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Abstract

Background: Adult T cell acute lymphoblastic leukemia (T-ALL) is a rare disease that
affects less than 10 individuals in one million. It has been less studied than its
cognate pediatric malignancy, which is more prevalent. A higher percentage of the
adult patients relapse, compared to children. It is thus essential to study the
mechanisms of relapse of adult T-ALL cases.

Results: We profile whole-genome somatic mutations of 19 primary T-ALLs from
adult patients and the corresponding relapse malignancies and analyze their
evolution upon treatment in comparison with 238 pediatric and young adult ALL
cases. We compare the mutational processes and driver mutations active in primary
and relapse adult T-ALLs with those of pediatric patients. A precise estimation of
clock-like mutations in leukemic cells shows that the emergence of the relapse clone
occurs several months before the diagnosis of the primary T-ALL. Specifically,
through the doubling time of the leukemic population, we find that in at least 14
out of the 19 patients, the population of relapse leukemia present at the moment of
diagnosis comprises more than one but fewer than 108 blasts. Using simulations, we
show that in all patients the relapse appears to be driven by genetic mutations.

Conclusions: The early appearance of a population of leukemic cells with genetic
mechanisms of resistance across adult T-ALL cases constitutes a challenge for
treatment. Improving early detection of the malignancy is thus key to prevent its
relapse.

Keywords: T-ALL, Adult acute lymphoblastic leukemia, T-ALL evolution under
therapy, Evolution of leukemia relapse, ALL relapse

Background
Acute lymphoblastic leukemia (ALL) affects 3 children in 100,000 in the UK [1]. In the

past 5 decades, intense research on this disease has succeeded in reducing the mortal-

ity of ALL-affected children by 82% [2]. Recently, with the development of cancer gen-

omics, researchers have unraveled the most frequent somatic genetic alterations

underlying its development [3–14], and molecular subtypes, as well as their clinical
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relevance [15–22]. Genetic alterations that elicit some relapse events have also been un-

covered, and the potential role of therapy in the development of such relapse cases has

been explored [23–31].

ALL is less prevalent in adults (0.7 patients in 100,000 people [1]). Not only are there

differences in incidence among age groups, but also relapses after treatment appear

more frequently in adults (40–75% vs 15–20% among pediatric patients) [31]. Very few

studies have been dedicated to understanding the genomic roots of the emergence of

adult ALL, and in particular, of T cell ALL (T-ALL) [32–36]. There is a larger gap in

the study of the evolution of this malignancy under therapy and its relapse after treat-

ment. Therefore, important questions regarding the genomic evolution of adult T-ALL

remain unanswered. It is not entirely clear, for example, whether the same mutational

processes are involved in the onset of pediatric and adult T-ALL cases, and if the che-

motherapeutic drugs employed in the treatment leave a mutational footprint in relapse

cells, as it has been shown for pediatric cases [37]. Furthermore, while some genetic

mechanisms of resistance to treatment have been identified in pediatric ALL [26, 27], it

is not known whether these also contribute to resistance of the adult malignancy.

To explore the evolution of adult T-ALL under treatment and address these specific

questions, we profiled the whole-genome somatic mutations of 19 T-ALLs from adult

patients who relapsed after treatment (in-house cohort; Additional file 1: Table S1).

Samples were taken at the time of diagnosis (primary) and at recurrence of the malig-

nancy after treatment (relapse). We then analyzed the genomic evolution of these adult

T-ALL cases in comparison with 238 pediatric and young adult ALL cases (71 with pri-

mary and relapse samples) available in the public domain (Table 1). Known or potential

resistance mutations appear in 6 patients of the cohort. Nevertheless, our results show

that in the 19 cases the relapse is driven by genetic mutations, and that resistant cells

appear in the population of blasts several months before the diagnosis of the primary.

Results
The genomics of primary adult T-ALL

Previous studies on the genomic basis of pediatric ALL have identified somatic mutations

across cohorts of patients suffering from this disease [5–8, 10, 12, 13, 28–30, 38–41]. There-

fore, we first aimed to compare the landscape of somatic alterations observed across pri-

mary adult T-ALL with that across eight other cohorts of T- and B-ALL patients of varying

age, ranging from infancy to young adulthood, which we analyzed with a unified mutation

calling approach (Table 1; Additional file 1: Tables S1 and S2). Among cancer types, ALL

presents a relatively low somatic mutation burden [42, 43]. Nevertheless, the burden of

somatic point mutations of adult ALL cases tends to be higher than that of cases of most of

the subtypes of the pediatric malignancy, as has been previously observed [44] (Fig. 1a).

Mutations in human somatic cells are contributed to by different molecular mecha-

nisms involving the interaction of endogenous (for instance, spontaneous cytosine de-

amination or oxidative damage) and external DNA damaging agents (such as UV-light,

tobacco carcinogens, or chemotherapies) with the DNA repair machinery [42, 45–47].

The study of these mutational processes in tumors reveals the lifetime exposures of pa-

tients to potential carcinogenic agents and consequently contributes to shedding light

on the etiology of malignancies. Thus, we first asked whether the somatic mutations
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observed across nine cohorts of pediatric and adult ALL (Table 1) are contributed by

similar or different mutational processes. No clear differences are observed between the

mutational profiles of B-ALL and T-ALL (Fig. 1b, top). However, the mutational pro-

files of pediatric and adult malignancies exhibit discernible, albeit slight differences

(Fig. 1b, bottom). The same mutational processes appear to be active across pediatric

and adult T-ALL and in pediatric B-ALL (Fig. 1c; Additional file 2: Fig. S1). In particu-

lar, mutational signature 5 (SBS5), which in blood has been demonstrated to behave in

a clock-like manner [48], and has been associated with the process of hematopoietic

cell divisions [49, 50], appears as one of the main contributors of mutations in the evo-

lution of both pediatric and adult ALL.

We next asked whether the driver alterations observed across primary adult T-ALL in

the in-house cohort are different from those observed across pediatric B/T-ALL (see the

Table 1 Summary of ALL cohorts analyzed

ALL subtype cohort
name

Subtype cohort information Source^ Sequencing Type Num.
patients

DUX4-ERG Rearrangement and overexpression of
DUX4 and transcriptional deregulation
or deletion of the transcription factor
gene ERG

St. Jude WGS B-ALL 30

Infant MLL-R Infant patients with a fusion of the
N-terminus of the MLL gene with
the C-terminus of a partner gene

St. Jude WGS B-ALL 21

Ph positive Patients with the “Philadelphia”
chromosome present a translocation
of chromosomes 9 and 22. This
translocation creates the BCR-ABL
fusion

St. Jude WGS B-ALL 11

Ph-like Cell gene expression profile of the
lymphoblasts of Ph-like ALL is similar
to that of Ph positive ALL; however,
they do not present BCR-ABL1
rearrangement

St. Jude WGS B-ALL 18

Hyperdiploid Hyperdiploid patients are
characterized by multiple
chromosomal gains

St. Jude WGS B-ALL 40

Hypodiploid Hypodiploid patients are
characterized by chromosomal
losses

St. Jude WGS B-ALL 22

iAMP21 Patients with intrachromosomal
amplification of chromosome 21

St. Jude WGS B-ALL 12

T-ALL
Zhang

Patients with T cell ALL from
Zhang et al. [5] Nat Gen

St. Jude WGS T-ALL 13

T-ALL
Oshima

Patients with T cell ALL from
Oshima et al. [30] PNAS

Columbia
University

WXS T-ALL 31*

B-ALL
Oshima

Patients with B cell ALL from
Oshima et al. [30] PNAS (B cell
lineage subtype unspecified)

Columbia
University

WXS B-ALL 24*

T-ALL
Li#

Patients with T cell ALL from
Li et al. [37] Blood

St. Jude WGS T-ALL 16*

T-ALL
in-house

In-house cohort In-house WGS T-ALL 19*

WGS whole-genome sequencing, WXS whole-exome sequencing
*Cohorts with primary and relapsed paired samples
#Mutations called by the authors of the original analysis; in all other cohorts, a uniform mutation calling pipeline was applied
^Source: St. Jude cohorts were defined according to their ALL subtype in different publications (see the “Methods”
section) except for the T-ALL pediatric cohort from Li et al. [37]
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“Methods” section; Fig. 1d; Additional file 2: Fig. S2; Additional file 1: Tables S3 and S4).

Mutations in some known ALL driver genes, such as NOTCH1 and FBXW7 (the E3-ligase

charged with its recognition for ubiquitination [51]), are overrepresented among both

pediatric and adult T-ALL in comparison with B-ALLs (χ2 p = 1.05 × 10−16 and χ2 p =

8.37 × 10−9, respectively). Similar overrepresentation of mutations in T-ALLs was found in

JAK3 (χ2 p = 0.004). In contrast, RAS activating mutations do not appear to be differently

represented in both ALL types (χ2 p = 0.05 and χ2 p = 0.634 for KRAS and NRAS).

Genomic alterations driving primary and relapse adult T-ALL

With the goal to study the evolution of adult T-ALL, the 19 patients in the in-house

cohort were selected specifically because they relapsed several months after treatment

(Fig. 2a; Additional file 2: Fig. S3; Additional file 1: Table S1). Seventeen of them

Fig. 1 Comparison of primary adult and pediatric ALL cases. a Clonal mutation burden (per megabase) of
primary T-ALLs of nine cohorts. Red lines represent the median mutation burden of tumors in each cohorts.
Tumors are represented as dots, sorted along the x-axis according to their mutation burden. b Mutational
profiles of primary ALLs in the nine cohorts in a uniform manifold approximation and projection (UMAP)
dimensionality reduction graph (see the “Methods” section). The UMAP was run on a matrix of the counts of all
possible tri-nucleotide changes (96) across ALL patients of all cohorts. Each dot represents a patient, colored
according to the cohort (top panel) or their age (bottom panel). c Mutational processes active across primary
ALL cohorts, represented by their mean (and standard deviation) contribution of the mutation burden of each
cohort. SBS1, SBS5, SBS2, SBS9, SBS37, SBS13, SBS36, respectively, single nucleotide substitutions signatures
1,5,2,9,37,13,36. d Rate of mutations of selected frequently mutated cancer genes across primary T-ALL cohorts.
Cohorts are clustered according to the similarity in their profile of cancer genes mutation frequency (see the
“Methods” section). The total number of patients in each cohort with mutations of each cancer gene is
represented by bars at the right side of the graph. Only genes with mutations in at least two patients are
included in the plot (for the full list see Additional file 2: Fig. S2 and Additional file 1: Tables S3 and S4)
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received the same treatment protocol (ALL-HR-11 [NCT01540812]), while the

remaining two were administered very similar protocols (LAL-07OLD and ALL-HR-

2003 [NCT00853008]). To uncover the genomic similarities and differences between

adult and pediatric T-ALL cases at relapse, we next compared the in-house cohort with

31 relapsed cases from the T-ALL Oshima and T-ALL SJ cohorts (Table 1; Additional

file 1: Tables S3 and S4). A list of potential driver events across the 19 patients in the

cohort is presented in Additional file 1: Tables S5 and S6.

Many NOTCH1 and FBXW7 mutations observed in the primary leukemias were also

present in the relapse samples (Fig. 2b; Additional file 2: Fig. S4). Intriguingly, mutations af-

fecting USP7, a known deubiquitinase of NOTCH1, were detected in 3 adult and 3 pediatric

patients, raising the possibility of yet another form of alteration of the NOTCH pathway in

leukemogenesis [52–54]. Overall, NOTCH1-affecting mutations in adults are distributed

along the protein-coding sequence in a very similar manner as those observed in pediatric

patients (Fig. 2c). Nine patients in the cohort present multiple mutations of NOTCH1 that

affect different protein domains (mostly HD and PEST), in agreement with previous reports

[55]. Interestingly, in 6 patients, different NOTCH1/FBXW7 mutations were detected in

the primary and relapse samples (Fig. 2d). These constitute examples of convergent evolu-

tion of mutations affecting the NOTCH1 pathway, also observed in eight pediatric patients

in the cohorts analyzed. This suggests that NOTCH1 mutations tend to appear late [56]

and recurrently (i.e., in several cells) during T-ALL development.

DNMT3A-affecting mutations, known to drive acute myeloid leukemias (AML), were ob-

served in three adult patients in the in-house cohort and none of the pediatric T-ALLs. In fact,

these three patients are classified as Early T-Cell Precursor (ETP), a T-ALL subtype that pre-

sents myeloid markers [33]. Similarly, PAT5 and PAT9, patients with mutations of ROBO2—

a gene associated with progression of myelodysplastic syndrome [57] to AML and recently re-

ported as mutated in pediatric ALL [58]—present the ETP phenotype. Clonal mutations of

PHF6 are overrepresented (χ2 p = 0.001) in adult T-ALLs with respect to their pediatric coun-

terparts, shared between primary and relapse samples. PHF6 is a zinc-finger transcription fac-

tor that suppresses ribosomal RNA (rRNA) transcription [32]. Loss-of-function mutations of

this gene have been shown to decrease sensitivity to glucocorticoids [59], which are part of

the standard first-line treatment of adult T-ALL patients. Interestingly, activating mutations of

the NT5C2 gene, known to elicit resistance to mercaptopurine anti-ALL treatment in

pediatric cases [26, 27], are also observed across 3 adult cases exposed to this drug (Fig. 2a),

with PAT16 bearing two mutations of NT5C2 (R238G, R367Q, see Additional file 1: Table

S5). In the relapse samples of two patients of the in-house cohort, we observed amplifications

of ABCB1, an ATP-dependent membrane transporter known to mediate multidrug resistance

in tumors [60, 61] (Additional file 2: Fig. S5). Finally, SMARCA4 mutations and deletions

were also detected across adult (2) and pediatric T-ALLs, but almost exclusively in relapse

malignancies, suggesting a potential role in resistance to treatment.

In summary, in 6 of the 19 adult patients of the in-house cohort, we were able to

identify a candidate treatment-resistance mutation.

The evolution of relapse adult T-ALL measured through mutations

We next asked how much do the mutational processes active in primary T-ALLs also

contribute to the overall burden of mutations of relapse adult T-ALLs. The
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Fig. 2 Comparison of different age groups in T cell acute lymphoblastic leukemia. a Schematic representation of
the clinical course of all patients in the in-house T-ALL cohort. Colored boxes (following the legend) at the bottom
depict common stages in this clinical course. The broken lines represent specific trajectories followed by groups of
patients, with the numbers in each trajectory. b Summary of driver mutations (single nucleotide variants, indels,
copy number variants and translocations) identified in the primary and/or relapse T-ALLs of adult and pediatric
patients. The original cohorts and age bins of the patients included in the table are indicated above it. The sample
where the mutation is identified (primary, relapse, or both) is indicated by color semicircles and circles at each cell
of the table. The total number of patients affected by mutations of each gene is indicated by the bars at the right-
side of the graph. The table contains the genes that are altered in at least two patients of the adult cohort (for full
table see Additional file 2: Fig. S4 and Additional file 1: Table S5). c Protein affecting mutations identified in
NOTCH1 gene within adult (above graph) and pediatric (below graph) T-ALLs. Multiple mutations in different
samples of a patient in the in-house are represented as dashed colored lines that connect the mutated
positions. (No line connects mutations in patients of pediatric cohorts, even if multiple mutations affecting NOTC1
in a patient were observed.) d Clonality change in multi-mutated NOTCH1 pathway genes. Blue and orange
squares depict, respectively, primary and relapse T-ALL samples of each patient. Lines connecting them represent
shared (connecting lines) or private (lines ending in a cross) NOTCH1 or FBXW7 mutations. In 5 out of 19 patients,
only one mutation in this pathway is identified, while in the other 11, multiple mutations are detected. We did not
detect any mutation affecting this pathway in only 3 of the 19 patients
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incorporation of new mutational processes, like the exposure to chemotherapies used

in their treatment, could leave a mutational footprint that may be detectable in the re-

lapse clone, as recently demonstrated in metastases of different solid tumors, and in re-

lapsed pediatric ALL cases [37, 46].

The deconstruction of mutational signatures (representing mutational processes ac-

tive during a person’s life) of primary and relapse samples of each patient reveals very

similar scenarios for primary-private, shared, and relapse-private mutations (Fig. 3a).

Signature 5 (SBS5), which represents a mutational process associated with

hematopoietic cell division [46], contributes the vast majority (~ 80%) of mutations in

these three groups. We did not detect the mutational footprint of mercaptopurine or

any other chemotherapy in the relapse samples (Additional file 2: Fig. S6). This does

not preclude that chemotherapy-related mutations exist below the level of detection of

the sequencing technology, for example if the evolutionary bottleneck caused by the

treatment has not sufficiently reduced the T-ALL population.

Since signature 5 has been described as a clock-like process [48] and this type of mu-

tations are the main contribution to the burden of clonal mutations of both primary

and relapse T-ALLs, we used them to infer a molecular time of divergence between the

primary and relapse populations (Fig. 3b, Additional file 2: Fig. S7). To this end, we

counted the number of primary-private, shared, and relapse-private signature 5 clonal

mutations (Fig. 3b). In all cases, the branch that corresponds to relapse-private muta-

tions is longer than that representing primary-private mutations, because the relapse

clone has continued accumulating mutations longer after its divergence from the pri-

mary (eliminated as a consequence of the treatment). As expected, fewer relapse-

private mutations accumulate in the cases with shorter time elapsed between the diag-

nosis of the primary and the emergence of relapse.

Time of divergence of primary and relapse clones

The number of primary-private, shared, and relapse-private signature 5 clonal muta-

tions can also be used to estimate the precise time of the divergence of the primary and

relapse clonal populations. To that end, we first needed to understand the rate of accu-

mulation of signature 5 mutations during T-ALL development. The DNA of normal

hematopoietic cells has been shown to incorporate signature 5 mutations at a rate of

roughly 12 per year (Fig. 4a; Additional file 2: Fig. S7 [49]). Regressing the number of

signature 5 mutations across primary and relapse T-ALLs on the age of patients in the

in-house cohort in comparison with healthy hematopoietic stem cells (HSCs) yields

slightly higher mutation rates and an unanticipated high (~ 400) number of mutations

at the start of life of hematopoietic cells (intercept of trendline in Fig. 4a). This devi-

ation could be explained through an acceleration in the mutation rate that occurs upon

malignization of hematopoietic cells [62].

To compute the moment of time before diagnosis when this acceleration started, as

well as the value of the accelerated mutation rate, we assumed that the acceleration rate

is the same for the primary and relapse malignancies of a patient. We then simulated a

one-time increase of the mutation rate (constant rate model) during tumor evolution

and alternatively a steady increase (linear rate model) in the mutation rate for succes-

sive cell generations (Additional file 2: Fig. S8). For each patient, we assayed several
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trendlines of accelerated mutation rate (i.e., starting at different timepoints before diag-

nosis; dotted lines in Fig. 4b) approximating the observed number of signature 5 clonal

mutations in the primary and relapse T-ALL clones. We computed the likelihood of

each of these trends of acceleration following their accuracy to fit the observed number

of mutations in the primary and relapse malignancies (Fig. 4b and Additional file 2: Fig.

S8). For each trendline of accelerated mutation rate, the age of the patient at which the

divergence of the two clones occurred can be computed from the number of shared

mutations. The difference between this age and the age at diagnosis then yields the

time elapsed between this divergence and the diagnosis of the primary T-ALL.

Upon application of this approach to each patient in the in-house cohort, we ob-

tained a number of estimates of the number of days elapsed between the divergence of

both clones and the diagnosis of the primary T-ALL, each with varying likelihood

(green circles, Fig. 4c). The estimates for each patient may be summarized as their

weighted (by likelihood) averages (broken lines). The time estimated for each patient

was subsequently refined using the distribution of all patients (see the “Methods” sec-

tion). As a result, we obtained a robust prediction of the boundaries of the most likely

time elapsed between the divergence of primary and relapse clones and the diagnosis of

the primary malignancy. In the majority of cases shown in the figure (13 out of 15) less

than a year passed between the emergence of the relapse clone and the diagnosis of the

primary disease (Additional file 1: Table S7).

The evolution of relapse of adult T-ALLs

Both the primary and resistant populations of T blasts across the adult in-house T-ALL

cohort are composed of a major clone and one or more subclones detectable through

Fig. 3 Shared and private mutations in major primary and relapse T-ALL clones. a Contribution of different
mutational processes to the mutation burden of each T-ALL case in the adult cohort. The contribution to
primary-private, relapse-private, and shared clonal mutations are indicated separately in absolute (top panel)
and relative (bottom panel) terms. b Molecular evolution of adult T-ALL cases represented in a tree-form
showing the number of shared clonal mutations (green trunk), clonal private-primary (blue branch) and
clonal private-relapse (orange branch) mutations. Only signature 5 mutations are considered to build the
tree (for further explanation see Additional file 2: Fig. S7). The relative length of the trunk and branches is
proportional to the number of mutations in the respective group. Patients are sorted by decreasing order
of age
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sequencing (see Additional file 3). In all the patients, including four that are refractory

to treatment, the major clone in the primary and relapse leukemias differ, implying that

in every case, the treatment obliterates the major clone in the primary malignancy.

To understand the effect of the therapy on the clonal architecture of adult T-ALLs,

we first estimated the speed of growth of the population of T-ALL cells to determine

the minimum size of the relapse population at the time of diagnosis. This growth speed

may be characterized through the doubling time of the population (the time needed by

a population of cells to duplicate its number). This can be computed from the number

of blasts estimated by the pathologist at remission and relapse, and the amount of time

elapsed between both events [37] (Additional file 2: Fig. S9a; see the “Methods” sec-

tion). We computed a doubling time for the T-ALL leukemic population of 10.79 days

(confidence intervals, 10.1–11.36), which is slightly longer than that recently estimated

for pediatric B-ALL [37] (Additional file 2: Fig. S9b). We were then able to compute,

Fig. 4 Time of divergence between major primary and relapse T-ALL clones. a Relationship between the
mutation rate of ALL samples and the age of patients. The red line shows the regression line estimated
from the data points which are the number of mutations attributed to signature 5 (red dots are primary
sample and red crosses represent the relapse) of the in-house adult T-ALL cohort. In pink, the regression
line estimate for the pediatric primary samples (here represented as pink dots). The gray cross and triangle
correspond to the signature 5 somatic mutations from healthy tissue (MPP and HSC cells) of Osorio et al.
[49]. Pearson correlation coefficient (r) is indicated above each of the previously mentioned regression lines.
b Schematic representation of the different mutation rate increment models to estimate the divergence
time of the leukemic (primary and relapse) cells. c Divergence time of the primary and relapse clone
represented as days before diagnosis. The dots are the estimates computed from the models used and the
size of the dots represents their likelihood (see Additional file 2: Fig. S8). The dashed line is the weighted
mean of the likely model estimates (see Additional file 1: Table S7)
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with this doubling time, the minimum time necessary for the relapse population to

achieve approximately 7 × 1011 cells that corresponds to a full grown leukemia [37, 63].

This minimum time to expand from a single cell upon its divergence from the primary

population informs us of the likelihood that the relapse clone has arisen before the

diagnosis of the primary.

In three cases (PAT7, PAT11, PAT12), it is possible that the relapse clone appeared

during treatment, given the estimated doubling time. In two more (PAT9 and PAT10),

it is not completely clear whether there was enough time between the start of treatment

and relapse to allow the emergence of a new clone. In all other cases, the relapse clone

was most likely already present at the time of diagnosis and represented by more than

one cell (Fig. 5a). Indeed, for fourteen patients in the cohort, the size of the relapse

clone at the time of diagnosis of the primary malignancy probably comprises more than

100 out of the 7 × 1011 leukemia cells. (Note that this calculation is independent from

the time elapsed between divergence of the primary and relapse clones and the diagno-

sis computed previously.) PAT2, PAT4, PAT5, and PAT17, with more than 0.01% min-

imal residual disease during treatment, show estimates of the relapse clone at the time

of diagnosis which are, as expected, above 1 in 10,000 blasts. We then asked whether

the relapse clone could be detected in the primary sample of ALL cases by a method

with a lower limit of detection than Next Generation Sequencing technologies. Thus,

we aimed to detect two non-synonymous SMARCA4 mutations (G1162S and T786I)

that are private of the relapse sample of two patients in the corresponding primary

samples of these patients (PAT8 and PAT14). With a limit of detection of around one

in 1000 cells, a digital PCR was unable to detect this mutation in the primary sample of

either patient (Fig. 5a and Additional file 2: Fig. S10a,b). The fraction of cells of the re-

lapse clone estimated to be in the primary sample of these two patients is below this

limit of detection. These results thus provide further support to the estimation of the

doubling time and the size of the relapse clone in the primary samples derived from it.

Although we were able to pinpoint known or putative resistance mutations in several

cases, we asked whether other cases of relapse could be explained by a failure of the

treatment to kill a subset of the leukemic cells independent of any genetic mechanism

[28, 58]. To answer this question, we modeled the emergence of the relapse clone fol-

lowing both a resistant and a non-resistant (not driven by a genetic mutation) scenario

(Fig. 5b). First, a population of tumor cells with driver and passenger mutations was

simulated. Then, to model the first scenario, a group of cells sharing one passenger

subclonal mutation (the resistance mutation) were selected as survivors of the treat-

ment and were expanded again for 20, 40, or 60 generations (40 generations corres-

pond roughly to the observed times elapsed between primary and relapse diagnoses for

the cohort; Additional file 2: Fig. S11). To simulate the second scenario, a group of cells

with the same size as in the first case (but selected randomly and sharing no particular

subclonal mutation) was selected and expanded for the same number of generations.

We then compared the change in clonal composition—change of cancer cell fraction

(CCF) of mutations in primary and relapse—obtained for both simulated scenarios with

the distribution of CCF in the primary samples of mutations fixed in the relapse sam-

ples for all patients, represented in Fig. 5c. For example, of all mutations fixed in the re-

lapse ALL of PAT8 (dashed brown line), approximately 59% were present at CCF 0–

0.1% in the primary. In other words, in the primary sample, they appeared below the
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Fig. 5 (See legend on next page.)
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limit of detection of the sequencing and thus correspond to the red star mutations in

the toy diagrams in Fig. 5b. On the other hand, 30% of the PAT8 fixed mutations were

detected in the primary ALL at CCF between 0.9 and 1, with the remaining mutations

at intermediate CCF bins. All patients in the cohort yield similar bimodal distributions.

Only in the results of the simulation of the resistant scenario do we observe a distri-

bution of CCF of the mutations in the primary sample that resembles that of the pa-

tients in the in-house cohort (Additional file 2: Fig. S10). By contrast, in the results of

the simulations of the non-resistant scenario, no mutations undetectable in the primary

leukemia (CCF in the 0–0.1 decile) become fixed in the relapse (Fig. 5d). This holds if

the simulations are run between 20 and 60 generations, and even if a much higher (un-

realistic) fitness is assigned to driver mutations. These results suggest that the non-

resistant scenario of evolution under treatment is not feasible given the time elapsed

between primary and relapse.

In summary, in 14 cases in the cohort, the relapse population is most likely already

present before the start of the treatment. Moreover, all relapse cases fit the model of

genetic resistance—due to one genetic event common to all cells in this relapse popula-

tion—although we are only able to identify the responsible mutation in a few of them.

Discussion
Advancing our knowledge on how tumors respond to therapies and which of their fea-

tures determine their relapse after treatment is key to improving clinical oncology prac-

tice. Here, we studied the genomic features and the clonal composition of nineteen

adult T-ALL cases at diagnosis and after relapse to understand their evolution and

identify commonalities that may predict their likelihood to respond to current thera-

peutic approaches.

Our results suggest that for most adult T-ALL patients, the population of leukemia

cells that dominates the relapse is already present at the moment of diagnosis, that is

before the start of the treatment, and comprises more than one but fewer than 108

(See figure on previous page.)
Fig. 5 Evolution of relapse lymphoblast population. a Estimated size (number of cells) of the relapse
population at the time of diagnosis according to the computed doubling time. Error bars represent the
estimates of cell populations from the first and third quartile of the doubling time estimates, which are 10.1
and 11.36 respectively (see Additional file 2: Fig. S9). Horizontal dotted lines represent sizes corresponding
to one cell and 108 cells (0.01% of the population: the threshold of clinical relapse). Asterisks denote
patients with estimates above the threshold of 0.01. The resolution limit of the dPCR is also represented by
a horizontal line (~ 1:10,000). b Schematic representation of the two considered scenarios of relapse of T-
ALL patients after treatment. Mutations in T-ALL cells are represented as different geometric figures. In the
first scenario (resistant), one mutation in the primary T-ALL below the limit of detection of the sequencing
and the digital PCR (red star) provides resistance to the treatment. All cells with this mutation survive the
bottleneck posed by the treatment, and thus, this mutation and all other common to the resistant cells
(hitchhikers) appear in the relapse population at CCF 1. In the second scenario (non-resistant), a group of
cells with an ensemble of mutations survive the treatment. c Distribution (frequency) of CCF values of
mutations in primary T-ALLs in the in-house cohort that are identified in their relapse counterparts as fixed
(> 0.9 relapse CCF). Mutations are grouped within CCF bins. Each line represents one patient, for example,
the dash brown line corresponds to PAT8, discussed in the text. d Distribution (frequency) of CCF values of
mutations in synthetic primary T-ALL populations in evolutionary simulations following the non-resistant
scenario. The dots represent mutations binned at different CCF values with the frequency that each bin
represents with respect to all mutations in each synthetic relapse population. The average results of six
simulation settings with different values of fitness of driver mutations and number of cell generations
are presented
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blasts. One evidence that supports this notion comes from the fact that, in most cases,

the span of time between the diagnosis and the emergence of relapse is not enough

(given the doubling time estimated from the cohort) to explain the repopulation of a

full leukemic population starting from a single cell. This contrasts with the results re-

ported recently for a pediatric cohort, in which some relapse cases could be explained

by resistance mutations appearing during treatment [37]. This finding is relevant for

the clinical practice, since early identification of such potential resistance populations

in a patient’s leukemia may support making clinical decisions regarding their

treatment.

We were not able to detect the mutational footprint of chemotherapies employed in

the treatment of patients of this cohort, such as mercaptopurine, which has already

been characterized in pediatric T-ALL cases [37]. This does not preclude that these

chemotherapies indeed cause mutations in leukemic cells that progress in the relapse.

Since upon treatment chemotherapy mutations will be private to each blast, if the re-

lapse clone does not emerge from a complete clonal expansion after the start of the

treatment, the variant allele frequency of these treatment mutations will not rise above

the limit of detection of the sequencing. The detection in the relapse T-ALL population

[37] of these treatment mutations would require that only one or few blasts survived

the treatment, guaranteeing that sufficient numbers of cells in the relapse carried the

same mutations to make them detectable through sequencing. The absence of treat-

ment footprints in the relapse is therefore another evidence that the relapse population

at the time of treatment already contains a large number of cells.

One intriguing result is the detection of multiple mutations affecting the NOTCH

pathway in the same T-ALL case, which do not appear to be exceptions, but rather the

rule. It is possible that mutations affecting different domains of NOTCH1 increase the

fitness of leukemic cells more than a single mutation and provide an advantage for re-

lapse. Further studies comparing the pattern of NOTCH1 mutations in relapsing and

non-relapsing T-ALLs are needed to clarify this.

Conclusions
All results show that, in the T-ALL patients of this cohort, the relapse is driven by gen-

etic mutations that appear in the population of blasts several months before diagnosis,

giving rise to a resistant subclone of up to several million cells at the beginning of treat-

ment. Upon treatment thus, this subclone comes to dominate the T-ALL population at

relapse.

Methods
In-house cohort selection and samples collection

Samples from adults (≥ 18 years old) with T cell acute lymphoblastic leukemia were col-

lected in the course of 15 years under therapy protocols (LAL-07OLD, ALL-HR-03,

LAL-AR-2011) as part of the PETHEMA (Programa Español de Tratamientos en

Hematología) trials (with the exception of patient 16). Patients have signed the corre-

sponding consents of the protocols. Cohort clinical data is specified in Additional file 2:

Fig. S3 and Additional file 1: Table S1. There are three collected samples per patient:

one taken at diagnosis (primary), a second one when the percentage of lymphoblasts is
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reduced during treatment (remission), and a final sample when the leukemia reappears

after some months (relapse).

Whole genome sequencing

The short-insert paired-end libraries for the whole genome sequencing were prepared

with KAPA HyperPrep kit (Roche Kapa Biosystems) with some modifications. In short,

in function of available material 0.1 to 1.0 microgram of genomic DNA was sheared on

a Covaris™ LE220-Plus (Covaris). The fragmented DNA was further size-selected for

the fragment size of 220–550 bp with Agencourt AMPure XP beads (Agencourt, Beck-

man Coulter). The size selected genomic DNA fragments were end-repaired, adeny-

lated, and ligated to Illumina platform compatible adaptors with Unique Dual matched

indexes or Unique Dual indexes with unique molecular identifiers (Integrated DNA

Technologies). The libraries were quality controlled on an Agilent 2100 Bioanalyzer

with the DNA 7500 assay for size and the concentration was estimated using quantita-

tive PCR with the KAPA Library Quantification Kit Illumina® Platforms (Roche Kapa

Biosystems). To obtain sufficient amount of libraries for sequencing, it was necessary

for the low input libraries (0.1–0.2 μg) to amplify the ligation product with 5 PCR cy-

cles using 2x KAPA-HiFi HS Ready Mix and 10X KAPA primer mix (Roche Kapa

Biosystems).

The libraries were sequenced on HiSeq 4000 or NovaSeq 6000 (Illumina) with a

paired-end read length of 2 × 151 bp. Image analysis, base calling, and quality scoring

of the run were processed using the manufacturer’s software Real Time Analysis (HiSeq

4000 RTA 2.7.7 or NovaSeq 6000 RTA 3.3.3).

Analysis of ALL cohorts in the public domain

We downloaded public whole-genome and whole-exome sequencing data from EGA

and dbGap. We included samples from St. Jude Children’s Research Hospital associated

with EGAD00001001052 and EGAD00001001432 EGA accession codes. We have used

only samples of which we could recover clinical information from the associated publi-

cations [5, 8, 10, 38, 39]. We downloaded the DNA sequencing data of Oshima et al.,

2016 [30] from dbGap under the accession code phs001072.v1.p1. The information of

the cohorts with the clinical information gathered for each sample is summarized in

Additional file 1: Table S2.

For some of the samples, we could not find information regarding the sex of the pa-

tient. In those cases we inferred it from the normal sample BAM of each patient. For

that, we applied the following reasoning: (1) we determined that the patient is a female

if the average coverage of chromosome X is greater than the minimum average cover-

ages of the autosomal chromosomes and (2) the mean coverage of chromosome Y is 10

times smaller than the average coverage of the autosomal chromosomes of the sample.

All the samples in Additional file 1: Table S2 have been analyzed with the same pipe-

line (for detailed information see the following section: “Alignment and variant call-

ing”). However, in order to compare the T-ALL Adult cohort with other T-ALL

cohorts with pre- and post-treatment samples, we added the mutations reported in the

supplementary materials in Li et al. [37] only in Fig. 2a and b.
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Alignment and variant calling

Alignment, SNV, small InDels

We performed the alignment and calling of mutations (SNVs and small InDels) using

Sarek pipeline v2.2.1 [64]. This workflow performs the alignment from raw FASTQ ap-

plying the steps referred to as “best practices” according to GATK. We converted the

downloaded BAMs from public repositories to FASTQ with biobambam v2.0.72 and

used them as input for the pipeline. We used the Strelka caller implemented in Sarek

to generate mutation calls. Only the T-ALL adult cohort was aligned with GEM-

mapper v3.6 by the CNAG but the calls were done with Strelka. The mutation calls

were performed using primary and relapse as tumor samples and the remission as “nor-

mal” sample. Variants have been annotated with VEP v.92 run locally with the canon-

ical flag and using gnomAD r2.0.1 to get population frequencies of the potential

polymorphisms.

CNV

We have used FACETS v0.5.6 [65] to call copy number changes in WGS and WES

samples. Following FACETS documentation, we first created its input with snp-pileup

which imputed common SNPs and made the reference and alternative read counts at

nucleotide resolution. We have run snp-pileup with the recommended parameters ex-

cept for the --min-read-counts that was set to 10,0. We run FACETS for WES as men-

tioned in the documentation but setting preProcSample function parameters to cval =

15, ndepth = 5, snp.nbhd = 500 and procSample function parameters to cval = 80, min.-

nhet = 20. Similarly, we run FACETS for the WGS data as preProcSample (snp.nbhd =

5000, ndepth = 5, cval = 75) and procSample (cval = 800, min.nhet = 25).

SV

We ran Delly v0.7.9 [66] to detect duplications, inversions, and translocations. First we

ran the call function and then the filter function of Delly for each one of the alterations

mentioned. The map-quality parameter of the call function was set to 20 and we also

passed a file provided in the github of Delly with regions to exclude through the --ex-

clude argument. The filter function was run with the following parameters: --filter som-

atic --minsize 0 (expect for duplications which was set to 100) --qual-tra 0.75 --altaf

0.1.

Filtering steps

SNVs and InDels

From the VCF output from Strelka, we retained the calls labeled as PASS and DP from

the FILTER column. We recovered the shared mutations between primary and relapse

that are not PASS or DP but are present in the original VCF. This was not possible for

patients with only paired samples (primary and remission) in some cohorts. In addition,

we checked for miss-called DNVs (dinucleotide variants) by inspecting consecutive

SNV positions with Samtools v1.4.1 and changed the reference and alternative if

needed. Once the variants were annotated with VEP, we took the variants in the canon-

ical transcript. In case of more than one consequence type predicted for the same vari-

ant, we took the most damaging (more impact) one according to VEP. We also filtered
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out mutations with population frequency greater than 0.01 according to the gno-

mADg_AF column added. Finally, we discarded low coverage variants as the ones with

a total depth of 5 reads. Further details regarding filters applied to called SNVs are pro-

vided in Additional file 3.

CNV

We discarded the variants that were called with low reliability. Those are the segments re-

ported with NAs in the cellular fraction and minor allele copy number columns of FACE

TS output which, to our knowledge, indicate that the region does not have sufficient

numbers of heterozygous SNPs to guide good estimates (Additional file 2: Fig. S5).

SV

We converted the VCFs into bedpe format with bcftobedpe function from svtools

v0.4.0 and kept the variants with the flag PASS in the FILTER column. We manually

check recurrent SV that have not been described before in the literature by performing

BLAT of the breakend points (BND) and their flanking regions in the UCSC and dis-

carded those that were Alu regions or mappable to many parts of the genome.

Purity and clonality estimations

We inferred the purity of the samples from the variant allele frequency (VAF) distribu-

tion of the mutations as follows. Since the overall ploidy of the samples was mostly

around 2 (diploid), we computed density plots of the VAF multiplied by the CNV of

each mutation as a rough proxy of the CCF and determined the purity as the maximum

point. We recomputed the CCF with the inferred purity and fitted a beta binomial dis-

tribution (betabinom function from scipy v1.4.1 python package). For each mutation,

we derived a probability from it and categorized them as clonal or subclonal according

to a threshold of 0.01 (above or below it respectively). Exceptionally for PAT16, upon

inspection of the CCF distributions in primary and relapse samples, we detected a more

complex clonal structure and thus used a threshold of 0.05 for a clearer categorization

of the clonality of the mutations.

Signatures analysis

Several runs of deconstructSigs v.1.8.0 [67] were carried out depending on the context

of the analysis. Firstly, following the guidelines proposed by Maura et al. [50], we have

included all hematological meaningful described signatures for the fitting of primary

samples (see Additional file 2: Fig. S1). From those, we selected the signatures that we

believed had a substantial activity in the primary leukemias in at least one patient of

the cohort analyzed and re-run deconstructSigs with them (see Fig. 1c). Secondly, we

re-fitted the T-ALL adult samples with only those signatures that presented activity

(SBS1, SBS5, SBS18) to better estimate their contribution in Fig. 3a. Lastly, we have fit-

ted known-treatment signatures for the primary and relapse samples to see whether

there is any contribution of those in the mutational profile of the relapse. In this case,

we have included Signature 32 (SBS32) which the proposed etiology in COSMIC [68]

suggests prior treatment with azathioprine. The adult T-ALL patients have not been

treated directly with this compound but it is known that azathioprine is metabolized to
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6-mercaptopurine which is used in the maintenance phase of received therapy (see

Additional file 2: Figs. S3 and S6). Apart from SBS32, we have also included two treat-

ment signatures recently extracted in Li et al. [37] as SBSA_new and SBSB_new. They

assigned the usage of thiopurines to SBSB_new signature so that is why we have de-

cided to include it. There is not much said about SBSA_new but since pediatric and

adult ALL patients receive similar treatment we decided to give it a try in the fitting

analysis. In all cases, we set the signature cutoff parameter of deconstructSigs to 0.1.

Clustering of driver genes of ALL subtypes

The distances computed to build the dendrogram on Fig. 1d were based on Jensen-

Shannon divergence measures between the distributions of the number of patients per

mutated gene of each cohort. We only took into account genes with mutations in at

least three patients.

Dimensionality reduction

We used a Uniform Manifold Approximation and Projection (UMAP) implemented in

the python package umap-learn v0.3.10 to simplify the mutational profiles (96 dimen-

sions that represent each trinucleotide channel) into two dimensions with the size of

the local neighborhood (n_neighbors) to 20 and minimal distance (min_dist) of 0.2.

Identification of ALL driver variants

Driver gene discovery

We have run the IntOGen pipeline [69] for SNVs and small InDels (https://www.into-

gen.org/search) locally for each of the defined cohorts (see above). For each one of the

outputs, we have proceeded as follows. First, we have discarded all genes in Tier 3 and

4 that are not in the Cancer Gene Census (CGC) [70]. Second, we have discarded all

genes in all tiers that have been defined as potential artifacts (see this list of genes in

https://bitbucket.org/intogen/intogen-plus/src/master/extra/data/artifacts.json). Third,

we have manually inspected the remaining genes and defined a list of potential false

positives (FP). From this list of suspicious genes, we have discarded those not present

in the CancerMine. With the rest of the FP candidates that were present in the Cancer-

Mine, we have decided their level of credibility as driver genes of leukemia according to

the publications reported. Apart from that, we have also manually searched in PubMed

for any other missed relation by CancerMine of the gene and hematopoietic neoplasms

(see Additional file 1: Table S3).

Literature lists of cancer genes of ALL

We have defined 3 lists of known driver genes in ALL:

– Genes with SNVs/InDels mutations

– Genes affected by CNV

– Genes affected by SV that are known to drive ALL

The genes and their sources to build these lists are listed in Additional file 1: Tables

S4.a,b,c respectively.
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Annotation of alterations

For SNVs and InDels, we have defined as potential driver all the mutations with a pre-

dicted protein affecting consequence type (in the canonical transcript) according to

VEP (transcript_ablation, splice_acceptor_variant, splice_donor_variant, stop_gained,

frameshift_variant, stop_lost, start_lost, transcript_amplification, inframe_insertion,

inframe_deletion, missense_variant, protein_altering_variant, splice_region_variant, in-

complete_terminal_codon_variant, start_retained_variant, stop_retained_variant) in a

cancer gene from the list defined as the combination of the results from the Driver

Gene Discovery and the curated literature list of SNVs and InDels. Results from that

are summarized in Fig. 1d, Additional file 2: Fig. S2, and Additional file 1: Table S5.

For CNV and SV, we have flagged the alterations we have found as “known driver”

(contained in the curated literature lists respectively) or with “alteration in gene of

interest” if it affects any cancer gene related to leukemia of all the lists. In the case of

CNV affecting genes of interest, we consider as candidate drivers those oncogenes that

are fully amplified and tumor suppressors affected by any deletion. Results are reported

with the annotated “classic” Giemsa cytobands by mapping where the BND genomic

coordinates fall within them (see Additional file 1: Table S6 a and b).

We have also annotated the genes affected grouping them by some meaningful infor-

mation such as their protein family, biological process, or pathway (see Additional file

2: Figs. S2, S4 and Additional file 1: Table S4). We created those groups with informa-

tion from the sources in Additional file 1: Table S4.

Estimations of divergence time

Considering the differences between the mutational burden of T-ALL samples com-

pared with the expected number of mutations of healthy hematopoietic cells seems

clear that some acceleration on the mutation rate has occurred (Fig. 4a). Additionally,

the regression between age and signature 5 of healthy cells and T-ALL show close slope

(12.21 ∓ 1.24 vs 20.61 ∓ 6.58, see Fig. 4a and Additional file 2: Fig. S7) but a much

higher intercept (22.35 ∓ 45.53 vs 397.4 ∓ 251.81, see Fig. 4a and Additional file 2: Fig.

S7). We hypothesize these similarities on slope and differences on intersect can be ex-

plained by a late-stage acceleration during tumorigenesis that affects in a similar way

the different T-ALL samples.

Based on this hypothesis of tumorigenesis acceleration of signature 5, we have built 2

different models which represent the upper and lower boundary of the estimations: (I)

the change of mutation rate is a one-time, discontinuous event, shared between pri-

mary and relapse, and (II) the change on the mutation rate grows linearly during all

lifetime of the tumor. In both scenarios, the mutation rate can only increase and both

primary and relapse clones are under the same mutational process. In terms of diver-

gence time, the constant model is the most conservative showing the earliest times of

divergence between clones, while the linear model is the one generating larger diver-

gences times. The rest of the models based on N acceleration steps will generate esti-

mates within the previous described.

We established 120 different timepoints tn evenly spaced along the 10-year period

immediately preceding diagnosis: we refer to them as “acceleration times,” since they

are bound to represent the time-points when the mutation rate first deviates from
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neutral, clock-like behavior. For each acceleration time, we first computed a function

assigning a plausible mutation rate for each time point, consistently with either the

constant or linear model. To this end, we fitted the mutation curve to go through the

average number of mutations of primary and relapse N(t*) at the middle timepoint t*

between these two events. More specifically, the following conditions must hold:

Constant : N t�ð Þ ¼ N tnð Þ þ μ � t� − tnð Þ

Linear : N t�ð Þ ¼ N tnð Þ � 1þ rð Þt� − tn

where the values of μ and r have to be determined, depending on the model used. Now

we did 100 stochastic simulations of the mutation curve by randomly sampling 0 or 1

mutations from a beta binomial distribution with a 1-day granularity, only in cases the

mutation rate per day exceeds one a smaller granularity has been used. Thus, mean

parameter μ(t) may change with time (linear model) while correlation parameter ρ =

0.0002, estimated with the dispersion observed on healthy hematopoietic stem cells de-

scribed on Osorio et al. [49], remains constant. Therefore, the number of mutations

simulated at time t is defined recursively as:

N tmð Þ∼N tm − 1ð Þ þ BetaBinom μ tmð Þ; ρ; 1ð Þ

where μ(tm) is either μ (constant model) or log(1 + r) ·N(tm − 1) (linear model). As the

100 stochastic curves generated for each hypothesis (determined by the acceleration

time and mutation rate model) cut the time levels at primary and relapse, they cast a

distribution of the possible number of mutations about the observed that yields a likeli-

hood that the hypothesis explains well the observed number of mutations at primary

and relapse. Thus, each combination of acceleration time and mutation rate model has

an associated prior likelihood. We calculated the Bayes posterior distribution using the

combinations of parameters with a higher success (likelihood) on the cohort which is

then used to select the most plausible models underlying the observation, then provide

a plausible set of divergence times weighted by the likelihood. In order to avoid the de-

viation of the divergence time estimation due to a long tail of low likelihood simula-

tions, only the more likely scenarios have been selected (10% percentile).

Doubling time and lymphoblast population estimates

The doubling time of the T cell lymphoblast population was estimated following a simi-

lar approach as in Li et al. [37]. We assumed that blast cell growth is consistent with a

logistic model, i.e., the population fraction represented by the T-lymphoblast popula-

tion as a function of time t fits a logistic function of the form:

σ t; að Þ ¼ 1þ e − atð Þ − 1

where a is the parameter of the logistic model and t is assumed to be given in standard

time units such that the T-lymphoblast subpopulation reaches 50% of the total popula-

tion at time t = 0.

Assuming the parameter a is known, the doubling time is given by the following

expression:
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TD ¼ log 2ð Þ=a

Therefore, the doubling time estimate resorts to fitting a logistic model to our data,

i.e., provide an estimate for the parameter a.

Our approach intends to provide an estimate of a that corrects for the likely incon-

sistencies between time annotations provided in the patients’ data. We make the gen-

eral assumption that some error Δti has been introduced for each patient Pi when

associating a standard time to the T-lymphoblast population measurements—mainly

due to the difficulty to estimate the initial time for paired data points with a low initial

T-lymphoblast population fraction. A standard goodness-of-fit criterion for logistic

models is given by the cross-entropy loss:

C y; ŷð Þ ¼ −
1
n

Xn

i¼1
yi logŷi þ 1 − yið Þ log 1 − ŷið Þ

where y and ŷ are the observed (resp. predicted) data samples.

Our approach intends to simultaneously estimate the errors Δti and the parameter a

by minimizing the following cross-entropy loss:

L a;Δt1;…;Δtnð Þ ¼ −
Xn

i¼1
C yi;0; ti;0;Δti
� �

þ C yi;1; ti;1;Δti
� �� �

where C(y; t; Δt) = ylogσ(t − Δt, a) + (1 − y) log (1 − σ(t − Δt, a))

where for each patient Pi the values yi, 0 and yi, 1 are the initial (resp. final) population

fractions and the values ti, 0 and ti, 1 are the initial (resp. final) times.

Minimization of the cross-entropy L was implemented in Python with the function

“minimize” of the scipy.optimize module. For a more robust minimization, we ran it sev-

eral times with different randomly generated initial values (see Additional file 2: Fig. S9).

Upon estimation of the doubling time TD, we proceed to compute the number of

cells Nd at the time of diagnosis as a function of the time Δt elapsed between diagnosis

and relapse:

Nd ¼ NB � f � 2 − Δt=TD

where NB is an estimate of the total number of bone marrow cells in adults (~ 7.5 ×

1011 cells according to [37, 63]) and f is the frequency of lymphoblasts of the biopsy.

Digital PCR analysis of SMARCA4 mutations

The dPCR analysis was performed on a QuantStudio 3D dPCR System using the manu-

facturer’s procedure and reagents (ThermoFisher Scientific). Data analysis and chip

quality were assessed using the QuantStudio 3D Analysis Suite software online.

Simulations of relapse scenarios

In order to understand how likely our observations at primary and relapse can be ob-

tained under a non-therapy selective scenario, we have performed several simulations

using a Wright-Fisher model (https://github.com/gerstung-lab/clonex).

Firstly, we have established a set of parameters based on our observations of primary

samples using a mutation rate of 10−8 and a total number of driver and passenger

Sentís et al. Genome Biology          (2020) 21:284 Page 20 of 24

https://github.com/gerstung-lab/clonex


positions of 100 (0.01 fitness effect) and 150,000 respectively on a population of 106

cells. As a result, after 5000 generations, the population has fixed a number of driver

mutations ranging from 3 to 8 (mean 5.2) and 122 to 753 (mean 505.8) passengers.

Secondly, from the primary population we randomly removed between 9 × 104 and

106 cells to simulate a bottleneck effect. The resulting population has grown for 20, 40,

and 60 generations which covers our estimations about the observed dataset (10% CI

10.83–37.89 generations).

Finally, we have compared the VAF distribution at primary of those variants with a

VAF at relapse higher than 90%, considered as fixed mutations, between the observed

and simulated non-resistant scenario.

Due to the lack of fixation of low VAF variants in our simulations, two additional sce-

narios were performed under the previously described strategy: (I) A non-resistant

simulation increasing the fitness up to 0.1 (considered as high fitness, [71]) to allow for

faster fixation rates and (II) a resistant scenario where the bottleneck consists of the se-

lection of all cells sharing a low population frequency passenger mutation, defined as

resistant mutation.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13059-020-02192-z.

Additional file 1. Additional tables. This file contains the supplementary tables referenced in the main text. Table
S1 contains clinical information on the adult T-ALL cohort. Table S2 contains clinical information of the public
pediatric cohorts. Table S3 contains the detected cancer genes by IntOGen. Table S4 contains the lists of ALL can-
cer genes of interest found in the literature separated in 3 subtables according to the type of alterations: SNVs and
InDels (Table S4.a), CNV (Table S4.b), SV (Table S4.c). Table S5 contains the mutations (SNVs and InDels) that we
consider as candidate drivers. Table S6 has the candidate driver CNVs (Table S6.a) and SVs (Table S6.b) of the co-
horts analyzed. Table S7 has the time of divergence estimates between primary and relapse estimated as days pre-
diagnosis of each patient.

Additional file 2. Additional figures. This file presents all supplementary figures referenced in the main text.

Additional file 3. Additional methods. Some of the filtering steps have been extended for clarification in this file.

Additional file 4. Review history.

Acknowledgements
We would like to acknowledge the contribution of Jordi Deu-Pons and Iker Reyes to the mutation calling and general
technical support of the project. We also want to mention Francisco Martínez-Jimenez for his contribution to the ana-
lysis of drivers and Oriol Pich for his help on mutational signature analysis. We are grateful to the St. Jude Children’s
Research Hospital-Washington University Pediatric Cancer Genome Project (PCGP) for permitted access to pediatric
data. Also, we would like to thank the data from Columbia University Medical Center Institutional published in Oshima
et al. [30] used in this study.

Review history
The review history is available as Additional file 4.

Peer review information
Yixin Yao was the primary editor of this article and managed its editorial process and peer review in collaboration with
the rest of the editorial team.

Authors’ contributions
A.B, JM.R., and N.L-B coordinated the project. I. S and S.G. carried out the analyses and prepared the figures. I.S.
collected public sequencing data and re-analyzed them to call mutations systematically. I.S. also did mutation calling
of the 19 ALL patient samples of the project and performed the analysis of driver and resistance mutations. S.G.
conceived and carried out the analyses of mutation rate acceleration and the development of resistance models in
different scenarios, presented in Figs. 4c and 5c and d. F.M. contributed in the design of the statistical model to
compute the doubling time. I. S, S. G, A.G.-P. and N.L.-B. participated in the design of computational analyses and in
the interpretation of the results. L. M. contributed to the mutation calling. JM.R. and E.G. collected the samples of the
adult ALL patients and provided clinical information. I.S., E.G., E.L-A, Ll.E., A.G-P, A.B., JM.R., and N.L-B. participated in
discussions of project design, patient data, and sample selection. V.G-H., L. F-I, and B. B contributed to digital PCR
experiments and data analysis. J.G. and C.G. provided technical support to the project. A.G.-P. drafted the manuscript.
I.S., S.G., A.G.-P., and N.L.-B. edited the manuscript. A.G.-P. and N.L.-B. supervised the analyses. The authors read and
approved the final manuscript.

Sentís et al. Genome Biology          (2020) 21:284 Page 21 of 24

https://doi.org/10.1186/s13059-020-02192-z


Funding
The authors would like to thank the Asociación Española Contra el Cáncer (AECC) for financially supporting this project
(GC16173697BIGA). N.L.-B. acknowledges funding from the European Research Council (consolidator grant 682398) and
the ERDF/Spanish Ministry of Science, Innovation and Universities–Spanish State Research Agency/DamReMap Project
(RTI2018-094095-B-I00). S. G work is supported by the European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie grant agreement No. 754510. I. S is supported by FPI fellowship from
Spanish Ministry of Economy and Competitiveness (project reference SAF2015-66084-R). V.G-H. is supported by the
AECC (project reference GC16173697BIGA-9). IRB Barcelona is a recipient of a Severo Ochoa Centre of Excellence
Award from the Spanish Ministry of Economy and Competitiveness (MINECO; Government of Spain) and is supported
by CERCA (Generalitat de Catalunya).

Availability of data and materials
The raw data of the genomic sequencing of the 45 samples (primary-remission-relapse) of the patients of the in-house
cohort is deposited in the EGA repository (accession code EGAS00001004750 [72]). To facilitate reproducibility, the
code of the analysis is available here: https://github.com/bbglab/evolution_TALL_adults under Apache Software
License 2.0 (doi:https://doi.org/10.5281/zenodo.4120326 [73];). Raw sequencing data of public datasets produced by St.
Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome Project (see Table 1) was obtained
from the EGA repository (accession codes EGAD00001001052 and EGAD00001001432; some BAMS corresponding to
published projects somewhere else [5, 6, 8, 10, 14, 38]). Raw sequencing data of patients included in the study by
Oshima et al. [30] (Table 1) was obtained from dbGap (phs001072.v1.p1). The somatic mutations identified in the
patients included in the study by Li et al. [37] were obtained from the Supplementary Data of the original paper.

Ethics approval and consent to participate
All patients were included in protocols (LAL-07OLD, ALL-HR-03, LAL-AR-2011) from the PETHEMA group, except PAT16.
These protocols were approved by the Institutional Research Board (IRB) of the participating centers and patients provided
informed consent before entering into the trials. The study was approved by the Comitè d’Ètica de la Investigació (Research
Ethics Committee: PI-16-146) of the Hospital Germans Trias y Pujol (code approval AEC143). The study complies fully with the
Helsinki declaration.

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona,
Spain. 2Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain. 3Hematology
Departments, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona,
Badalona, Spain. 4Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC,
Barcelona, Spain. 5Pathology Department, CIBERONC, Hospital del Mar, IMIM, Barcelona, Spain. 6CMR[B] Center of
Regenerative Medicine, Barcelona, Spain. 7Research Program on Biomedical Informatics, Universitat Pompeu Fabra,
Barcelona, Spain. 8Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.

Received: 29 May 2020 Accepted: 3 November 2020

References
1. Acute lymphoblastic leukaemia (ALL) incidence statistics | Cancer Research UK [Internet]. [cited 2020 Mar 16]. Available

from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia-all/
incidence?_ga=2.138922035.1884636715.1584377747-1833693179.1584377747#heading-Four.

2. Acute lymphoblastic leukaemia (ALL) mortality statistics | Cancer Research UK [Internet]. [cited 2020 Mar 16]. Available
from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia-all/
mortality#heading-Two.

3. Bhojwani D, Pei D, Sandlund JT, Jeha S, Ribeiro RC, Rubnitz JE, et al. ETV6-RUNX1-positive childhood acute
lymphoblastic leukemia: improved outcome with contemporary therapy. Leukemia. 2012;26:265–70 Nature Publishing
Group.

4. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LAA, Miller CB, et al. Deletion of IKZF1 and prognosis in acute
lymphoblastic leukemia. 2009.

5. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute
lymphoblastic leukaemia. Nature. 2012;481:157–63 Nature Research.

6. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, et al. Genetic alterations activating kinase and cytokine receptor
signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22:153–66.

7. Lilljebjörn H, Rissler M, Lassen C, Heldrup J, Behrendtz M, Mitelman F, et al. Whole-exome sequencing of pediatric acute
lymphoblastic leukemia. Leukemia. 2012;26:1602–7.

8. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute
lymphoblastic leukemia. Nat Genet. 2013;45:242–52 Nature Publishing Group.

9. Shah S, Schrader KA, Waanders E, Timms AE, Vijai J, Miething C, et al. A recurrent germline PAX5 mutation confers
susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet. 2013;45:1226–31 Nature Publishing Group.

10. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang Y-L, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute
lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15.

11. Lindqvist CM, Nordlund J, Ekman D, Johansson A, Moghadam BT, Raine A, et al. The mutational landscape in pediatric
acute lymphoblastic leukemia deciphered by whole genome sequencing. Hum Mutat. 2015;36:118–28.

Sentís et al. Genome Biology          (2020) 21:284 Page 22 of 24

https://github.com/bbglab/evolution_TALL_adults
https://doi.org/10.5281/zenodo.4120326
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia-all/incidence?_ga=2.138922035.1884636715.1584377747-1833693179.1584377747#heading-Four
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia-all/incidence?_ga=2.138922035.1884636715.1584377747-1833693179.1584377747#heading-Four
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia-all/mortality#heading-Two
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia-all/mortality#heading-Two


12. Zhang J, McCastlain K, Yoshihara H, Xu B, Chang Y, Churchman et al. Deregulation of DUX4 and ERG in acute
lymphoblastic leukemia. Nat Genet. 2016;48(12):1481–9.

13. Ma X, Liu Y, Liu Y, Alexandrov LB, Edmonson MN, Gawad C, et al. Pan-cancer genome and transcriptome analyses of
1,699 paediatric leukaemias and solid tumours. Nature. 2018; Available from: http://www.nature.com/doifinder/10.1038/
nature25795. Nature Publishing Group.

14. Gu Z, Churchman ML, Roberts KG, Moore I, Zhou X, Nakitandwe J, et al. PAX5-driven subtypes of B-progenitor acute
lymphoblastic leukemia. Nat Genet. 2019;51:296–307.

15. Mullighan CG, Downing JR. Global genomic characterization of acute lymphoblastic. Semin Hematol. 2009;46:3–15.
16. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. The Lancet. 2013;381:1943–55 Elsevier Ltd.
17. Hunger SP, Mullighan CG. Redefining ALL classification : toward detecting high-risk ALL and implementing precision

medicine. Blood. 2015;125:3977–88.
18. Pui CH, Pei D, Coustan-Smith E, Jeha S, Cheng C, Bowman WP, et al. Clinical utility of sequential minimal residual

disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective
study. Lancet Oncol. 2015;16:465–74.

19. Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16:
494–507 Nature Publishing Group.

20. Inaba H, Azzato EM, Mullighan CG. Integration of next-generation sequencing to treat acute lymphoblastic leukemia
with targetable lesions: the St. Jude Children's Research Hospital approach. Front Pediatr. 2017;5:258.

21. Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol. 2017;35:975–83.
22. Genescà E, Morgades M, Montesinos P, Barba P, Gil C, Guàrdia R, et al. Unique clinico-biological, genetic and prognostic

features of adult early T-cell precursor acute lymphoblastic leukemia. Haematologica. 2020;105(6):e294–7.
23. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA, et al. Genomic analysis of the clonal origins of relapsed

acute lymphoblastic leukemia. Science. 2008;322:1377–80.
24. Yang J, Bhojwani D, Yang W. Genome-wide copy number profiling reveals molecular evolution from diagnosis to

relapse in childhood acute lymphoblastic leukemia. ldots. 2008;112:4178–83.
25. Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, et al. CREBBP mutations in relapsed acute

lymphoblastic leukaemia. Nature. 2011;471:235–9 NIH Public Access.
26. Meyer JA, Wang J, Hogan LE, Yang JJ, Dandekar S, Patel JP, et al. Relapse-specific mutations in NT5C2 in childhood

acute lymphoblastic leukemia. Nat Genet. 2013;45:290–4 Nature Publishing Group.
27. Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, et al. Activating mutations in the NT5C2

nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med. 2013;19:368–71 Nature Publishing Group.
28. Kunz JB, Rausch T, Bandapalli OR, Eilers J, Pechanska P, Schuessele S, et al. Pediatric T-cell lymphoblastic leukemia

evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation. Haematologica. 2015;
100:1442–50.

29. Ma X, Edmonson M, Yergeau D, Muzny DM, Hampton OA, Rusch M, et al. Rise and fall of subclones from diagnosis to
relapse in pediatric B-acute lymphoblastic leukaemia. Nat Commun. 2015;6:1–12 Nature Publishing Group.

30. Oshima K, Khiabanian H, da Silva-Almeida AC, Tzoneva G, Abate F, Ambesi-Impiombato A, et al. Mutational landscape,
clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia. Proc Natl Acad Sci U S
A. 2016;113:11306–11 National Academy of Sciences.

31. Dobson SM, García-Prat L, Vanner RJ, Wintersinger J, Waanders E, Gu Z, et al. Relapse-fated latent diagnosis subclones in
acute B lineage leukemia are drug tolerant and possess distinct metabolic programs. Cancer Discov. 2020;10(4):568–87.

32. Van Vlierberghe P, Palomero T, Khiabanian H, Van der Meulen J, Castillo M, Van Roy N, et al. PHF6 mutations in T-cell
acute lymphoblastic leukemia. Nat Genet. 2010;42:338–42 Nature Publishing Group.

33. Neumann M, Heesch S, Schlee C, Schwartz S, Gökbuget N, Hoelzer D, et al. Whole-exome sequencing in adult ETP-ALL
reveals a high rate of DNMT3A mutations. Blood. 2013;121:4749–52.

34. De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T, et al. Exome sequencing identifies mutation in CNOT3
and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet. 2013;45:186–90 Nature
Publishing Group.

35. Neumann M, Vosberg S, Schlee C, Heesch S, Schwartz S, Gökbuget N, et al. Mutational spectrum of adult T-ALL.
Oncotarget. 2015;6:2754–66.

36. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult
T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49:1211–8.

37. Li B, Brady SW, Ma X, Shen S, Zhang Y, Li Y, et al. Therapy-induced mutations drive the genomic landscape of relapsed
acute lymphoblastic leukemia. Blood. 2020;135:41–55.

38. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in
pediatric Cancer. N Engl J Med. 2015;373:2336–46.

39. Paulsson K, Lilljebjörn H, Biloglav A, Olsson L, Rissler M, Castor A, et al. The genomic landscape of high hyperdiploid
childhood acute lymphoblastic leukemia. Nat Genet. 2015;47:672–7 Nature Publishing Group.

40. Spinella J-F, Cassart P, Richer C, Saillour V, Ouimet M, Langlois S, et al. Genomic characterization of pediatric T-cell acute
lymphoblastic leukemia reveals novel recurrent driver mutations. Oncotarget. 2016;7:65485–503.

41. Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J, et al. RAG-mediated recombination is the predominant
driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet. 2014;46:116–25 Nature
Publishing Group.

42. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, et al. Signatures of mutational processes in
human cancer. Nature. 2013;500:415–21 Nature Research.

43. Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. The landscape of genomic
alterations across childhood cancers. Nature. 2018;555:321–7.

44. Liu Y-F, Wang B-Y, Zhang W-N, Huang J-Y, Li B-S, Zhang M, et al. Genomic profiling of adult and pediatric B-cell acute
lymphoblastic leukemia. EBioMedicine. 2016;8:173–83.

45. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in
human cancer. Nature. 2020;578:94–101.

Sentís et al. Genome Biology          (2020) 21:284 Page 23 of 24

http://www.nature.com/doifinder/10.1038/nature25795
http://www.nature.com/doifinder/10.1038/nature25795


46. Pich O, Muiños F, Lolkema MP, Steeghs N, Gonzalez-Perez A, Lopez-Bigas N. The mutational footprints of cancer
therapies. Nat Genet. 2019;51:1732–40.

47. Gonzalez-Perez A, Sabarinathan R, Lopez-Bigas N. Local determinants of the mutational landscape of the human
genome. Cell. 2019;177:101–14.

48. Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, et al. Clock-like mutational processes in human
somatic cells. Nat Genet. 2015;47:1402–7 Nature Publishing Group.

49. Osorio FG, Rosendahl Huber A, Oka R, Verheul M, Patel SH, Hasaart K, et al. Somatic mutations reveal lineage
relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 2018;25:2308–2316.e4 Elsevier Company.

50. Maura F, Degasperi A, Nadeu F, Leongamornlert D, Davies H, Moore L, et al. A practical guide for mutational signature
analysis in hematological malignancies. Nat Commun. 2019;10 Available from: https://doi.org/10.1038/s41467-019-11037-
8. Springer US.

51. Mészáros B, Kumar M, Gibson TJ, Uyar B, Dosztányi Z. Degrons in cancer. Sci Signal. 2017;10:eaak9982.
52. Richter-Pechańska P, Kunz JB, Hof J, et al. Identification of a genetically defined ultra-high-risk group in relapsed

pediatric T-lymphoblastic leukemia. Blood Cancer J. 2017;7(2):e523.
53. Shan H, Li X, Xiao X, Dai Y, Huang J, Song J, et al. USP7 deubiquitinates and stabilizes NOTCH1 in T-cell acute

lymphoblastic leukemia. Signal Transduct Target Ther. 2018;3:29.
54. Jin Q, Ca M, Km A, Zhu Y, Bt G-D, Kk W, et al. USP7 cooperates with NOTCH1 to drive the oncogenic transcriptional

program in T-cell leukemia. Clin Cancer Res. 2018;25:222–39.
55. Saito Y, Koya J, Araki M, Kogure Y, Shingaki S, Tabata M, et al. Landscape and function of multiple mutations within

individual oncogenes. Nature. 2020; [cited 2020 May 26]; Available from: http://www.nature.com/articles/s41586-020-21
75-2.

56. Mansour MR, Duke V, Foroni L, Patel B, Allen CG, Ancliff PJ, et al. NOTCH1 mutations are secondary events in some
patients with T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2007;13:6964–9.

57. Xu F, Wu LY, Chang CK, et al. Whole-exome and targeted sequencing identify ROBO1 and ROBO2 mutations as
progression-related drivers in myelodysplastic syndromes. Nat Commun. 2015;6:8806.

58. Waanders E, Gu Z, Dobson SM, Antić Ž, Crawford JC, Ma X, et al. Mutational landscape and patterns of clonal evolution
in relapsed pediatric acute lymphoblastic leukemia. Blood Cancer Discov. 2020;1(1):96-111.

59. Xiang J, Wang G, Xia T, Chen Z. The depletion of PHF6 decreases the drug sensitivity of T-cell acute lymphoblastic
leukemia to prednisolone. Biomed Pharmacother. 2019;109:2210–7 Elsevier.

60. Kosztyu P, Bukvova R, Dolezel P, Mlejnek P. Resistance to daunorubicin, imatinib, or nilotinib depends on expression
levels of ABCB1 and ABCG2 in human leukemia cells. Chem Biol Interact. 2014;219:203–10 Elsevier Ireland Ltd.

61. Ankathil R. ABCB1 genetic variants in leukemias: current insights into treatment outcomes. Pharmacogenomics Pers
Med. 2017;10:169–81 Dove Press.

62. Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, Rosebrock D, et al. The evolutionary history of 2,658 cancers.
Nature. 2020;578:122–8 Nature Publishing Group.

63. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the
human body. Ann Hum Biol. 2013;40:463–71.

64. Garcia M, Juhos S, Larsson M, Olason PI, Martin M, Eisfeldt J, et al. Sarek: A portable workflow for whole-genome
sequencing analysis of germline and somatic variants. F1000Research. 2020;9:63.

65. Shen R, Seshan VE. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA
sequencing. Nucleic Acids Res. 2016;44(16):e131.

66. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-
end and split-read analysis. Bioinformatics. 2012;28:333–9.

67. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. deconstructSigs: delineating mutational processes in single
tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome biol. Genome Biol; 2016;17:
1–11.

68. COSMIC. https://cancer.sanger.ac.uk/cosmic/signatures/SBS/. Accessed June 2020.
69. Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, et al. A compendium of mutational

cancer driver genes. Nat Rev Cancer. 2020;20(10):555–72.
70. Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic

dysfunction across all human cancers. Nat Rev Cancer. 2018;18:696.
71. Watson CJ, Papula AL, Poon GYP, Wong WH, Young AL, Druley TE, et al. The evolutionary dynamics and fitness

landscape of clonal hematopoiesis. Science. 2020;367:1449–54.
72. Sentís I , Gonzalez S , Genescà E, Garcia-Hernández V , Muiños F , Gonzalez C, Lopez-Arribillaga E, Gonzalez J, Fernandez-

Ibarrondo L, Mularoni L , Espinosa L , Bellosillo B Ribera JM , Bigas A , Gonzalez-Perez A , Lopez-Bigas N. The evolution
of adult T-cell acute lymphoblastic leukemia. European Genome-phenome Archive. https://ega-archive.org/search-
results.php?query=EGAS00001004750 EGAS00001004750.

73. Sentís I , Gonzalez S , Genescà E, Garcia-Hernández V , Muiños F , Gonzalez C, Lopez-Arribillaga E, Gonzalez J, Fernandez-
Ibarrondo L, Mularoni L , Espinosa L , Bellosillo B Ribera JM , Bigas A , Gonzalez-Perez A , Lopez-Bigas N. Code of the
analysis performed in the T-ALL relapse evolution in adult patients project. 2020. https://github.com/bbglab/evolution_
TALL_adults / https://doi.org/10.5281/zenodo.4120326.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sentís et al. Genome Biology          (2020) 21:284 Page 24 of 24

https://doi.org/10.1038/s41467-019-11037-8
https://doi.org/10.1038/s41467-019-11037-8
http://www.nature.com/articles/s41586-020-2175-2
http://www.nature.com/articles/s41586-020-2175-2
https://cancer.sanger.ac.uk/cosmic/signatures/SBS/
https://ega-archive.org/search-results.php?query=EGAS00001004750
https://ega-archive.org/search-results.php?query=EGAS00001004750
https://github.com/bbglab/evolution_TALL_adults
https://github.com/bbglab/evolution_TALL_adults
https://doi.org/10.5281/zenodo.4120326

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	The genomics of primary adult T-ALL
	Genomic alterations driving primary and relapse adult T-ALL
	The evolution of relapse adult T-ALL measured through mutations
	Time of divergence of primary and relapse clones
	The evolution of relapse of adult T-ALLs

	Discussion
	Conclusions
	Methods
	In-house cohort selection and samples collection
	Whole genome sequencing
	Analysis of ALL cohorts in the public domain
	Alignment and variant calling
	Alignment, SNV, small InDels
	CNV
	SV

	Filtering steps
	SNVs and InDels
	CNV
	SV

	Purity and clonality estimations
	Signatures analysis
	Clustering of driver genes of ALL subtypes
	Dimensionality reduction
	Identification of ALL driver variants
	Driver gene discovery
	Literature lists of cancer genes of ALL
	Annotation of alterations

	Estimations of divergence time
	Doubling time and lymphoblast population estimates
	Digital PCR analysis of SMARCA4 mutations
	Simulations of relapse scenarios

	Supplementary information
	Acknowledgements
	Review history
	Peer review information
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher’s Note

