing between the two metastatic sites, a higher proportion of B cells were

found in liver while a higher proportion of T cells, NK cells, monocytes, and CD11c+

dendritic cells were found in lung. Most of these organ-specific differences were also

present in the absence of KPC metastasis, reflecting differences in the baseline immune

infiltrate of these tissues. As expected, higher proportions of myeloid derived suppres-

sor cells (MDSCs) and Tregs were noted in the KPC-bearing states for both liver and

lung (Fig. 1c–e). When we assessed the functional profiles within each of the cell type

clusters, lung generally exhibited higher mean metal intensities (MMI) of activation or

co-stimulatory markers, CD69, ICOS, and CD27, and co-inhibitory markers, PD-L1,

PD1, KLRG1, and BTLA (Additional file 1: Figure S3). A notable exception to this

trend was higher MMI of LAG3 in T cell and NK cell clusters within the liver.

Ho et al. Genome Biology          (2021) 22:154 Page 3 of 23



Given the increased numbers of T cells in the lung metastatic microenvironment, we

repeated the clustering analysis utilizing samples gated for CD3+ events for deeper pro-

filing of T cells. All functional markers were incorporated into the clustering step, and

a total of 20 resulting metaclusters were annotated into 18 T cell subtypes based on

their expression profiles (Additional file 1: Figure S4 and Additional file 4: Table S3).

As a percent of CD3+ cells, a much higher proportion of naïve helper T cells were seen

Fig. 1 Global immune profiling of metastatic liver and lung TME with CyTOF. a Mice were injected with
KrasG12D and TP53R172H-driven pancreatic cancer cells (KPC) into the liver by the hemispleen method or
into the lung by intravenous tail vein injection. Normal lung and livers (day 0, “D0”) and day 21 (“D21”) from
the day of injection were harvested and barcoded with a CD45 antibody conjugated to a unique metal.
One sample from each group was then combined into a 4-plex batch to be stained with the full CyTOF
panel (Table S1). b Heatmap of normalized marker expression for FlowSOM clustering of the dataset and c
UMAP visualization of the clusters are shown. Two thousand events per sample are represented. Immune
cell type proportions as a percentage of total CD45+ cells from each of the four groups are shown as d
stacked barplots for the entire group and e mean values for each group as radar plots (left) and relative
values scaled for each immune cell subtype for all mice as a heatmap (right). Groups are annotated by
color within the radar plot or as horizontal bars above the heatmap. FDR-adjusted p values compared using
edgeR for KPC-bearing vs. normal conditions in the liver (LV_KpcNl) and lung (LG_KpcNl) as well as lung vs.
liver in KPC-bearing (KPC_LgLv) and normal (NL_LgLv) conditions are annotated as an adjacent heatmap to
the right
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in the lung compared to the liver (Fig. 2a), driving most of the difference seen in the T

cell percentage of all CD45+ immune cells (Additional file 1: Figure S5). Compared to

the normal tissue controls, KPC-bearing tissues had greater proportions of regulatory T

cell clusters (“Treg_I” and “Treg_II”) and PD-1-expressing effector memory T cell clus-

ters (“TcEM” and “ThEM_II”) along with decreased proportion of naïve cytotoxic T cell

clusters (“TcN_I” and “TcN_II”) (Fig. 2a). Another important distinction was the

tumor-associated presence (2% of CD3+ T cells) of Lag3+ Granzyme B+ cytotoxic T

cells (“TcEFF_II”) within the liver but not in the lung microenvironment (Fig. 2a). Since

metal intensity of Lag3 was relatively weak and since the Lag3-positive population was

rare, we then performed fluorescent flow cytometry to validate these findings. Again,

we confirmed the higher percentage of Lag3+ CD8 T cells and NK cells in the KPC-

bearing liver compared to the KPC-bearing lung (Fig. 2b). In addition, to assess

whether these changes in the proportions of T cell subtypes are truly tumor-

responsive, we performed TCR repertoire analysis of the tissue-infiltrating T cells in

both normal and KPC-bearing livers and lungs. Compared to normal tissue controls,

Fig. 2 T cell profiling of metastatic liver and lung TME with CyTOF. a CD3+ subset of the dataset was re-
clustered using both subtyping and functional markers. Select T cell clusters are represented with mean
values for each group as radar plots (top). Separate radar plots with different axis ranges are used to
facilitate the visualization of low-level subtypes. Relative values scaled for each immune cell subtype for all
mice as a heatmap (bottom). Groups are annotated by color within the radar plot or as horizontal bars
above the heatmap. FDR-adjusted p values compared using edgeR for KPC-bearing vs. normal conditions in
the liver (LV_KpcNl) and lung (LG_KpcNl) as well as lung vs. liver in KPC-bearing (KPC_LgLv) and normal
(NL_LgLv) conditions are annotated as an adjacent heatmap to the right. b Proportion of LAG3 positive
CD8 T cells (top) and NK cells (bottom) as assessed by fluorescent flow cytometry comparing between KPC-
bearing liver and lung is shown (n = 6). Two-tailed t test, ***p < 0.005. c Sample clonality values derived
from TCRseq analysis of T cells within normal (gray) livers and lungs and KPC-bearing (red) livers and lungs
are compared. Wilcoxon-Mann-Whitney, *p < 0.05; ***< 0.005
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KPC-bearing livers and lungs demonstrated a significantly higher sample clonality of T

cells (Fig. 2c), suggesting that the differences in the T cell subpopulations are actually

driven by the presence of the tumors within these metastatic sites. Together, these find-

ings implied that compared with the liver, the lung metastatic microenvironment is

generally composed of a higher level of tumor-associated immune cell infiltration and

activation, especially T cells.

To further validate that the differences in the immune cell profiles are not just tissue-

intrinsic differences but also altered in ways that are specific to KPC tumors, we per-

formed immunohistochemistry (IHC) of four immune cell markers, CD8 (cytotoxic T

cells), CD4 (helper T cells), CD68 (macrophage/myeloid cells), and B220 (B cells), to

visually assess their infiltration within the two tissue sites (Additional file 1: Figure

S6A-F). We specified our analysis to tumoral and adjacent normal regions separately

and first quantified the density of cells. When comparing the number of cells per tissue

area — in contrast to % of cells in CyTOF — there were higher density of CD4+ T,

CD68+ myeloid, and B220+ B cells within the lung tumors compared to the liver tu-

mors (Additional file 1: Figure S6G). There was a trend toward higher density of CD8+

T cells as well. To further characterize their relationships, e.g. the proximity of an anti-

tumor effector CD8+ T cell to all other immune cells, we also measured the average

distances between any given CD8+ T cell and CD4+ T cells, CD68+ myeloid cells,

B220+ B cells, or another CD8+ T cell (Additional file 1: Figure S6H). The shortest dis-

tances among immune cells were observed within the tumors in the lungs, suggesting

that the spatial coordination of immune cells is different between the lung and the liver

TMEs. Importantly, the immune cell densities and distances were also higher and

shorter, respectively, in the tumoral regions than their normal adjacent counterparts,

suggesting that the immunologic profiles are not only different between the two sites

but also shaped differentially by the tumor.

Transcriptomic analysis of the non-immune compartment implicate a role for liver

parenchyma in establishing an immune-suppressive TME

To compare the features within the non-immune compartment, which includes the

KPC cells, tissue-specific parenchymal cells, and stromal cells, KPC-bearing liver and

lung samples were enzymatically dissociated into single cells and were subsequently

processed by negative selection with a cocktail of magnetic beads targeting CD45 (pan-

immune cells), CD31 (endothelial cells), and Ter119 (red blood cells) among others.

The resulting samples were then analyzed by RNAseq along with KPC cells from 2D

in vitro culture, normal lung samples, and normal liver samples as controls (Fig. 3a).

PC analysis showed that samples from each of the groups clustered together (Fig. 3b).

PC1 represented 71% of the variance and associated mostly with the contrast between

KPC-bearing and normal samples, whereas PC2 represented 19% of the variance and

associated with tissue type. Comparing the expression of KPC-associated genes, Pdx1,

Muc1, Muc5ac, Sox9, Krt18, Krt19, and Cdh1 confirmed that the method successfully

selected for KPC cells (Fig. 3c). Furthermore, the presence of parenchymal cell markers

for liver (prothrombin and fibrinogen genes; F2, Fgb) and lung (surfactant protein

genes; Sftpa1, Sftpb) was represented by the corresponding liver and lung samples, re-

spectively, and not by the in vitro KPC cells. Also, substantial reduction of immune
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cells (Ptprc, CD3e, CD19 expression) in the KPC-bearing livers and lungs by the nega-

tive selection process was confirmed (Fig. 3c).

Next, to assess the signaling pathways within the non-immune compartment that

may be interacting with the immune compartment, genes significantly different be-

tween the liver and lung non-immune microenvironments (FDR-adjusted p < 0.05)

were tested against the set of genes defining the PDL1 pathway from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database. Since LAG3 was a notable fea-

ture in the liver immune TME, we also used GeneMania [17] to define a network of

genes associated with Lag3 and Fgl1, a ligand of LAG3 predominantly found in the liver

[18]. Our analysis revealed that both the PDL1 signaling pathway (Additional file 1: Fig-

ure S7) and FGL1-LAG3 network (Additional file 1: Figure S8) are significantly

enriched in the liver. Significant enrichment of the FGL1-LAG3 network in the liver

non-immune microenvironment was consistent with our cytometric analysis of the im-

mune cells showing distinctive presence of LAG3+ T and NK cells in the liver. For an

unbiased exploration, we also tested the differentially expressed genes against all signal-

ing pathways in the KEGG database, revealing five other enriched pathways (PPAR,

Wnt, p53, ErbB, Neurotrophin), three of which (PPAR, Wnt, Neurotrophin) could be

attributed to the intrinsic parenchymal differences (Additional file 1: Figure S9).

In addition, to further interrogate the possible points of interplay between the im-

mune and non-immune compartments of the metastatic microenvironment, we also fo-

cused our analysis on a select set of chemokines [19] and a set of immune markers [20]

Fig. 3 Approach for non-immune compartment profiling of metastatic liver and lung TME by RNAseq
analysis. a KPC-bearing lung and liver are analyzed along with KPC cells from in vitro culture in 2D, normal
lung, and normal liver as controls. All tissue samples are enzymatically dissociated into single cells. KPC-
bearing liver and lung samples are further processed using negative magnetic bead selection to obtain the
non-immune cells. b PCA plotting of the RNAseq dataset shows how individual samples cluster. c
Expression of key genes identifying cells of pancreatic origin (KPC), tissue-specific parenchyma, and immune
cells are shown in a heatmap to demonstrate the quality of the sample preparation process
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known to regulate immune function. Chemokines associated with pro-immune,

immune-recruiting functions (Cxcl9, Cxcl10, Cxcl11, Cxcl14) were expressed at higher

levels in the lung than in the liver (Fig. 4 and Additional file 1: Figure S10A). For Ccl5,

Ccl22, Ccl27a, Ccl28, and Cxcl12, chemokines known to exert pro-tumor effects, sub-

stantially higher levels were noted in the liver. Among the immune regulatory mole-

cules compared, Pdcd1lg2, Tgfb2, Tgfb3, Fasl, IL10, and Fgl1 were all expressed at

higher levels in the liver than in the lung (Fig. 4 and Additional file 1: Figure S10B).

These findings suggest that the non-immune compartment of the liver metastatic

microenvironment creates a relatively immune-suppressed environment compared to

that of the lung.

To characterize few key immune regulatory chemokines in more depth, namely

CCL27/CCL28 (which attract Tregs via CCR10 [21, 22]) and CXCL12 (which attract

immunosuppressive myeloid cells into the microenvironment via CXCR4 [23, 24]), and

to validate the immune profiles from our KPC model in additional KPC models, we

performed CyTOF again with a revised panel of antibodies spanning 40+ channels

Fig. 4 Heatmap of expression profiles for a select set of chemokine and immune regulatory genes shown
for every sample. All gene expression differential analyses were performed based on the negative binomial
distribution using DESeq2. FDR-adjusted p values *< 0.05, **< 0.01, and ***< 0.005 for comparison between
the liver and lung TME sites are shown next to each gene name
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(Additional file 5: Table S4) that includes CCL27 and CXCL12 along with PDX1, pan-

keratin, and podoplanin (for non-immune cells). In this run, sample barcodes were

based on a combination of CD29 (integrin beta-1), CD98 (large neutral amino acid

transporter), and CD45 to broaden the types of cells being examined. With a total of

33 annotated cell type clusters (Additional file 6: Table S5), we performed a side-by-

side comparison of the metastatic tissue profiles from mice bearing our KPC, the

2838c3 KPC (“KPCc3”), or the 6419c5 KPC (“KPCc5”) tumors [25] along with normal

controls. Again, across all models, we observed that T cells and dendritic cells were

overall much more abundant in the lung, whereas B cells were more abundant in the

liver (Additional file 1: Figure S11A). When comparing specific immune cell subtypes

that are tumor-associated, i.e., significantly higher in proportion than in the normal

controls, immunosuppressive myeloid cells and LAG3-high effector T cell populations

were consistently more prevalent in the liver metastatic microenvironment (Additional

file 1: Figure S11B). Expression of CCL27 and CXCL12 chemokines were highest in

subpopulations of KPC cells (PDX1+, pan-keratin+; “KPC_II”, “KPC_III”; Additional file

1: Figure S11C) which were greater in proportion in the liver samples compared to the

lung samples, corroborating the RNAseq data.

Human rapid autopsy specimens recapitulate immune signaling differences observed in

mouse models

To correlate the findings from the KPC mouse model with human disease, five

matched liver and lung metastatic samples from deceased PDAC patients were identi-

fied in the Johns Hopkins Rapid Autopsy Biobank. Sample sources and their general

treatment histories are tabulated separately (Additional file 5: Table S4). Immunohisto-

chemical staining of canonical immune markers, CD4, CD8, CD20, and CD68, were

first performed and compared between the two organ sites. Similar to what was ob-

served in the mouse models, the intratumoral density of CD4+ and CD8+ T cells was

significantly greater at the pulmonary metastatic site (Additional file 1: Figure S12A-C).

The intratumoral density of CD20+ B cells was also higher in the lung, consistent with

mouse IHC analysis. Notably, when comparing the markers on a per-tissue block basis,

there were not only inter-patient variability and inter-site variability, but also intra-site

variability (Additional file 1: Figure S12D). Regarding checkpoint markers, PD1 and

LAG3 expression were assessed by positive expression of each marker per T cell density

(Additional file 1: Figure S12A, E). High PD1 expression was detected in both liver and

lung samples without a clear pattern. LAG3 expression was also variable, but there was

an observable trend, in which the highest expressing samples were from the liver, which

was also observed in the mouse CyTOF data. Overall, the findings in the matched hu-

man samples were consistent with what were observed in the mouse model.

Site-specific microenvironment features are detectable in primary tumors of lung and

liver

Finally, to test the hypothesis that the site-specific features associated with metastatic

pancreatic lesions stem from the intrinsic tissue microenvironment, tumor-associated

and TME-associated characteristics were compared between lung and liver primary

cancers using the Cancer Genome Atlas (TCGA) database. To first determine whether
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the molecular profiles in the lung and liver metastatic sites based on the KPC mouse

model were preserved in the lung and liver TCGA datasets, we employed our transfer

learning algorithm projectR [26] to project the principal component dimensions de-

rived from the gene expression data for the cancer cells isolated in the KPC mouse

metastatic model (Fig. 3b) onto TCGA datasets. Upon projecting onto cancer and adja-

cent normal samples from primary liver, lung, and pancreas TCGA datasets, we again

observed that while PC1 explained the differences between the normal and tumor sam-

ples, PC2 captured the tissue sites differentially (Additional file 1: Figure S13A). This

indicated that tumor-associated and tissue-associated signals were separately and con-

sistently relatable across different species and primary tumor types.

To delineate whether this site-specific signal was at least in part tumor-driven and

not solely parenchymal/stromal, we explored the MetMap dataset [11], a publicly avail-

able dataset based on RNAseq profiling of uniquely barcoded breast cancer cell lines

injected in vivo for spread onto five different metastatic sites. Because these are bar-

coded cell lines, the dataset specifically represents cancer cell-intrinsic differences.

Based on PC analysis, we found that PC1 is most highly represented by the cancer cells

within the liver (Additional file 1: Figure S13B). Then, upon projecting PC1 from Met-

Map onto our KPC dataset, we found that PC1 was much more strongly recapitulated

by the KPC samples from liver (Additional file 1: Figure S13C), suggesting that the lung

and liver metastatic sites also differentially shapes tumor-intrinsic features.

Next, to discern what tissue-specific features were being preserved, we also compared

the TME-related features in the lung and liver TCGA datasets. Based on MIXTURE de-

convolution [27] of the RNAseq datasets, lung cancers demonstrated significantly

higher levels of immune cells, including CD8+ T cells, CD4+ T cells, Tregs, dendritic

cells, and macrophages (Fig. 5). The differences were also present in the adjacent nor-

mal tissues, suggesting that the features are driven by the tissue microenvironment. Im-

portantly, these findings were consistent with the pancreatic cancer mouse model and

rapid autopsy analyses. Similarly, differential expression of select genes involved in im-

mune regulation of cancers as analyzed in the mouse models and the human datasets

for pancreatic metastatic disease were compared between the lung and liver primary

cancers. Again, many of the immune-modulatory genes differentially expressed in the

mouse model were site-specifically recapitulated, e.g., higher CCL2, CXCL5, CXCL9,

CXCL11, CXCL14, CXCL17, and IDO1 in lung cancers and higher CXCL12, FGL1, and

LAG3 in liver cancers (Fig. 6a). Gene set analysis showed that the chemokine, PDL1

pathway, and immune regulatory gene lists were highly enriched (FDR p values < 0.1,

Fig. 6b). Several genes were also, however, inconsistent with the mouse model data in-

cluding CCL5, CCL20, CCL22, CCL28, CXCL10, and PDL2, suggesting that these fea-

tures may not be as robustly tissue-specific across different primary cancers. Taken

together, these results strongly support the concept that many of the TME signatures

in metastatic sites can be explained by the features intrinsic to the tissue. Furthermore,

consistent with our hypothesis, the presence of baseline differences in the non-tumor-

bearing tissues is particularly apparent. Our analysis suggests that for a given tissue site,

particular pathways are involved similarly in modulating — suppressing or stimulating

— the immune response to different tumor types. In all of the datasets analyzed, liver

exhibited a relatively greater presence of features that characterize an immune-

suppressive microenvironment compared to lung.
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Discussion
To our knowledge, our study is the first to reveal site-specific differences in the TME

and adjacent normal tissue between hepatic and pulmonary PDAC metastasis. We

demonstrated that the lung TME displays higher levels of immune activation and infil-

tration, whereas immunoregulatory networks are enriched in the liver that suggest a

higher threshold of immune suppression to be overcome. Importantly, our data also

suggest that the greater presence of immune cells in the lung may be due to the pro-

immune signals, i.e., specific chemokines, generated from the non-immune compart-

ment in the lung. These observations are consistent with the results of an independent

immune landscape analysis of TCGA demonstrating relatively higher leukocyte frac-

tions in primary lung cancers than in hepatocellular carcinoma as well as greater

lymphocyte-depleted immune signatures within the liver samples [28]. We also demon-

strated that these site-specific features are not only comparable in both mouse and
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human datasets of metastatic PDAC, but also preserved in primary tumors of the lung

and the liver, illustrating the tissue-intrinsic property of such signals.

Our results have multiple translational implications for the development of immuno-

therapy for PDAC, and potentially other metastatic cancers. Although immune check-

point inhibitors have thus far failed as single agents to demonstrate clinical benefit for

patients with unselected PDAC [3], our results suggest the potential for benefit for the

small subset of patients with lung-only metastasis who may have a more permissive

TME for systemic immunotherapy. For the larger subset of patients with liver PDAC

metastases, our observation that there are increased LAG3+ T cells and an emphasis of

LAG3-FGL1 network in liver metastasis provide an initial rationale for studying LAG3

inhibitors in combination with anti-PD1 therapy for patients with liver metastases. An

emphasis on LAG3-FGL1 signaling in the liver TME is not entirely unexpected since

FGL1 is predominantly expressed in the liver, and FGL1 is a ligand for LAG3 [18]. In

addition, high expression of CXCL12, an important immune-suppressive chemokine in

PDAC TME [29], was consistently and primarily found in the liver in both mouse and

human datasets. This is in line with a prior observation that CXCL12-CXCR4 axis at-

tenuates immunologic responses and that blockade of this axis in mouse models of liver

metastases enhanced susceptibility to anti-PD-L1 therapy [29]. Anti-LAG3 antibodies

and CXCR4-targeted therapies are currently being investigated in clinical trials

(NCT03470922, NCT02907099, NCT04177810), and our study provides additional

Fig. 6 Differential expression of select gene sets comparing lung and liver TCGA datasets. a Volcano plot of
− log10 FDR-adjusted p values by DESeq2 are shown over log2-fold differences between lung and liver sites
for four sets of genes (as analyzed for mouse and human metastatic pancreatic cancer samples). Gene set
analysis was performed using the Wilcoxon Gene Set Test (GST) (FDR-adjusted p values noted). b Barcode
plots representing the results of the gene set enrichment analyses
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rationale to develop these therapeutic strategies, particularly for cancers that arise from

or metastasize to the liver.

Our data in PDAC builds on prior work in various cancer models where differences

in the tumor and TME were also metastatic site dependent [9]. When comparing sub-

cutaneous and orthotopic sites, pancreatic cell lines (CD18/HPAF, FG, L3.3, L3.6pl,

and BxPC3), renal cell lines (SN12C, SN12PM6), and a prostate cell line (PC-3M) de-

velop distinctive RNA expression profiles depending on the site [30–34]. Additionally,
1H NMR spectroscopy identified metabolomic changes within pancreatic cell lines

(Panc-1, PxPC-3) between subcutaneous and orthotopic sites [35]. Melanoma cell lines

(A375P, A375SM) also had differing IL-8 cytokine production when growing subcuta-

neously, in the lung, or in the liver [36]. In the TME, immune cell composition was dif-

ferent depending on whether breast cancer cells (4T1) were implanted subcutaneously

or intratibially [37]. Furthermore, not only did the immune constituents differ between

subcutaneous and orthotopic sites, orthotopic CT26 tumors responded better to check-

point blockade [38]. In fact, another study utilizing Renca renal tumor cells, by cross-

implanting tumor cells harvested from one site into another, demonstrated that the site

of disease is what determines the tumor response to immunotherapy [39]. These find-

ings highlight the importance of understanding the site-specific features of the TME.

Building on previous work using transfer learning for cross-species analysis in devel-

opmental biology [40, 41], our application of transfer learning to the RNAseq data en-

ables us to quantify conserved biology between mouse and human from the different

sites. Specifically, projecting of gene signatures between our mouse model, TCGA, and

MetMap datasets enables in silico validation of the separation of both disease-related

and tissue-intrinsic differences observed in the purified tumor cells from our mouse

model. Moreover, our separate analysis of the immune microenvironment demon-

strated that there are significant differences in the TME between liver and lung but also

tissue-intrinsic differences that are present in the resident tissues even before tumors

are established. This observation is expected since each organ has a unique function

and requires a set of cell types to carry out its proper function. This is also interesting

from the standpoint of TME-targeted therapeutic approaches. For example, one could

hypothesize that as long as the target is exploited to take on an antitumor role within

that tissue microenvironment, the same approach may be rational for cancers in a par-

ticular anatomical region irrespective of the cancer type. In fact, the success of check-

point inhibitors against both primary and metastatic upper aerodigestive malignancies

may be a prime example of the importance of the site of the TME. This concept sug-

gests that tumor site may be another key factor that determines clinical outcomes of

checkpoint immunotherapy, adding to other known factors such as stromal features,

tumor mutational burden, and the quality of the tumor antigens. Moreover, in addition

to enabling cross-species analysis, our transfer learning approach may enable cross-

tissue analysis to further resolve tissues-specific TME and tumor cell features, providing

a powerful tool for translating findings from primary tumors to identifying targets of

cancer metastasis in a rapid and scalable way.

The experimental methodology that we have used to interrogate the biology of

tissue-specific metastasis, i.e., injecting the same cell line into two different locations to

generate distinct metastatic sites, has both strengths and limitations. The strength of

this approach from a biological perspective is that the genetic starting point of the
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cancer cells for both metastatic sites is identical and enables the interpretation of

meaningful differences as a result of the cancer’s interaction with the TME. This ap-

proach also overcomes the challenges that are associated with sporadic metastasis

models such as establishing comparable mouse cohorts at a particular timepoint while

controlling for unpredictable confounding factors. A limitation of our methodology is

that our controlled implantations into distinct organs do not fully recapitulate the com-

plexity of the metastasis process from one site to another, including clonal evolution.

We were able to mitigate this uncertainty in part by extending our findings to human

metastatic autopsy samples. Given the limited availability of matched metastatic sam-

ples, further work on corroborating the clinical relevance of these findings using a lar-

ger cohort of human clinical specimens would be challenging but clearly valuable. In

addition to using a larger cohort, employing other types of assays would empower dee-

per understanding of the metastatic TME. Future work leveraging single-cell RNAseq

could enhance our inference between the immune and non-immune compartments

within the metastatic TME by enabling ligand-receptor analysis [42–44]. These compu-

tational inferences would be further enhanced through emerging high-dimensional

spatial molecular technologies [45–47] or multi-omics technologies for simultaneous

TCR profiling. Thus, such approaches would overcome some of the technical limita-

tions in this study and yield insights beyond what could be attained solely through bulk

RNAseq, CyTOF, or single stain IHC employed in this current study.

In summary, our study delineates tissue specificity of immune-modulatory pathways

in metastatic PDAC TMEs. Importantly, we found that the liver TME harbored lower

infiltration of activated T cells in association with emphasis of key immunosuppressive

mechanisms including LAG3-FGL1 and CXCR4-CXCL12 pathways compared to the

lung TME. These findings provide a basis for how the metastatic TME may differen-

tially impact clinical outcomes and suggest the importance of developing therapeutic

strategies accordingly. Our observations provide additional rationale for building on

previous studies [18, 24, 29] to further investigate LAG3-FGL1 and CXCR4-CXCL12

targeting strategies especially in the setting of liver metastatic cancers. Such efforts may

help to overcome the poor prognosis conferred by hepatic involvement in pancreatic

cancers as well as other cancers.

Materials and methods
Cell lines

KrasLSL.G12D/+;p53R172H/+;PdxCretg/+ (KPC) is a pancreatic cancer cell line

driven by Kras and TP53 mutations under the pancreas-specific pdx-1 promoter in

C57Bl/6 background [12, 13]. KPC 2838c3 and KPC 6419c5 cell lines were pur-

chased from Kerafast. They are maintained in RPMI containing glutamine, 10%

FBS, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, and 1X penicillin/

streptomycin in 5% CO2.

Animals

Female C57Bl6 mice at 6–8 weeks of age were purchased from Jackson Laboratories

and maintained in accordance with the Institutional Animal Care and Use Committee

(IACUC) guidelines. The hemispleen technique of establishing a hepatic metastatic
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model of pancreatic cancer by intraportal injection has been previously described [16].

Briefly, a left subcostal incision is made to reveal the spleen, which is clipped and

hemisected. One half of the spleen is used to inoculate 3.5 × 105 KPC cells in 100 μl

volume and flushed with 150 μl PBS in the same injection. Slow injection allows for

visualization of intraportal flushing, after which the splenic vessels are clipped and the

injection portion is removed. To establish a pulmonary metastatic model of pancreatic

cancer, 5 × 105 KPC cells are injected intravenously in 100 μl total volume via tail vein.

By day 21 from injection day, mice are euthanized in the CO2 chamber for harvesting

the liver and lungs. Tumor burden in the liver and lung, respectively, is grossly visible

and histologically confirmed by formalin fixation, paraffin embedding, and

hematoxylin/eosin staining following standard procedures.

Rapid autopsy database

The Legacy Gift Rapid Autopsy program was approved by the Johns Hopkins institu-

tional review board and deemed in accordance with the Health Insurance Portability

and Accountability Act. With informed consent, patient samples were collected via an

autopsy as soon as possible after death, typically within 6 h. Harvested primary and

metastatic samples are formalin fixed for paraffin embedding and assigned unique iden-

tifiers. Documentation of every sample is based on gross and microscopic examination

along with the corresponding patients’ medical history.

Immunohistochemistry

Slides were stained for immune markers following standard immunohistochemistry

protocols as previously described. The following is the list of the antibodies used,

source, and antigen retrieval method: Pan-cytokeratin (MS343R7, ThermoScientific,

Ventana Ultra CC1 buffer), CD4 (Sp35, Ventana, EDTA pH9.0), CD8 (C8/144B, Cell

Marque, EDTA pH9.0), CD20 (L26, Ventana, EDTA pH9.0), CD68 (KP-1, Ventana, Cit-

rate pH6.0), PD1 (NAT105, Cell Marque, 1:1000, Citrate pH6.0 [48]), and Lag3 (17B4,

LifeSpan BioSciences, 0.1 μg/mL, Citrate pH6.0 [49]). Quality of the staining results for

every marker was reviewed by a pathologist (E.D.T.). Mouse tissues were stained with

the following antibodies: CD8 (D4W2Z, Cell Signaling Technologies), CD4 (EPR19514,

Abcam), B220 (RA3-6B2, Novus Bio), and CD68 (rabbit polyclonal, Abcam). Stained

slides were scanned into digital formats using the Aperio ScanScope® CS system (Leica).

Digital slides were annotated to demarcate the matching regions of interest and then

quantitatively assessed for staining intensity, cellular density of positive staining, and

area density of positive staining using HALO (Indica). For unbiased analysis, quantifica-

tion module parameters were first manually optimized to analyze three matching slides

of liver and lung tissues and were kept the same for all slides.

Antibodies for cytometry

A list of CyTOF antibodies, clones, metal isotopes, and their titrations is provided in

Additional file 2: Table S1. Custom conjugation of antibodies was performed using

Maxpar Lanthanide Conjugation Kits (Fluidigm) according to the manufacturer’s proto-

col and as previously published [50]. Briefly, buffer exchange was first performed on

purified antibodies using 50 kDa ultra filtration columns (Amicon), and subsequently
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the antibodies were partially reduced with 4 mM TCEP (Thermo Scientific). Polymers

were loaded individually with isotopically enriched metals and were then conjugated

onto the corresponding reduced antibodies. The conjugated antibodies were washed

and quantified using Nanodrop. The final antibody concentrates were diluted in a

stabilization buffer (Candor) containing 0.3% sodium azide. Each antibody was titrated

by starting at the suggested dilution and titrated as needed in a range of 3–4 serial dilu-

tions using clear positive controls, e.g., stimulated splenocytes, and validating the con-

centration that permits discrimination while minimizing spillover signals. For flow

cytometry, the following antibodies were used: CD45 (Biolegend, clone 30-F11, FITC),

CD3 (Biolegend, clone 145-2C11, Pacific Blue), CD4 (BD Biosciences, clone RM4-5,

BV605), CD8 (BD Biosciences, clone 53-6.7, BV786), NK1.1 (Biolegend, clone PK136,

APC), and Lag3 (Biolegend, clone C9B7W, PE).

Mouse liver and lung sample preparation

Upon harvest, mouse lung and liver samples were enzymatically dissociated using Lung

Dissociation Kit and Liver Dissociation Kit (Miltenyi) per manufacturer’s instructions.

Briefly, each of the organ was incubated in an enzymatic mix on gentleMACS™ Octo

Dissociator with Heaters (Miltenyi), an automated benchtop machine providing pro-

grammed cycles of slow and rapid mechanical dissociation at 37 °C. The homogenate is

filtered using 100 μm cell strainers into a new 50-ml conical tube and quenched using

complete RPMI media. Due to relatively high amounts of non-cellular debris in the

liver, the homogenates were further cleaned using a simplified gradient centrifugation

using percoll (GE Healthcare) 40% underlaid with 80%, allowing for exclusion of dead

cells, debris, or red blood cells. After a second wash with complete RPMI, pellets made

of single cells were obtained. Greater than ninety percent viability was confirmed using

Trypan Blue.

CyTOF staining and preprocessing

Approximately 1.5 million cells per sample were plated onto a 96-well plate and all

samples were rinsed with PBS with 2 mM EDTA after plating. Live/dead staining was

performed with 5-min incubation in cis-platinum solution (Fluidigm), subsequently

quenched with complete media. For multiplexing samples, a modified live cell barcod-

ing strategy was used [51], incorporating four different metals conjugated to CD45 anti-

bodies for utilizing 4-plex batching scheme (Supplementary Table 1). Each sample was

then stained with a unique barcode for 25 min at room temperature in cell staining

buffer (CSB, Fluidigm). Batched samples were then combined into a single tube and

washed. Multiplexed samples were then incubated in Fc block (BD Biosciences) for 10

min at room temperature. Surface staining was first done by incubating the tube in a

cocktail of surface marker antibodies for 30 min at room temperature. After two

washes, intracellular staining was performed using Foxp3 Transcription Factor Fix/

Perm kit (Thermo Fisher) per manufacturer’s protocol, fixing for 30 min followed by

staining for 30 min at room temperature. Upon completion of staining, cells were

stored in fresh 1% methanol-free formaldehyde in PBS (Thermo Scientific) until the

day of data collection. Just before data collection, all cells were labeled with Iridium

(Fluidigm) at 1:3000 in Maxpar Fix/Perm Buffer (Fluidigm) for 30 min at room
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temperature. All events were acquired on a CyTOF1 mass cytometer (Fluidigm). Mass

cytometry data were acquired at the University of Maryland School of Medicine Center

for Innovative Biomedical Resources (CIBR) Flow Cytometry and Mass Cytometry Core

Facility, Baltimore, Maryland. Randomization, bead normalization, and bead removal of

data collected were performed on CyTOF software (Fluidigm) v6.7. Using FlowJo (BD)

v10.5, single-cell events were identified by gating on a tight population based on cell

length and Iridium signal. Dead cells were then eliminated by manually gating out cells

positive for 194/196Pt on a biaxial plot. Debarcoding was carried out by manual gating

to select for events that are positive for each of the four CD45 metals assigned to the

sample and negative for the remaining three CD45 metals. Compensation of batch ef-

fects related to the live cell barcodes was performed via CATALYST software [52] by

first computing the spillover matrices unique to each individual barcode based on sin-

gly stained splenocyte samples and applying the compensation matrices onto the

samples.

Flow cytometry

Prepared single-cell suspensions were first blocked using Fc block for 10 min followed

by the addition of the following cocktail of antibodies for 30 min at room temperature:

CD45 (1:100), CD3 (1:100), CD4 (1:100), CD8 (1:100), NK1.1 (1:100), and Lag3 (1:100).

For fluorescence spillover compensation, single stain and negative stain controls were

used. Cells were washed and run on CytoFLEX (Beckman Coulter) for data acquisition.

Data analysis was performed using FlowJo (BD) v10.5.

Whole exome sequencing

Raw BCL files generated by the sequencer were converted to fastq files for each sample

using bcl2fastq v.2.19. Raw sequencing data are evaluated with FastQC, a tool for asses-

sing sequencing quality. Sequence reads were trimmed to remove possible adapter se-

quences and nucleotides with poor quality using Trimmomatic v.0.38. Cleaned reads

were then aligned to GRCm38 reference genome using Illumina Dragen Bio-IT Plat-

form. BAM files were generated as a result of this step.

RNAseq data acquisition and preprocessing

Five groups were prepared for RNAseq: (i) KPC-bearing liver, (ii) KPC-bearing lungs,

(iii) normal liver control, (iv) normal lung control, and (v) KPC cells from in vitro cul-

ture as control. Liver and lungs were first enzymatically dissociated into single-cell

samples as described above. To assess the non-immune component of the TME, KPC-

bearing samples were further enriched for tumor and non-immune cells by Tumor Iso-

lation Kit (Miltenyi) according to manufacturer’s instructions. Briefly, single-celled

samples were incubated with magnetic beads targeting a mixture of antigens including,

but not limited to, CD45, CD31, and Ter119, for 15 min on ice. Samples were then run

through LS columns (Miltenyi) placed on MACS Multistand (Miltenyi) to negatively se-

lect for unbound cells that pass through the magnetic field. Enriched samples were col-

lected into new tubes, washed, quantified, and pelleted. Greater than ninety percent

viability of cells was confirmed during quantification using Trypan Blue. Pellets were

then resuspended in RNA lysis buffer (Zymo Research) and stored at – 20 °C until the
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extraction step. Total RNA was extracted using Quick-RNA Microprep Kit (Zymore-

search, Cat# R1050) with in-column DNase I treatment. NEBNext Ultra II Directional

RNA Library Prep Kit for Illumina was used to generate libraries. Polyadenylated RNA

is first selected using oligo dT beads and fragmented. After cDNA synthesis, adapters

are ligated for PCR enrichment. Unique dual indexes were applied to different samples

for NovaSeq sequencing. The BioAnalyzer is used for quality control of the libraries to

ensure adequate concentration and appropriate fragment size. Libraries were uniquely

barcoded and pooled for sequencing. DNA sequencing was performed on an Illumina®

NovaSeq6000 instrument using standard protocols for 50 bp paired end sequencing.

Illumina reads were processed through Illumina’s Real-Time Analysis (RTA) software

generating base calls and corresponding base call quality scores. FASTQ files were gen-

erated with Illumina’s bcl2fastq2. Resulting data was aligned to a reference mouse gen-

ome M21 using the salmon software [53]. Values were normalized as reads per million

(RPM) and the resulting count data was log2 transformed.

TCGA data

Gene-level RNAseq datasets were downloaded from Genomic Data Commons harmo-

nized database using the TCGAbiolinks package [54]. All tumor and adjacent normal

samples from liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD),

and lung squamous cell carcinoma (LUSC) were obtained. As gene expression, we used

fragments per kilobase of transcript per million mapped reads upper quartile (FPKM-

UQ) that were log2-transformed for further analysis.

TCRseq analysis

TCR repertoire was assessed as previously described [55, 56]. Briefly, tissue scrolls from

FFPE normal liver, normal lung, KPC-bearing liver, and KPC-bearing lung samples

were sequenced using the immunoSeq assay (Adaptive Biotechnologies) at the survey

sequencing level.

Bioinformatics and statistical analysis

WES analysis

Sequences for both KPC and Panc02 cell lines were aligned using the GRCm38 mouse

reference genome (C57/Bl6 mouse model). Variant call files were generated using the

Illumina Dragen Bio-IT Platform in somatic mode and the Ensembl Variant Effect Pre-

dictor (VEP) v95 annotation tool was used to classify mutation type. Mutations in-

cluded passed all quality filters and were not identified by dsSNP ID. Additionally, 310

variants were found to be shared — as defined by the same chromosome, position, and

reference and alternate nucleotides — by both the KPC and Panc02 variant files and

were excluded from the analysis as these were interpreted to be related to the C57Bl6

background, perhaps arising from the differences between the GRCm38 reference and

the background of the two PDAC cell lines. Neoantigens were evaluated using the

pVACseq program in pVACtools (v.1.5.13) in the context of the C57Bl6 mouse HLA

type (class I, H-2-Kb and H-2-Db, and class II, I-Ab alleles). Class I and class II binding

predictions were performed using NetMHC (v4.0) and NetMHCIIpan, respectively.
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CyTOF analysis

A computational pipeline based on diffcyt [57] was employed using R v3.5. Briefly, for un-

supervised clustering, FlowSOM algorithm [58] was used to identify 30 metaclusters that

were then annotated into specific immune cell subtypes. Clustering was visualized using a

two-dimensional uniform manifold approximation and projection (UMAP) dimensionality

reduction algorithm [59]. Two thousand cells per sample were used for visualization.

edgeR [60] was used to compare differential abundances and limma [61] for mean marker

intensity comparisons. False discovery rate of 10% (adjusted p value < 0.1) were denoted

in figures. For flow cytometry data, two-tailed t tests were used to compare the means.

RNAseq analysis

Differential analyses of the expression profile in KPCs, KPC-bearing liver, and KPC-bearing

lung (lung vs. 2D, liver vs. 2D, lung vs. liver) were performed using the DESeq2 package [62]

based on negative binomial distribution. p values were FDR-adjusted with Benjamini-

Hochberg method and adjusted p values below 0.05 were used to perform pathway analyses

across all Kyoto Encyclopedia of Genes and Genomes (KEGG). Since RNAseq data repre-

sents samples without immune cells, the KEGG PD-L1 pathway, which contains two sets of

genes referring to either cancer cells or T cells, was modified to subset just the set of genes

related to cancer cells. PD-L2 was also added to this set of genes. To identify a set of genes

that may be related to LAG3-FGL1 signaling, the two genes were browsed in GeneMania

database [17] utilizing 39 co-localization, 3 physical interactions, 1 disease associations, 1

phenotype-MGI, and 1 conservation profile-phylogeny interaction networks for M. muscu-

lus. A total of 48 gene nodes were identified and used for LAG3-FGL1 pathway analysis.

TCGA analysis

MIXTURE algorithm [27] was used to deconvolve the bulk datasets into coefficients

that represent immune cell proportions and were compared using Tukey HSD. Differ-

ential gene expression analysis was performed using DESeq2 [62]. Gene set analysis was

performed using Wilcoxon Gene Set Test.

TCRseq analysis

Sample clonality was calculated based on the normalized Shannon Entropy as previ-

ously described [55, 56]. Results were compared using Wilcoxon-Mann-Whitney.
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