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Abstract

Background: Tumor-specific genomic aberrations are routinely determined by high-
throughput genomic measurements. It remains unclear how complex genome
alterations affect molecular networks through changing protein levels and
consequently biochemical states of tumor tissues.

Results: Here, we investigate the propagation of genomic effects along the axis of
gene expression during prostate cancer progression. We quantify genomic,
transcriptomic, and proteomic alterations based on 105 prostate samples, consisting
of benign prostatic hyperplasia regions and malignant tumors, from 39 prostate
cancer patients. Our analysis reveals the convergent effects of distinct copy number
alterations impacting on common downstream proteins, which are important for
establishing the tumor phenotype. We devise a network-based approach that
integrates perturbations across different molecular layers, which identifies a sub-
network consisting of nine genes whose joint activity positively correlates with
increasingly aggressive tumor phenotypes and is predictive of recurrence-free
survival. Further, our data reveal a wide spectrum of intra-patient network effects,
ranging from similar to very distinct alterations on different molecular layers.

Conclusions: This study uncovers molecular networks with considerable convergent
alterations across tumor sites and patients. It also exposes a diversity of network
effects: we could not identify a single sub-network that is perturbed in all high-grade
tumor regions.

Keywords: Molecular aberrations, Network effects, Prostate cancer, Proteogenomic
analysis, Tumor heterogeneity
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Background

Prostate cancer (PCa) represents one of the most common neoplasms among men with
almost 1,300,000 new cases and 360,000 deaths in 2018 [1] accounting for 15% of all
cancers diagnosed. PCa is the fifth leading cause of cancer death in men and represents
6.6% of the total cancer mortality in men [1]. Despite earlier detection and new treat-
ments, the lifetime risk to die of PCa has remained stable at approximately 3% since
1980. (National Cancer Institute SEER data: https://seer.cancer.gov/statfacts/html/
prost.html). In many patients, PCa is indolent and slowly growing. The challenge is to
identify those patients who are unlikely to experience significant progression while of-
fering radical therapy to those who are at risk. Current risk stratification models are
based on clinicopathological variables including histomorphologically defined grade
groups, prostate-specific antigen (PSA) levels, and clinical stage. Although those vari-
ables provide important information for clinical risk assessment and treatment planning
[2, 3], they do not sufficiently predict the course of the disease.

Extensive genomic profiling efforts have provided important insights into the com-
mon genomic alterations in primary and metastatic PCa [4-9]. Interestingly, PCa ge-
nomes show a high frequency of recurrent large-scale chromosomal rearrangements
such as TMPRSS2-ERG [10]. In addition, extensive copy number alterations (CNAs)
are common in PCa, yet point mutations are relatively infrequent in primary PCa com-
pared to other cancers [6, 11]. A major complicating factor is that around 80% of PCas
are multifocal and harbor multiple spatially and often morphologically distinct tumor
foci [12, 13]. Several recent studies have suggested that the majority of topographically
distinct tumor foci appear to arise independently and show few or no overlap in driver
gene alterations [14—16]. Therefore, a given prostate gland can harbor clonally inde-
pendent PCas.

To allow for a more functional assessment of the biochemical state of PCa, it is ne-
cessary to go beyond genomic alterations and comprehensively catalog cancer-specific
genomic, transcriptomic, and proteomic alterations in an integrated manner [17-19].
Such an approach will provide critical information for basic and translational research
and could result in clinically relevant markers. While hundreds of PCa genomes and
transcriptomes have been profiled to date [20], little is known about the PCa proteome.
Although recent work has emphasized the need for integrated multi-omics profiling of
PCa, we still lack understanding about how genomic changes impact mRNA and pro-
tein levels [17-19]. Especially, the complex relationship between tumor grade, tumor
progression, and multi-layered molecular network changes remains largely elusive.

For example, previous work has shown that copy number changes may alter tran-
script levels of many genes, whereas the respective protein levels remain relatively
stable [21]. Indeed, there is compelling evidence across multiple tumor types that many
genomic alterations are “buffered” at the protein level and are hence mostly clinically
inconsequential [22]. To better understand the evolution of PCa and to identify core
networks perturbed by genomic alterations and thus central for the tumor phenotype,
it is therefore essential to investigate the transmission of CNAs to the transcriptomic
and proteomic level.

To this end, it is important to decipher which genomic alterations impact PCa pro-
teomes, which of those proteomic alterations are functionally relevant, and how mo-
lecular networks are perturbed at the protein level across tumors.


https://seer.cancer.gov/statfacts/html/prost.html
https://seer.cancer.gov/statfacts/html/prost.html
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To address these open questions, we performed a multi-omics profiling of radical prosta-
tectomy (RP) specimens at the level of the genome, transcriptome, and proteome from adja-
cent biopsy-level samples, using state-of-the-art technologies. Unique features of this study
are (1) the utilization of pressure cycling technology (PCT)-sequential window acquisition
of all theoretical mass spectra (SWATH) mass spectrometry [23, 24], allowing rapid and re-
producible quantification of thousands of proteins from biopsy-level tissue samples col-
lected in clinical cohorts; (2) the simultaneous profiling of all omics layers from the same
tissue regions; (3) inclusion and full profiling of benign regions, which provides a matching
control for each tumor; and (4) the full multi-omics characterization of multiple tumor re-
gions from the same patients, thus enabling the detailed investigation of tumor heterogen-
eity. This design resulted in the multi-layered analyses of 105 samples from 39 PCa patients,
as well as of the exome of corresponding peripheral blood cells yielding a comprehensive
molecular profile for each patient, and identified molecular networks that are commonly al-
tered in multiple patients. Importantly, some of the affected genes/proteins exhibited very
small individual effect sizes, suggesting that the combined network effects of multiple genes
may significantly contribute to determining PCa phenotypes.

Results

Proteogenomic analysis of the sample cohort identifies known PCa biomarkers

In this study, we analyzed 39 PCa patients (Additional file 1: Fig. S1) belonging to three
groups who underwent laparoscopic robotic-assisted RP. The patients were from the
PCa Outcomes Cohort (ProCOC) study [25, 26]. Tumor areas were graded using the
International Society of Urological Pathology (ISUP) grade groups [27], which range
from ISUP grade group G1 (least aggressive) to G5 (most aggressive). The more ad-
vanced grade groups G4 and G5 were considered jointly (G4/5). The cohort tested in-
cluded 12 low-grade (G1), 17 intermediate-grade (G2 and G3), and 10 high-grade (G4/
5) patients (Fig. 1a, Additional file 1: Fig. S1, Additional file 2: Table S1). For low-grade
PCa patients, we selected two representative regions, one of benign prostatic hyperpla-
sia (BPH) and one of malignant tumor (TA). Since PCa often presents as a multifocal
disease with heterogeneous grading within each prostate specimen [24], we analyzed
two different tumor regions from the 27 intermediate- and high-grade patients. In
those cases, three representative regions, including BPH, the most aggressive tumor
(TA1), and a secondary, lower-grade tumor (TA2) [2], were analyzed. Thus, TA1 al-
ways represented the higher-grade nodule compared to TA2. Note that whereas each
patient was assigned a patient-specific overall grade (i.e., “low,” “intermediate,” or
“high”), each tumor area was additionally assigned an individual grade group based on
its histological appearance. According to current ISUP guidelines, the grading of the
entire prostate specimen depends on the size and grade of individual nodules [28].
Thus, it is possible that the patient grading is lower than the grading of the most ag-
gressive nodule, if another lower-grade nodule is larger. Tumor regions contained at
least 70% tumor cellularity, and the distance between the analyzed areas (TAl versus
TA2) was at least 5mm. Altogether, we obtained 105 prostate tissue specimens
(Additional file 2: Table S1). Three adjacent tissue biopsies of the dimensions 0.6 x
0.6 x 3.0 mm were punched from each representative region for exome sequencing,
CNA (derived from the exome sequencing data), RNA sequencing (RNA-seq), and
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Fig. 1 Proteogenomics analysis of 105 tissue regions from 39 PCa patients. a Representative
immunohistochemistry images of prostate tissues and the selection of BPH and tumorous tissue regions for
genome, transcriptome, and proteome analysis. b Kaplan-Meier curves for our cohort when the patients are
stratified by the overall grade (left), the TA1 or TA grade group (middle), and the TA2 or TA grade group

(right). Point-wise 95% confidence bands are shown for the whole range of time values

quantitative proteomic analysis using the PCT-SWATH technology [23], respectively.
Proteomic analysis was performed in duplicates for each tissue sample. Peripheral
blood samples from each patient were also subjected to exome sequencing and served
as the genomic wild-type reference (Fig. 1). All three types of grading (i.e., patient-
specific overall grading, TAl grading, and TA2 grading) were predictive of the
recurrence-free survival (RFS) in our study.

In agreement with prior reports, we observed relatively few recurrent point mutations
across patients (Additional file 1: Fig. S2, Additional file 3: Table S2), but substantial
CNAs (Additional file 1: Figs. S3 and S4, Additional file 4: Table S3). Mutations in
SPOP, FOXA1I, and MEDI2 reported in independent cohorts [4-9] were confirmed in
this cohort. In total, 1110 genes showed copy number gains in at least five samples or
copy number losses in at least five samples (see Additional file 1: Supplementary Text
for details). Additional file 1: Fig. S4 shows the CNA status of signature genes repre-
senting known areas of recurrent CNAs in PCa—split into fusion-partner and non-
fusion-partner genes—for instance, loss of PTEN and gain of MYC in high-grade PCa
[29]. Likewise, our data confirmed the differential expression of several transcripts/pro-
teins that had previously been suggested as PCa biomarkers or which are known onco-
genes in other tumor types (Additional file 1: Supplementary Text and Fig. S5,
Additional file 5: Table S4 and Additional file 6: Table S5). We further identified som-
atic fusions from the RNA-seq data. A large fraction of the tumors harbored ETS family
gene fusions, which are frequently detected in PCa [8, 9, 11]. ETS fusions were mutu-
ally exclusive and appeared in tumors from all grade groups (Additional file 1: Fig. S6;
Additional file 5: Table S4). This consistency with previously published results
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confirmed the quality of our data and motivated us to go beyond previous work by per-

forming a network-based multi-omics multi-gene analysis.

Molecular perturbations correlate with tumor grade

Mutational burden is associated with PCa risk [8, 9, 11]. Hence, as the first step to-
wards a cross-layer analysis, we asked if high-grade PCa would generally be affected by
stronger alterations (compared to low-grade PCa) at the genome, transcriptome, and
proteome layers [30]. For that purpose, we devised molecular perturbation scores that
quantified the number of affected genes/proteins and the extent to which these genes/
proteins were altered in the tumor specimens compared to their benign controls (see
the “Methods” section for details). In the case of the DNA layer, these scores carry a
similar meaning as established mutational burden scores. However, we wanted to cap-
ture the effects at all three molecular layers measured in this study. Higher-grade tu-
mors (G3 and G4/5) exhibited significantly higher molecular perturbation scores than
lower-grade tumors (G1 and G2). Those differences were statistically significant in all
but one case (P value < 0.05, one-sided Wilcoxon rank sum test, Fig. 2). The CNA per-
turbation magnitude exhibited the highest correlation with the PCa grading, confirming
prior studies documenting the tight association between CNA, histopathological grade,
and risk of progression [4, 5, 31]. Further, we found that mRNA fold changes (FCs) cor-
related more strongly with CNAs of the same genes than protein FCs (average CNA-
mRNA Spearman p =0.1 and average CNA-protein Spearman p = 0.02). This observa-
tion is in agreement with previous work, which suggested that copy number changes
are to some extent buffered at the protein level [17, 21, 32]. Interestingly, we observed
that proteins known to be part of protein complexes were significantly less strongly
correlated with the FCs of their coding mRNAs than proteins not known to be part of
protein complexes (P value < 2.6e—11, one-sided ¢ test, Additional file 1: Fig. S7). This
result is consistent with the concept that protein complex stoichiometry contributes to
the buffering of mRNA changes at the level of proteins [21, 22, 33—35]. Thus, molecu-
lar patterns in high-grade PCa are more strongly perturbed at all layers, and the effects
of genomic variation are progressively but non-uniformly attenuated along the axis of

gene expression.

Effects of distinct CNAs converge on common proteins

It has previously been suggested that mutations affecting different genes could impact
common molecular networks if the respective gene products interact at the molecular
level [36]. However, previous analyses were mostly restricted to individual molecular
layers. For example, it was shown that genes mutated in different patients often cluster
together in molecular interaction networks [36]. Yet, the effects of these mutations on
transcript and protein levels remained unexplored in this case.

Previous work of Sinha and colleagues already suggested extensive trans-effects of
CNAs on mRNA and protein levels [17]. Thus, here, we aimed to systematically explore
how different CNA events would impact the level of one common protein. In order to
prioritize potentially interesting proteins for such an analysis, we focused on the 20
proteins with the largest average absolute FCs across all tumor specimens
(Additional file 1: Fig. S8, Additional file 7: Table S6). Thus, these proteins represent a
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(See figure on previous page.)

Fig. 2 Molecular perturbation scores for point mutations, CNAs, transcriptome, and proteome data. a
Distributions of the first type of molecular perturbation scores (DE_count’s) for the four grade groups
(visualized as violin plots) at the mutation layer (upper left), CNA layer (upper right), mRNA layer (lower left),
and protein layer (lower right). Points represent the actual values. The horizontal lines correspond to the
median value in each of the four grade groups. b Distributions of the second type of molecular
perturbation scores (DE_sum’s) for the four grade groups (visualized as violin plots) at the CNA layer (upper
left), mRNA layer (upper right), and protein layer (lower left). Points represent the actual values. The
horizontal lines correspond to the median value in each of the four grade groups. P values (in each of the
titles) show the significance of the one-sided Wilcoxon rank sum test where the values of G3 and G4/5 are
gathered together and compared to the values of G1 and G2 (also gathered together)

set of proteins that were strongly affected across most tumors independent of tumor
grade. Among them was PSA (KLK3), and several other well-established PCa-
associated proteins like AGR2 [37], MDH2 [38], MFAP4 [39], and FABP5 [40]. RABL3
was one of the most strongly downregulated proteins, which is a surprising finding as
RABLS3 is known to be upregulated in other solid tumors [41, 42]. Interestingly, in most
cases, these proteins were from loci that were not subject to CNAs (Additional file 1:
Fig. S8, Additional file 7: Table S6), hinting that independent genomic events would
impact these target proteins via network effects in trans.

Among those top targets, we selected AGR2, ACPP, POSTN, and LGALS3BP for fur-
ther analysis (Fig. 3a), because these proteins/genes had correlated protein- and mRNA
ECs; thus, protein level changes were likely caused by cognate mRNA level changes. To
identify potential regulators for each target gene, we used the STRING gene interaction
network [43] and selected putative effectors at most one edge away from the target
genes. Further, we required that neighbors or the target itself was subject to CNAs in
at least four tumor samples (the “Methods” section). By including the target itself, we
account for potential CNA cis-effects. However, only POSTN passed that filter. This fil-
tering identified 13 neighbors of ACPP, 28 neighbors of POSTN (and POSTN itself), 14
neighbors of LGALS3BP, and one neighbor for AGR2, which was not further consid-
ered. Next, we correlated CNAs of those neighbor genes with the mRNA FCs of the re-
spective target genes (Fig. 3b). We then used the non-neighboring genes (i.e., the
network complement) to generate a background distribution of CNA-target correla-
tions specifically for each target. Here, we also only considered genes with at least four
CNAs across the tumor samples. Since STRING reports predicted functional associa-
tions between genes, we expected only a minority of the neighbors to actually correlate
with their putative targets. Further note that edges in STRING could represent indirect
gene-gene relationships. Yet, in the case of ACPP, we found that CNA levels of its 13
neighbors were on average more strongly correlated with ACPP mRNA FCs than the
complement (Fig. 3b). This observation does not preclude the possibility that also some
of the POSTN and LGALS3BP neighbors impacted their mRNA levels in trans. How-
ever, the fact that ACPP neighbors were on average more strongly correlated with
ACPP mRNA FCs suggested to us that multiple of its network neighbors might be in-
volved in tumorigenic downregulation of ACPP.

ACPP, which is also known as ACP3 or PAcP, is a prostate-specific acid phosphatase
with a critical role in PCa etiology and has been suggested as a PCa biomarker long be-
fore PSA [44]. ACP3 is known to inhibit cell proliferation and is therefore typically
downregulated in PCa [45], despite elevated ACP3 protein levels in patient’s blood [44].



Charmpi et al. Genome Biology (2020) 21:302

Q

ACP3 POSTN LGALS3BP

Grade group
m G1
G2
G3
G4/5

Density
OO0

: : : . . 0.0
-2 -1 0 1 00 05 1.0 15 20 -1 0 1
log2FC log2FC log2FC

P-value=0.025 o P-value=0.47 P-value=0.085

0.4 0.5
0.2
0.2 0.25
0.00 0.0
0.0
-0.25 -0.2
-0.2

-0.50

filtered complement filtered ~ complement filtered  complement
neighborhood ~ (n2=1469) neighborhood  (n2=1453)  neighborhood  (n2=1468)
order 1 (n1=13) order 1 (n1=29) order 1 (n1=14)

Spearman correlation =)

C
mRNA
FCsACP3NI N NN TN N/ W s
DGUOK (chr2)
APRT (chr 16)

GOT1L1 (chrs)
I: NKX3-1 (chrs)

B NA ENTPD4 (chrs)

R R R e e R e a T
e
i

b S e RS e RN
-2 2 T
Log2 FC

0%
TITITT e e s i e i
IT

Fig. 3 Target genes and putative effectors. a Density plots of the FCs in the four grade groups for three
selected proteins (ACPP, POSTN, LGALS3BP) among the 20 highest scoring (score: mean of the absolute FCs
across all tumor samples) proteins. Vertical lines correspond to the average FC in each of the four grade
groups. These proteins were selected as target genes to identify potential regulators. b Distributions of the
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of those neighbors in STRING with confidence above 0.2, while the second consists of the remaining
network genes in STRING. Both sets are filtered out for genes subject to CNAs in less than four tumor
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there is a hierarchical clustering of the rows. The added colorbar depicts the mRNA FCs of the target

gene ACPP

In our cohort, ACP3 mRNA levels were strongly downregulated in all of the high-grade
patients and in the vast majority of low- and intermediate-grade patients, suggesting
that ACP3 downregulation represents an early event during PCa evolution. Despite its
established role in PCa, little is known about the oncogenic driver events downregulat-
ing ACP3 [44].

We speculated that CNA events affecting different ACP3 neighbors might be in oper-
ation in different tumor specimens. Thus, to further narrow the list of candidates, we

Page 8 of 31
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devised a multi-dimensional regression approach modeling the combined CNA effects
of neighbors on ACPP mRNA FCs (the “Methods” section). Five neighbors (DGUOK,
APRT, GOTILI, NKX3-1, and ENTPD4) had statistically significant effects in that
multi-dimensional model (Fig. 3c). We utilized two independent PCa cohorts (TCGA
[8] and MSKCC [31]) to validate the potential effects of those five genes: we computed
the association between the CNAs of each significant regulator and the corresponding
mRNA log-FC of ACPP in each cohort and confirmed that the signs of the effects (ie.,
effect directions) were the same for all five genes in all cohorts. Among those hits was
NKX3-1, which is a prostate-specific tumor suppressor gene, and loss of a single allele
may predispose to prostate carcinogenesis [46, 47]. NKX3-1 is a transcription factor
found to have substantial trans-effects in PCa [17]. Consistent with its potential role as
an ACP3 regulator, NKX3-1 has been found to bind within 1kb of the transcription
start site of ACP3 ([48]; GEO GSE40269). Interestingly, the CNA signatures of the five
putative regulators split into two clusters affecting two distinct sets of patients (Fig. 3¢):
the first one harboring joint deletions of DGUOK and APRT, the second one harboring
joint deletions of NKX3-1, ENTPD4, and GOTI1L1. The latter three genes are all
encoded on chromosome 8, and thus, their deletion may be due to single CNA events.
DGUOK and APRT, however, are encoded on different chromosomes. Importantly,
these events were clonal in most cases, i.e., they were mostly common to both tumor
samples of a given patient. Hence, our network analysis hints that distinct deletions in
the network vicinity of ACP3 can lead to the repression of this anti-proliferative pro-
tein. Taken together, these findings suggest that tumor mechanisms in different pa-

tients converged on common protein endpoints.

Joint network effects of CNAs drive tumor progression

The analysis above identified molecular networks driving tumor alterations and thus in-
dicated altered biochemical states that were common to most tumor specimens. To
identify sub-networks that specifically distinguish high-grade from low-grade tumors,
we performed a distinct network analysis: we mapped our data onto the STRING gene
interaction network [43] and employed network propagation [49, 50] separately to the
CNA, transcriptome, and proteome data for each of the tumor samples. We excluded
point mutations from this analysis as their frequency was too low in our cohort. By
combining published molecular interactome data with a network propagation algorithm
[36, 49], we aimed to “enrich” network regions with many perturbed genes/proteins.
We reasoned that the convergent consequences of genomic variants on common net-
work regions would be indicative of specific biochemical functions that are important
for the tumor biology. We therefore identified genes/proteins in network regions that
showed a higher score (or a lower score) in high-grade (G4/5) relative to lower-grade
(G1) tumor groups at all three levels (Fig. 4a, b; the “Methods” section). This analysis
identified sub-networks consisting of over- and under-expressed genes (relative to the
benign controls). We found 57 amplified genes (Additional file 7: Table S6) for which
transcripts and proteins were often over-expressed in high-grade PCa (Fig. 4a) and 21
genes with copy number loss (Additional file 7: Table S6) for which transcripts and
proteins were often downregulated compared to lower-grade tumors (Fig. 4b).
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Among the upregulated network nodes, we observed genes modulating the stability
of chromatin, such as chromatin-binding protein chromobox 1 (CBX1) [51]; SET do-
main bifurcated 1 (SETDBI) [52], a function linking to H3K27me3 and H3K9me3 in
chromatin; and CBX3 (known as HP1-y) [53]. SETDBI is an oncogene in melanoma
[54] and has also been found to be over-expressed in PCa and cell lines [55]. Further,
we found genes involved in DNA damage repair, such as SMG7 [56], ATR [57], and
PRKCZ [58], which had already been suggested as a biomarker prognostic for survival
in PCa [59]. Multiple actin-related proteins including ARPC1B [60], ARPC5 [61],
ACTL6A [62], and CFL1 [63], which are markers for aggressive cancers, were part of
the upregulated network nodes. Moreover, the upregulated genes contained proteins
related to the cell cycle like BANF1 and proteins interacting with the centrosome in-
cluding LAMTORI1 and RAB7A that had already been associated with PCa [64]. Finally,
several signaling molecules with known roles in PCa were upregulated, such as the
transcription factor Yin Yang 1 (YYI) [65], the TGF-B receptor TGFBRI [66], and
KPNA4, which promotes metastasis through activation of NF-kB and Notch signaling
[67]. Thus, upregulated network nodes are involved in DNA/chromatin integrity and
growth control.

Likewise, several of the downregulated genes had functions associated with PCa, for
example, the oxidative stress-related gene MGST1, which is recurrently deleted in PCa
[68]. ALDHIAS3 is a direct androgen-responsive gene, which encodes NAD-dependent
aldehyde dehydrogenase [69]. DHCR24 is involved in cholesterol biosynthesis and regu-
lated by the androgen receptor [70]. Polymorphisms in CYPIAI are associated with
PCa risk in several meta-analyses among different ethnicities [71-73].

Further, our network analysis is suggesting tumor mechanisms converging on genes
that are known contributors to PCa tumor biology. For example, the PCa-associated
gene SF3B2 [74, 75] was only weakly amplified in some of the high-grade tumors (aver-
age logrFC=0.016), and mRNA levels showed similarly small changes (average
logo,FC =0.024). On the other hand, the SF3B2 protein levels were consistently and
more strongly upregulated across tumors (average log,FC = 0.31), especially within the
high-grade tumors (Additional file 1: Fig. S9). Another example is /BE2T whose over-
expression is known to be associated with PCa [76]. Unfortunately, we could not quan-
tify the corresponding protein levels. However, we observed a strong and consistent
mRNA over-expression across several tumors (average logo,FC = 0.73), even though at
the DNA level, the gene was only weakly amplified (average log,FC =0.023; Add-
itional file 1: Fig. S9). Our findings of more heterogeneous CNAs, but more uniform
mRNA and protein alterations, point to convergent evolutionary mechanisms, as we
move along the axis of gene expression.

Next, we analyzed the largest connected component with genes upregulated in ad-
vanced disease in more detail (see the “Methods” section). It consists of the nine nodes
EMD, BANFI1, ACTL6A, YY1, RUVBLI, KANSL1, MRGBP, VPS72, and ZNHITI
(Fig. 4a) and is referred to in the following as Network Component 1 (Additional file 7:
Table S6). Proteins encoded by these seven genes are involved in chromosome
organization which may induce genomic alterations and influence the outcome of mul-
tiple cancers including PCa [77]. For example, the actin-related protein ACTL6A is a
member of the SWI/SNF (BAF) chromatin remodeling complex [78] and a known
oncogene and a prognostic biomarker for PCa [79]. Further, ACTL6A, RUVBLI, and
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MRGBP are together part of the NuA4/Tip60-HAT complex, which is another chroma-
tin remodeling complex involved in DNA repair [80]. Likewise, KANSL1 is involved in
histone post-translation modifications, while VPS72 is a member of histone- and chro-
matin remodeling complexes [81]. Thus, Network Component 1 consists of genes in-
volved in chromatin remodeling and DNA repair, many of which are known to be
involved in cancers.

Several samples were characterized by a small, but consistent, DNA amplification of
multiple members of Network Component 1 (Fig. 4c). Out of the 66 tumor samples,
there were 30 samples—belonging to all grade groups—with a weak but remarkably
consistent DNA amplification of Network Component 1 members, while the high-
grade samples had stronger amplifications on average (i.e., larger effect sizes). Import-
antly, gene members of Network Component 1 were dispersed across eight chromo-
somes (Additional file 7: Table S6). The parallel DNA amplification of these genes is
therefore the result of multiple independent CNA events, while the signal on any single
gene alone was too weak to be significant in isolation. Further, members of Network
Component 1 were consistently amplified in both tumor areas (i.e, TA1l and TA2) of
six patients (H2, H4, H5, H6, H8, and H9; Fig. 4c), thus establishing them as likely
clonal events. In some but not all cases, the amplifications led to a small, but consistent
increase in mRNA expression of the amplified gene loci (Fig. 4c). We were able to rec-
oncile 40 tumor samples with a significant enrichment of this network component in
either the CNA or mRNA layer. Unfortunately, only three out of the nine proteins were
detected in our proteomics experiments (Fig. 4c). Interestingly, patients where the
DNA amplifications led to transcript over-expression were almost always high-grade
patients, whereas patients where the amplification affected the gene expression to a
smaller extent were low- or intermediate-grade patients (Fig. 4c). Further, we noticed
that TA2 samples graded as G3 from high-grade patients carried amplifications of Net-
work Component 1, whereas tumor areas graded as G3 from intermediate-grade pa-
tients did not have amplifications of this network component (Fig. 4c). Thus, although
the tumor areas were histologically equally classified, tumor areas from high-grade pa-
tients carried a CNA signature and expression patterns reminiscent of the high-grade
areas from the same patients. Therefore, within the cohort tested, the joint DNA ampli-
fication of this network component along with RNA upregulation is a signature of
high-grade tumors. Curiously, the higher-grade tumor areas of those high-grades pa-
tients (TA1) carried stronger DNA amplifications than the respective lower-grade areas
(TA2), which implies that the progressive amplification of Network Component 1 dur-
ing tumor evolution may contribute to an increasingly aggressive phenotype. To further
corroborate the clinical relevance of this network perturbation, we analyzed published
datasets of three additional PCa cohorts (TCGA [8], MSKCC [31], and Aarhus [82]), to-
gether comprising a total of 709 patients with known clinical outcome. We found that
the amplification of genes from Network Component 1 was a significant predictor of
reduced RFS in the MSKCC cohort (P value = 8.8e-3, log-rank test). In the TCGA co-
hort, we observed the same trend although the difference in RFS was not statistically
significant (P value =0.17; Fig. 4d). Additionally, we found that over-expression of
genes from Network Component 1 was a significant predictor of reduced RES in the
TCGA cohort (P value = 2.1e-4, log-rank test), which was the cohort with the largest
number of patients. In the other two cohorts, we observed the same trend, although
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the difference in RFS was not statistically significant (P value =0.30 and 0.093 for
MSKCC and Aarhus, respectively; Fig. 4d). Thus, both CNA and RNA changes of Net-
work Component 1 are predictive of the time to relapse in independent cohorts. To
also account for covariates, we fitted Cox proportional hazards models with the age
and the copy number burden as (additional) covariates. When including only the age in
our model, the results showed minor changes (Fig. 4d). When including both the age
and the copy number burden in our model, the effect direction of Network Component
1 remained the same but was not statistically significant anymore (P value = 0.055 for
TCGA, mRNA, and P value = 0.064 for MSKCC, CNA).

In conclusion, our findings suggest that relatively weak but broad CNAs of the entire
network components are associated with high-grade tumors and that the presence of
some of these perturbations in lower-grade tumors may be predictive of the future de-
velopment of a more aggressive phenotype.

Analysis of distinct tumor nodules defines intra-patient heterogeneity (TA1 versus TA2
comparison)

The CNA patterns (Additional file 1: Fig. S4) and the Network Component 1 analysis
(Fig. 4c) suggest that different tumor areas from the same patient shared several muta-
tions. Such common signatures are expected if different tumor nodules originate from
a common clone. If this was true, we would expect mutational signatures to be more
similar between different nodules from the same patient than between patients, even
though mutated genes may be shared across patients. To compare the intra- and inter-
patient molecular heterogeneity at the levels of CNAs, transcript, and protein FCs, we
computed the Pearson correlation between tumor area 1 (TA1l) and its paired tumor
area 2 (TA2) for each layer and all of the 27 patients with two characterized tumor
areas (25 for the mRNA, see the “Methods” section and Additional file 1: Supplemen-
tary Text). As a control, we also computed all pairwise Pearson correlations between
the samples within each of the grade groups (i.e., inter-patient correlation). As ex-
pected, paired TA1 and TA2 from the same patient were on average more strongly cor-
related to each other compared to samples from different patients within the same
grade group. This finding was consistent for all omics layers (Fig. 5a) and was more
pronounced at the CNA and mRNA layers compared to the protein layer.

Next, we tested whether a high correlation at the level of CNAs also implies a high
correlation at the level of mRNA and proteins. We tested this idea by “correlating the
correlations,” i.e., we correlated the TA1-TA2 correlation of CNA profiles with the cor-
relation between the mRNA and protein profiles of the same tumor areas (Fig. 5b). In-
deed, a higher correlation of two tumor areas at the level of CNA correlated
significantly with a higher correlation at the level of mRNA (= 0.49, P value = 0.014).
In other words, knowing how similar two tumor areas of a patient are at the CNA level
supports a prediction of their similarity at the mRNA level (and conversely). Although
the correlation between protein and CNA was not statistically significant, it followed
the same trend (r = 0.35, P value = 0.076).

Comparing molecular similarity across omics layers allowed us to identify specific
types of patients. The patients H2, H4, and M13 had highly correlated tumor areas at
all three layers (upper right corner in all scatterplots of Fig. 5b). Likely, the tumor areas
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of these patients have a common clonal origin (Additional file 1: Fig. S3). In contrast,
patients M12 and M14 had weakly correlated tumor areas at all levels (bottom left cor-
ner in all scatterplots of Fig. 5b). These tumor nodules either have independent clonal
origins or they diverged at an earlier stage during tumor evolution (Additional file 1:
Fig. S3) [16]. For example, in the case of patient M12, large parts of the genome were
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not affected by CNAs in the benign sample as well as in TA1 and TA2. However, as
shown on Additional file 1: Fig. S3, a large region was amplified in TA1, whereas the
same region was deleted in TA2. This is consistent with a scenario in which TA1 and
TA2 show parallel evolution. The third class of patients is exemplified by the patients
M9 and M17, who showed a high correlation between their tumor areas on the CNA
and mRNA levels, but not on the protein level. Yet, other patterns were apparent in pa-
tients M4, M7, and H10. They showed similar mRNA and protein patterns in the two
tumor areas, but relatively uncorrelated CNAs. The results here apply to global prote-
ome patterns and therefore hint that such convergent network effects of CNAs can be
frequent. We confirmed that protein-level similarity correlated with similar histological
characteristics of the tumor areas. Additional file 1: Fig. S10 shows formalin-fixed
paraffin-embedded (FFPE) tissue microarray images (duplicates) from the analyzed
tumor nodules (TA1 and TA2, diameter 0.6 mm), further underlining the hypothesis
that ultimately protein-level alterations are responsible for common cellular pheno-
types. Although we cannot fully exclude the possibility that some of these results were
affected by technical noise in the data, our findings suggest that transcript alterations
can frequently be buffered at the level of proteins (patients M9, M17, Additional file 1:
Fig. S7) and that convergent evolutionary processes may lead to the alteration of com-
mon proteins (patients M4, M7, H10). We also note that our findings are specific to
the two tumor areas available in this study and could be different if other nodules had
been sampled for each of the patients. However, our findings on patients with weakly
correlated tumor areas at all levels like M12 and M14 suggest that these patients might
carry more than one disease [16].

Discussion

Despite 20 years of oncological research involving genome-scale (omics) technologies, we
know remarkably little about how the discovered genomic alterations affect the biochem-
ical state of a cell and consequently the disease phenotype. In particular, little is known
about how genomic alterations propagate along the axis of gene expression [17, 18]. Here,
we have exploited recent technological advances in data acquisition that made it possible
to characterize small samples of the same tumor specimens at the level of genomes, tran-
scriptomes, and proteomes and advances in computational strategies towards the
network-based integration of multi-omics data.

In our study, samples were generated from small, less than 1 mm diameter punches
in immediate spatial proximity in the tumor and subsequently profiled at all three
“omics layers” (DNA, RNA, proteome). Due to the large spatial heterogeneity of PCa
[14, 24], this design—which is so far uncommon for studies profiling multiple layers
from tumor specimens—was instrumental for increasing the comparability of the vari-
ous omics layers and thus facilitated the analysis of molecular mechanisms. Our key
findings are as follows: (1) we confirmed the importance of CNAs for PCa biology and
the alteration of many known PCa-associated genes at the transcript and protein levels,
(2) we revealed a generally elevated molecular alteration of high-grade tumors com-
pared to lower-grade tumors, and (3) although our study confirmed large within- and
between-patient genomic heterogeneity, (4) we detected molecular networks that were
commonly altered at the mRNA and protein levels. The fact that many of those target
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molecules are known drivers of PCa tumorigenesis supports the notion that these pro-
teins/transcripts are subject to convergent evolutionary mechanisms.

We integrated the three omics layers using a network-based approach as opposed to
directly comparing gene perturbations (mutations) to gene products (transcripts and
proteins). Using genome data only, it had previously been hypothesized that whereas
the identity of specific mutated genes may differ between tumors, those mutations
might still affect common molecular networks [36]. In other words, tumor phenotypes
are determined by the perturbation of molecular networks and not by the perturbation
of isolated genes. Our study provides experimental evidence that such network effects
are indeed propagated to subsequent molecular layers and that this effect propagation
may be clinically relevant. A very prominent example is the indication derived from
our data that the long-known PCa gene ACPP (ACP3) is downregulated through di-
verse CNA events. Of particular interest is the potential role of NKX3-1 in ACP3
downregulation. Although both genes have a well-established PCa association, their
regulatory relationship had not been reported so far (to our knowledge).

Our multi-omics network analysis revealed molecular sub-networks that distin-
guished high-grade PCa tumors from low-grade tumors. Specifically, our analysis led to
the identification of Network Component 1, a sub-network involved in chromatin re-
modeling and consisting of genes that were weakly amplified in intermediate-grade
(G3) tumor specimens. Signals of individual gene members of this component were vir-
tually indistinguishable from noise in our cohort. However, their consistent alterations
across the network region, across molecular layers and the fact that the same genes
showed enhanced signals in high-grade specimens, rendered this component highly in-
teresting. The fact that copy number and expression changes of Network Component 1
members were predictive for survival in independent cohorts further supports the po-
tential clinical relevance of this sub-network. Amplification of Network Component 1
was to some extent confounded with overall CNA burden (r=0.58 (TCGA, CNA), r=
0.55 (TCGA, mRNA), r=0.34 (MSKCC, CNA), r=0.16 (MSKCC, mRNA)). However,
the amplifications of Network Component 1 members were highly correlated and on
average above the background of CNAs. Thus, the coordinated amplification of Net-
work Component 1 does not simply mirror the overall CNA burden. Our network-
based cross-omics analysis identified nine other network components (Fig. 4) success-
fully capturing several known and potentially new PCa-associated genes. However, nei-
ther Network Component 1 nor any of the other network components were uniformly
subject to CNAs across all high-grade patients. Instead, we found different network
components modified in different patients, and these sub-networks were involved in
cellular processes as diverse as actin remodeling, DNA damage response, and metabolic
functions, all of which are known contributors to PCa biology. This further underlines
the large inter-patient variability of PCa, and it demonstrates the diversity of molecular
mechanisms leading to histologically similar phenotypes. Future prediction models of
PCa including the ISUP grade groups, PSA levels, and clinical stage might be improved
by exploiting multi-omics network analyses. Detecting aggressive network alterations in
prostate biopsies would help clinicians to advise either active surveillance or active
therapy. However, the development of such multi-dimensional biomarkers would re-

quire much larger patient cohorts.
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Another distinguishing feature of this study was the simultaneous profiling of two
different tumor regions in 27 out of the 39 patients. The profiling of multiple tumor re-
gions from the same prostate helped to further highlight the enormous heterogeneity
of PCa within patients and provided important insights into PCa evolution. The fact
that Network Component 1 was more strongly affected in the paired higher-grade nod-
ules of high-grade patients suggests that at least certain sub-networks are subject to an
evolutionary process, which progressively “moves” protein levels towards a more ag-
gressive state. Generally, and at all molecular layers tested, the two paired tumor areas
were more similar to each other compared to two samples from the same grade group
but different patients, suggesting common evolutionary origins. Although the two
tumor areas seemed to mostly originate from the same clone, this was not always the
case. In some patients, different nodules exhibited different molecular patterns at all
omics layers, suggesting early evolutionary separation. Thus, for the first time, current
diagnostic, expert-level consensus guidelines [28] are supported by detailed proteoge-
nomic data. Our findings support earlier claims that clonality itself might be a prognos-
tic marker with implications for future, more tumor-specific treatment when targeted
therapies become available also for PCa [16, 83].

Our study shows that all three molecular layers (genome, transcriptome, and prote-
ome) contributed valuable information for understanding the biology of PCa. In par-
ticular, the DNA layer informed about causal events, clonality, and genomic similarity
between tumors. The transcriptome was relevant for understanding the transmission of
CNA effects to proteins and served as a surrogate in cases where protein levels
remained undetected. The proteome was crucial for revealing protein-level buffering of
CNA effects as well as for indicating convergent evolution on functional endpoints. In
a routine diagnostic context though, measuring all three layers may not be feasible for
the near future due to resource and time limitations. Thus, the identification of im-
proved, routine-usable molecular markers for PCa diagnostics and prognosis remains
an open problem [17].

Conclusions

This study uncovered molecular networks with considerable convergent alterations across
tumor sites and patients. In particular, we identified a sub-network consisting of nine
genes whose joint activity positively correlated with increasingly aggressive tumor pheno-
types. The fact that this sub-network was predictive for survival in independent cohorts
further supports its potential clinical relevance. At the same time though, our study also
exposed a diversity of network effects: we could not identify a single sub-network that was
perturbed in all high-grade tumor regions, let alone the observed distinct intra-patient al-
terations at all omics layers for some patients. Overall, our study has significantly ex-
panded our understanding of PCa biology and serves as a model for future work aiming

to explore the network effects of mutations with an integrated multi-omics approach.

Methods

Patients and samples

A total of 39 men with localized PCa who were scheduled for RP were selected from a
cohort of 1200 patients within the ProCOC study and processed at the Department of
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Pathology and Molecular Pathology, University Hospital Zurich, Switzerland [25]. Each
of the selected intermediate- and high-grade patients had two different tumor nodules
with different ISUP grade groups. Hematoxylin and eosin (H&E)-stained fresh frozen
tissue sections of 105 selected BPH and tumor regions were evaluated by two experi-
enced pathologists (PJW, NJR) to assign malignancy, tumor stage, and grade group ac-
cording to the International Union Against Cancer (UICC) and WHO/ISUP criteria.
This study was approved by the Cantonal Ethics Committee of Zurich (KEK-ZH-No.
2008-0040); the associated methods were carried out in accordance with the approved
guidelines, and each patient has signed an informed consent form. Patients were
followed up on a regular basis (every 3 months in the first year and at least annually
thereafter) or on an individual basis depending on the disease course in the following
years. The RFS was calculated with a biochemical recurrence (BCR) defined as a PSA >
0.1 ng/ml. Patients were censored if lost to follow-up or event-free at their most recent
clinic visit. Patients with a postoperative PSA persistence or without distinct follow-up,
data for the endpoint BCR were excluded from the analysis of BCR.

Exome sequencing and somatic variant analysis

The exome sequencing (exome-seq) was performed using the Agilent Sure Select Exome
platform for library construction and Illumina HiSeq 2500 for sequencing read generation.
We mapped and processed the reads using a pipeline based on bowtie2 [84] (1.1.1) and the
Genome Analysis Tools Kit (GATK) [85] (3.2-2). We detected and reported non-
synonymous variants or variants causing splicing changes using Strelka (1.0.14) and Mutect
(1.1.7) combined with post-processing by the CLC Genomics Workbench (8.0.3). In this
process, all tissue samples of a patient were compared to the respective blood sample.

Trimmomatic [86] (0.36) was used for adaptor clipping and low-quality subsequence
trimming of the FASTQ files. Subsequently, single reads were aligned to the hg19 refer-
ence genome with bowtie2 with options “--very-sensitive -k 20.” We applied samtools
[87] (0.1.19) and picard-tools (1.119) to sort the resulting bam files in coordinate order,
merge different lanes, filter out all non-primary alignments, and remove PCR dupli-
cates. The quality of the runs was checked using a combination of BEDtools [88] (2.21),
samtools, R (3.1), and FastQC (0.11.2).

Bam files containing the mapped reads were preprocessed in the following way: indel
information was used to realign individual reads using the RealignerTargetCreator and
IndelRealigner option of the GATK. Mate-pair information between mates was verified
and fixed using Picard tools, and single bases were recalibrated using GATK’s BaseRe-
calibrator. After preprocessing, variant calling was carried out by comparing benign or
tumor prostate tissue samples with matched blood samples using the programs MuTect
[89] and Strelka [90] independently. Somatic variants that were only detected by one of
the two programs were filtered out using CLC Genomics Workbench, so were those
that had an entry in the dbSNP [91] common database and those that represented syn-

onymous variants without predicted effects on splicing.

CNA analysis of exome-seq data
The bam files generated during the process of somatic variant calling were processed
with the CopywriteR package (v.2.2.0) for the R software [92]. CopywriteR makes use of
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the so-called off-target reads, i.e., reads that cover areas outside of the exon amplicons.
“Off-target” reads are produced due to inefficient enrichment strategies. In our case, on
average, 28.5% of the total reads were not on target. Briefly, CopywriteR removes low-
quality and anomalous read pairs, then peaks are called in the respective blood refer-
ence, and all reads in this region are discarded. After mapping the reads into bins, those
peak regions, in which reads had been removed, were compensated for. Additionally,
read counts are corrected based on mappability and GC content. Finally, a circular bin-
ary segmentation is carried out, and for each segment, the log count ratios between tis-
sue samples and the respective blood sample are reported as copy number gain or loss.
The copy number of each gene in each sample was reported based on the log count ra-
tio of the respective segment in which the gene was located. The overall performance
of this CNA-calling approach was evaluated by comparing the results of the TA1 (and
TA) samples with CNA results obtained by applying the OncoScan Microarray pipeline
to FFPE samples from the same tumors (Additional file 1: Fig. S11).

OncoScan microarrays

OncoScan copy number assays were carried out and analyzed as described previously
[93]. Briefly, DNA was extracted from punches of FFPE cancer tissue blocks. Locus-
specific molecular inversion probes were hybridized to complementary DNA, and gaps
were filled in a nucleotide-specific manner. After amplification and cleavage of the
probes, the probes were hybridized to the OncoScan assay arrays. Scanning the fluores-
cence intensity and subsequent data processing using the Affymetrix* GeneChip® Com-
mand Console and BioDiscovery Nexus express resulted in log intensity ratio data
(sample versus Affymetrix reference) and virtual segmentation of the genome into areas
with copy number gain, loss, or stability.

RNA sequencing

RNA sequencing was performed at the Functional Genomics Center Zurich. RNA-seq
libraries were generated using the TruSeq RNA stranded kit with PolyA enrichment
(Ilumina, San Diego, CA, USA). Libraries were sequenced with 2 x 126 bp paired-end
on an Illumina HiSeq 2500 with an average of 105.2 mio reads per sample.

Paired-end reads were mapped to the human reference genome (GRCh37) using the
STAR aligner (version 2.4.2a) [94]. Quality control of the resulting bam files using
QoRTs [95] and mRIN [96] showed strong RNA degradation [97] in a significant frac-
tion of the samples: mRIN classified 31 samples as highly degraded (Additional file 1:
Fig. S12, Additional file 5: Table S4). In order to correct for this 3" bias, 3 tag counting
was performed as described by Sigurgeirsson et al. [98] using a tag length of 1000. After
3’ bias correction, three samples still showed a clear 3" bias: the two tumor regions
(TA1 and TA2) of the patient M5 and TA2 from patient M8 (Additional file 1: Fig.
S12). These samples were excluded from subsequent analyses. Additionally, the BPH
region of the patient M5 was excluded due to the exclusion of both its tumor regions.

FeatureCounts [99] was used to determine read counts for all genes annotated in
ENSEMBL v75. Genes for which no read was observed in any of the samples in the ori-
ginal data were excluded from the analysis. Further, after 3 tag counting, all genes with
without at least 1 read per million in N of the samples were removed. We chose N to
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be 10 which corresponds to the size of the smallest grade group (G2). In the last reduc-
tion step, all genes with more than one transcript were excluded, yielding a final set of
14,281 genes.

Read count normalization and differential gene expression analysis was performed
using the R packages sva [100] and DESeq2 [101]. All benign tissues were considered
biological replicates and differential gene expression for the individual tumor samples
was determined against all benign tissues. Gene expression changes with an adjusted P
value < 0.1 were considered significant.

RNA-seq—3' bias correction

The 3 tag counting approach for 3" bias correction was used on the RNA-seq dataset
[98]. This approach requires changing of the annotation file in two steps: (1) isoform
filtering and (2) transcript length restriction. As proposed in [98] for each gene, we de-
termined the highest expressed isoform within a set of high-quality samples. All sam-
ples with an mRIN score greater than or equal to 0.02 were considered to be of high
quality. This set contains 7 benign and 15 tumor samples. Isoform expression was de-
termined using cufflinks [102]. As for transcript length, we chose 1000 bp.

Gene fusions

FusionCatcher (version 0.99.5a beta) was used to determine gene fusions for all sam-
ples. Fusions classified as “probably false positive” are discarded unless they are also
classified as “known fusion.”

PCT-assisted sample preparation for SWATH-MS

We first washed each tissue sample to remove O.C.T., followed by PCT-assisted tissue
lysis and protein digestion, and SWATH-MS analysis, as described previously [23].
Briefly, a series of ethanol solutions were used to wash each tissue, including 70% etha-
nol/30% water (30 s), water (30s), 70% ethanol/30% water (5 min, twice), 85% ethanol/
15% water (5min, twice), and 100% ethanol (5min, twice). Subsequently, the tissue
punches were lysed in PCT-MicroTubes with PCT-MicroPestle [103] with 30 ul lysis
buffer containing 8 M urea, 0.1 M ammonium bicarbonate, complete protease inhibitor
cocktail (Roche), and PhosSTOP phosphatase inhibitor cocktail (Roche) using a barocy-
cler (model NEP2320-45k, PressureBioSciences, South Easton, MA). The lysis was per-
formed with 60 cycles of high pressure (45,000 psi, 50s per cycle) and ambient
pressure (14.7 psi, 10 s per cycle). The extracted proteins were then reduced and alky-
lated prior to lys-C and trypsin-mediated proteolysis under pressure cycling. Lys-C
(Wako; enzyme-to-substrate ratio, 1:40)-mediated proteolysis was performed using 45
cycles of pressure alternation (20,000 psi for 50s per cycle and 14.7 psi for 10s per
cycle), followed by trypsin (Promega; enzyme-to-substrate ratio, 1:20)-mediated prote-
olysis using the same cycling scheme for 90 cycles. The resultant peptides were cleaned
using SEP-PAC C18 (Waters Corp., Milford, MA) and analyzed, after spike-in 10% iRT
peptides [104], using SWATH-MS following the 32-fixed-size-window scheme as de-
scribed previously [24, 105] using a 5600 TripleTOF mass spectrometer (Sciex) and a
1D+ Nano LC system (Eksigent, Dublin, CA). The LC gradient was formulated with
buffer A (2% acetonitrile and 0.1% formic acid in HPLC water) and buffer B (2% water
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and 0.1% formic acid in acetonitrile) through an analytical column (75 pm x 20 cm) and
a fused silica PicoTip emitter (New Objective, Woburn, MA, USA) with 3-um 200 A
Magic C18 AQ resin (Michrom BioResources, Auburn, CA, USA). Peptide samples
were separated with a linear gradient of 2 to 35% buffer B over 120 min at a flow rate
of 0.3 ul min~". Ton accumulation time for MS1 and MS2 was set at 100 ms, leading to
a total cycle time of 3.3 s.

SWATH assay query library for prostate tissue proteome

To build a comprehensive library for SWATH data analysis, we analyzed unfractionated
prostate tissue digests prepared by the PCT method using Data Dependent Acquisition
(DDA) mode in a tripleTOF mass spectrometer over a gradient of 2 h as described pre-
viously [105]. We spiked iRT peptides [104] into each sample to enable retention time
calibration among different samples. We then combined these data with the DDA files
from the pan-human library project [106]. Altogether, we analyzed 422 DDA files using
X!Tandem [107] and OMSSA [108] against three protein sequence databases down-
loaded on October 21, 2016, from UniProt, including the SwissProt database of curated
protein sequences (n=20,160), the splicing variant database (n=21,970), and the
trembl database (n =135,369). Using each database, we built a target-decoy protein se-
quence database by reversing the target protein sequences. We allowed maximal two
missed cleavages for fully tryptic peptides, and 50 ppm for peptide precursor mass
error, and 0.1 Da for peptide fragment mass error. Static modification included carba-
midomethyl at cysteine, while variable modification included oxidation at methionine.
Search results from X!Tandem and OMSSA were further analyzed through Trans-
Proteomic Pipeline (TPP, version 4.6.0) [109] using PeptideProphet and iProphet,
followed by SWATH assay library building procedures as detailed previously [105, 110].
Altogether, we identified 167,402 peptide precursors, from which we selected the pro-
teins detected in prostate tissue samples, and built a sample-specific library. SWATH
wiff files were converted into mzXML files using ProteoWizard [111] msconvert
v.3.0.3316, and then mzML files using OpenMS [112] tool FileConverter. OpenSWATH
[105] was performed using the tool OpenSWATHWorkflow with input files including
the mzXML file, the TraML library file, and TraML file for iRT peptides.

Peptide quantification using OpenSWATH

To obtain consistent quantification of the SWATH files, we obtained the all annotated
b and y fragments from the sp, sv, and tr libraries. About ten thousand redundant and
low-quality assays were removed. Then, we extracted the chromatography of these frag-
ments and MS1 signals using OpenSWATHWorkflow, followed by curation using
DIA-expert [113]. Briefly, the chromatography of all fragments and MSI signals were
subject to scrutiny by empirically developed expert rules. A reference sample with the
best g value by pyprophet was picked up to refined fragments. The peptide precursors
are further filtered based on the following criteria: (i) remove peptide precursors with a
q value higher than 1.7783e-06 to achieve a false discovery rate of 0.00977 at peptide
level using SWATH2stats [114], (ii) peptides with a FC higher than 2 between the ref-
erence sample and its technical replicate were removed, and (iii) peptides matching to
multiple SwissProt protein sequences were removed. The data matrix was first quantile
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normalized and log, transformed, followed by batch correction using the ComBat R
package [115]. Finally, for each protein and pair of technical replicates, the average
value was computed.

Statistical analysis
All plots were produced with R. Kaplan-Meier estimators were used for RFS analysis.
Differences between survival estimates were evaluated by the log-rank test.

Computation of molecular perturbation scores

On the genomic level (mutation and CNA), we kept the tumor samples (66 in total)
that contain FCs with respect to the blood. The mutation matrix was further discretized
by setting all non-zero events to 1. At the transcriptomics level, the FCs for the 63
tumor samples were computed as described above (see the “RNA sequencing” section).
Finally, on the proteomics level, we computed the FCs for the tumor samples (66 in
total) as follows: for each protein, its mean intensity over the normal samples was sub-
tracted from the intensities of the tumor samples. (We chose to compute the FCs for
the tumor samples with respect to a global reference (average of all normal samples)
and not with respect to their paired benign sample in order to achieve a higher
consistency with the transcriptomics level.)

We assigned to each sample two molecular perturbation scores summarizing/quanti-
fying the magnitude of its FCs: DE_count counts the number of mutated/differentially
expressed (DE) genes, while the DE_sum score is the sum of absolute FCs of all genes.
Thus, while the first score counts the number of events (mutations/DE genes), the sec-
ond one quantifies their magnitude. These two scores can be regarded as generaliza-
tions of the term “mutational burden” for the mRNA and protein layer. A gene is
regarded as mutated/DE if its value is 1 in the mutation layer and if its absolute value
is above a threshold that has been set to 1 for the mRNA and protein layer. For the
CNA layer, the corresponding threshold was set to 0.5 because the range of FCs in the
CNA matrix is smaller than the mRNA and protein matrices. Both types of scores were
computed for each molecular level, except for the point mutations where only DE_
count was computed. Afterwards, the 66 DE_count scores (63 for the mRNA) and the
DE_sum scores at each layer were divided into the four grade groups G1, G2, G3, and
G4/5 respectively.

Correlating CNAs with mRNA and protein layer

For each of the 2120 genes measured in all three layers (CNA, mRNA, and protein), we
computed the Spearman correlation between its CNAs and corresponding mRNA FCs
as well as between its CNAs and corresponding protein FCs. We reduced each layer to
the 63 tumor samples with available mRNA data.

Network propagation/smoothing

As a network, the STRING gene interaction network (version 10) [43] was used, after
removing all edges with a combined score smaller or equal to 0.9 and keeping subse-
quently the largest connected component. The resulting network consisted of 10,729
nodes and 118,647 (high-confidence) edges. For the network smoothing, the weight
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matrix was computed as described in Vanunu et al. [49], but for an unweighted graph
and the propagation, the parameter was set to 0.5. The propagation was iteratively re-
peated 500 times to ensure convergence of the results. For the mapping from gene
symbols to STRING identifiers (Additional file 7: Table S6), we used the R/Bioconduc-
tor package STRINGdb [116]. The gene symbols with no matching STRING identifier
were removed, while for those that mapped to multiple STRING identifiers, the first
mapping was kept (default choice in the package). From the multiple gene symbols that
mapped to the same STRING identifier, the first mapping was kept. The genes that
were not present in the network were removed from the datasets, while those that were
present in the network but not in the corresponding dataset were initially filled in with
0’s.

Genes with very small, “smoothed” (absolute) FCs were filtered out as follows: after
the network propagation, only network nodes that had protein measurements them-
selves or at least one direct neighbor (on the filtered STRING network) with protein
measurements were considered in the next steps of this analysis, i.e., network nodes
without measured FCs at the protein layer that had no direct neighbor with measured
protein values were removed from the subsequent analyses.

For significance testing, the one-sided Wilcoxon rank sum test comparing the
smoothed FCs between the groups G4/5 (consisting of 12 samples for the CNA,
mRNA, and protein layer) and G1 (consisting of 26 samples for the CNA and proteins
and 25 for the mRNA) was applied to each network node (after filtering) and layer,
once for upregulation and once for downregulation. The resulting sub-networks (up-
regulated and downregulated) consisted of those genes that were significant (P value
below 0.05) at all three layers and all of the edges connecting them on the filtered STRI
NG network.

It should be noted that although measurements from the same patient might not be
statistically independent, we have kept them in our analyses firstly in order to increase
statistical power and secondly because not all of them correspond to clonal events as
shown in Fig. 5. To make sure though that having two samples for some of the patients
has not affected our conclusions, we have repeated the statistical testing step (one-sided
Wilcoxon rank sum test) in two ways: comparing G4/5 with G1 as before but removing
the second tumor area of a patient if it belonged to the same grade group as tumor area
1 (i.e., removing TA2 of patients H3 and H10), and secondly comparing G4/5 with the
combined (G1 and G2) group and once again removing the second tumor area of a pa-
tient if it belonged to the same grade group as his tumor area 1. P values resulting from
these analyses were highly correlated (Additional file 1: Fig. S9), and we would thus
consider the current conclusions to be robust.

Network Component 1 analysis

For each tumor sample at the CNA layer, a one-sided, one-sample ¢ test has been ap-
plied testing if its average FC over the genes of the Network Component 1 (and in par-
ticular those that have been measured at the CNA) is significantly greater than 0. Due
to the presence of outliers in some samples, the non-parametric, one-sided Wilcoxon
signed-rank test has been applied as well yielding very similar results (data not shown).
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A result is considered to be significant if the corresponding P value is below 0.05. The
analysis has been repeated for the mRNA and protein layer.

Independent cohorts validation

For the validation of Network Component 1, we used published datasets of three PCa
cohorts: TCGA, MSKCC, and Aarhus. For TCGA and MSKCC, we downloaded the
CNA, mRNA with precomputed z-scores per gene, and corresponding clinical data
from cBioPortal [117] (https://www.cbioportal.org/). There were 489 samples with
logo,CNA data and 493 samples with mRNA profiles in TCGA. In MSKCC, there were
157 primary tumors with CNA data and 131 primary tumors with mRNA data. The
clinical endpoint used in TCGA was the progression-free survival time and the disease-
free survival in MSKCC. All previous samples had known survival time.

For the Aarhus study (NCBI GEO dataset GSE46602), we downloaded the mRNA
matrix and corresponding clinical information as described in Ycart et al. [118]. The
resulting mRNA matrix consisted of 20,186 genes and 50 samples—36 PCa samples
with known RFS time and 14 benign samples. Once excluding the benign samples, we
computed z-scores per gene in order to have comparable values with the other two
studies. These 36 PCa samples were also considered in the subsequent survival analysis.
CNA data was not available for the Aarhus study.

We reduced all datasets to the nine genes of Network Component 1. In each of the
datasets, we computed for each sample an average copy number change (CNA) or an
average z-score (mRNA) across the nine genes of Network Component 1 (combined
risk score). Subsequently, we used these combined risk scores to split the samples of
each dataset into two groups: samples with a combined risk score larger or equal to the
median combined risk score of the study were considered as “altered” and the rest as
“unaltered.” Kaplan-Meier curves were generated for the two groups. Due to the high
level of discretized values in MSKCC at the CNA layer, a sample is considered to be
“altered” in that dataset if its combined risk score is above zero.

Additionally, we fitted for each dataset a Cox proportional hazards model to predict
survival time using as input variables the average copy number change (CNA) or aver-
age z-score (mMRNA) of Network Component 1 (variable of interest) and the age (when
available, i.e., for TCGA and Aarhus). For each dataset with available copy number in-
formation (i.e., for the TCGA and MSKCC studies), we fitted a second Cox propor-
tional hazards model with the fraction of genome altered as an additional input
variable. For the model fitting, we used the R package survival (https://cran.r-project.

org/web/packages/survival/index.html).

Analysis of regulators and target genes

For this analysis, we used once again the STRING gene interaction network. For each
target gene (AGR2, ACPP, POSTN, LGALS3BP), we split the network nodes into two
groups as follows: firstly, we identified the neighbors of the target gene supported by a
combined evidence larger than 0.2. This set together with the target gene constituted
group 1 while the remaining network nodes constituted group 2. For this splitting, only
genes present in the network with copy number measurements and with a matching
STRING identifier (Additional file 7: Table S6) were considered (i.e., 17,306 genes in
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total). Subsequently, genes altered (i.e., with log, copy number ratio greater than 0.5 in
absolute) in fewer than four tumor samples across the 66 tumor samples were filtered
out in each of the two groups. Genes in group 1 after the CNA filtering are potential
regulators of the target under consideration. For each gene in the two groups after the
filtering, we computed the Spearman correlation between its CNAs and the mRNA FCs
of the target gene. For computing the correlation, the samples were reduced to the 63
tumor samples with available mRNA data.

Subsequently, we fitted an elastic net model with alpha=0.5 for ACPP. We used as
output variable the mRNA FC of ACPP and as input variables the CNAs of the genes
in group 1 after the copy number event filtering. The value for the regularization par-
ameter lambda was chosen through 10-fold cross-validation (default in the R package
glmnet (https://cran.r-project.org/web/packages/glmnet/)). The samples were necessar-
ily reduced to the 63 mRNA tumor samples. Predictors/regulators with a non-zero beta
coefficient were deemed significant. We have used the elastic net model with alpha =
0.5 because it is a method giving sparse solutions and can deal with correlated predic-
tors at the same time.

As an additional validation to our approach, we used the two independent PCa co-
horts described above (TCGA and MSKCC) and reduced the samples to those having
both CNA and mRNA profile. This resulted in 488 samples for TCGA and 109 samples
for MSKCC. Next, for each of the significant regulators/predictors, we computed the
Spearman correlation between its CNAs and the corresponding mRNA z-scores of
ACPP in each of the two independent studies and checked if the sign of the Spearman
correlation matched the sign of the Spearman correlation computed for our cohort, i.e.,
there was an agreement regarding the direction of the association.
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Additional file 2: Table S1. Clinicopathological, immunological and other molecular information of the 39 PCa
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patient ID; Pat_id: patient ID grouped by the overall grade. L: low grade; M: intermediate grade; H: high grade;
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corresponds to patients excluded for the reasons explained in the ‘Methods’ section (see ‘Patients and samples’);
Status: status indicator. 1 means recurrence; DX name: tissue region name; ImageName: name of the scanned
images; index_tumor_id: patient ID of TA1 (or TA); TA1_GrGp: grade group for TA1; T_GrGp: grade group for TA2.

Additional file 3: Table S2. Exome analysis of the peripheral blood cells and 105 prostate tumor punches in 39
patients. (a) Allele frequencies (AF) of somatic single nucleotide variants (SNVs) that were called by our
bioinformatics pipeline. Genes with called SNV are indicated by an AF > 0. A value of 0 indicates that no SNV was
found in the respective genes. In our data, no gene was found with more than one called somatic SNV. (b)
Number of samples per gene with called somatic SNV. (c) Protein domain analysis using DAVID.

Additional file 4: Table S3. Copy number analysis of 105 PCa samples. (a) Log, ratios indicating the CNA status
are shown for all genes in all samples. Values were determined by overlapping gene locations with CNA segments
as calculated by CopywriteR. In case more than one segment overlapped with a gene, number was chosen that
had the highest absolute value. (b) Genes are shown with log, ratios higher than 0.5 or lower than — 0.5 in at least
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Additional file 5: Table S4. RNA-seq analysis. (a) Log,FCs (relative to all benign samples) for all genes across the
tumor samples. (b) mRIN score per sample generated using mRIN (v1.2.0). (c) ETS family gene fusions observed in
tumor samples using FusionCatcher: a value of 1 means that the fusion was observed in the respective sample but
not its corresponding benign sample, otherwise the value is 0. (d) Normalized RNA-seq count data matrix.

Additional file 6: Table S5. Proteomics data of 210 PCa samples with duplicates. (a) Sample information includes
patient ID, clinical diagnosis, sample ID and batch design. (b) Protein matrix of log, scaled intensity of 2371
proteins quantified in 210 PCa samples.
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Additional file 7: Table S6. Integration analysis of 66 tumor samples. (a) Information (i.e. reference linking them
to PCa, consistency between observed and reported effect and number of tumor samples with CNAs) for the first
10 highest-scoring proteins (those with largest average absolute FCs across all tumor specimens). (b) Consistently
up-regulated genes in the high-grade tumors: for each of these genes, there is a significant up-regulation of its FCs
after network smoothing in the group G4/5 compared to the group G1 in all three layers (CNA, mRNA and protein).
(c) Consistently down-regulated genes in the high-grade tumors: for each of these genes, there is a significant
down-regulation of its FCs after network smoothing in the group G4/5 compared to the group G1 in all three
layers (CNA, mRNA and protein). (d) Chromosome information for the gene members of Network Component 1.
(e) Mapping from gene symbols to STRING identifiers.
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