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Abstract

Background: Metastasis is the primary cause of cancer mortality accounting for 90%
of cancer deaths. Our understanding of the molecular mechanisms driving
metastasis is rudimentary.

Results: We perform whole exome sequencing (WES), RNA sequencing, methylation
microarray, and immunohistochemistry (IHC) on 8 pairs of non-small cell lung cancer
(NSCLC) primary tumors and matched distant metastases. Furthermore, we analyze
published WES data from 35 primary NSCLC and metastasis pairs, and transcriptomic
data from 4 autopsy cases with metastatic NSCLC and one metastatic lung cancer
mouse model. The majority of somatic mutations are shared between primary
tumors and paired distant metastases although mutational signatures suggest
different mutagenesis processes in play before and after metastatic spread. Subclonal
analysis reveals evidence of monoclonal seeding in 41 of 42 patients. Pathway
analysis of transcriptomic data reveals that downregulated pathways in metastases
are mainly immune-related. Further deconvolution analysis reveals significantly lower
infiltration of various immune cell types in metastases with the exception of CD4+ T
cells and M2 macrophages. These results are in line with lower densities of immune
cells and higher CD4/CD8 ratios in metastases shown by IHC. Analysis of
transcriptomic data from autopsy cases and animal models confirms that
immunosuppression is also present in extracranial metastases. Significantly higher
(Continued on next page)
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somatic copy number aberration and allelic imbalance burdens are identified in
metastases.

Conclusions: Metastasis is a molecularly late event, and immunosuppression driven
by different molecular events, including somatic copy number aberration, may be a
common characteristic of tumors with metastatic plasticity.

Keywords: Lung cancer, Metastasis, Multiomics, Immune profiling, Genomics,
DNA methylation, Gene expression

Background
Metastasis, a process of cancer cells spreading from the primary tumor to distant or-

gans, is the primary cause of cancer mortality. It is estimated that metastasis is respon-

sible for 90% of cancer deaths [1] and this has remained true over the past half century

[2]. Understanding the mechanisms underlying metastasis is critical to identify bio-

markers and novel therapeutic targets and eventually improve patient outcomes. Clinic-

ally, metastasis equals late-stage cancer, but when (molecular time) and how

(underlying mechanism and mode of seeding) metastasis occurs is largely unknown.

Cancer spread, including distant metastasis, is thought to result from accumulation

of somatic mutations followed by selection of the fittest clones, eventually giving rise to

metastatic spread [3–6]. Comparative studies on paired primary tumors and metastases

have the potential to identify molecular changes associated with the development of

metastasis. Using this approach, several studies have revealed a varying degree of gen-

etic divergence between primary tumors and metastases [7–11]. However, the majority

of previous studies have focused on the somatic mutations of primary tumors and me-

tastases. Other molecular changes such as somatic copy number aberrations (SCNAs),

epigenetic and gene expression alterations, and tumor microenvironment, particularly

immune contexture, can play important roles in the metastatic cascade [12–15]. With

the intent to comprehensively depict the difference in the molecular and immune land-

scapes between primary NSCLC tumors and metastases, we performed multiomics pro-

filing of 8 pairs of NSCLC primary tumors, matched distant metastases, and tumor-

adjacent morphologically normal tissues. Specifically, all 8 patients underwent whole

exome sequencing (WES) and RNA sequencing (RNA-seq); 7 were subjected to methy-

lation microarray, and 5 were assessed for T cell profile by immunohistochemistry

(IHC) with multiple T cell markers (Additional file 1: Table S1). In addition, we re-

analyzed previously published WES data from 35 pairs of primary NSCLC tumors and

matched brain metastases (Brastianos cohort) [11] and RNA-seq data from 4 patients

with extensive metastatic NSCLC [16] and from a metastatic lung cancer mouse model

[17] and compared these results to intratumor heterogeneity (ITH) data in primary

NSCLC tumors from the TRACERx dataset [18].

Results
Metastasis is a molecularly late event following the clonal expansion model

We first investigated the difference of somatic mutations between primary tumors

and matched distant metastases in the 7 patients with available paired germline

DNA. Despite a wide span (3 to 24 months, a median of 9 months) and different
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therapies between resection of primary tumors and metastases (Additional file 1:

Table S2), an average of 67% of mutations were shared between primary tumors

and matched distant metastases (Fig. 1) and the tumor mutation burden (TMB)

was similar between primary NSCLC tumors and metastases (Additional file 2: Fig.

S1A). To validate these findings, we analyzed published WES data from 35 pairs of

primary NSCLCs and brain metastases from the Brastianos cohort [11]. Similarly,

primary NSCLC tumors and paired metastases shared an average of 69% of muta-

tions and harbored essentially the same TMB (Additional file 2: Fig. S1B). These

data suggest that at the time the metastasis occurred, these tumors were already

late in their course of molecular evolution when most somatic mutations have

already occurred.

To precisely quantify the difference in mutational landscape in the context of

intratumor heterogeneity (ITH), we calculated the genetic distance between primary

NSCLC tumors and metastases based on the cancer cell fraction (CCF) of the mu-

tations derived from PyClone considering variant allele frequency (VAF), tumor

purity, and local copy number changes [19]. Compared to ITH data from the

TRACERx NSCLC study [18], the genetic distance between primary tumors and

paired metastases was greater than that between spatially separated tumor regions

within the same tumors although the absolute difference was relatively small (Add-

itional file 2: Fig. S2). This suggests that neoplastic progression of NSCLC may fol-

low the clonal expansion model whereby spatially proximal cells are genetically

more similar to each other [20].

Fig. 1 Genetic divergence of primary lung tumors and paired distant metastases. For each patient, the left
scatter plot shows cancer cell fraction (CCF) values for somatic single nucleotide variants. Variants with
different color show the different clones. In the phylogenetic trees of primary (P) and metastatic (M)
tumors, trunk and branch lengths are proportional to the number of somatic mutations. Cancer gene
mutations are displayed with the trees (oncogene in red and tumor suppressor gene in green)
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Monoclonal seeding is the predominant mode for metastasis in NSCLC

To investigate the mode of metastasis in this cohort of NSCLC, we computed CCF of

all somatic single nucleotide variants using PyClone [19]. As shown in Fig. 1, all muta-

tions shared by primary NSCLC tumors and paired metastatic tumors were clonal (de-

fined as mutations clustered to the clone with the highest CCF) in both primary

tumors and metastases. Next, we inferred the subclonal architecture of each tumor by

correlating CCF of different clones based on the pigeonhole principle [21, 22] (Add-

itional file 2: Fig. S3). The results demonstrate that only single founding clones were

shared between primary NSCLC tumors and paired metastases and all subclones were

private to primary tumors or paired metastases consistent with a monoclonal/mono-

phyletic seeding mode during metastasis in this cohort of NSCLC patients. Analyses of

the previously published 35 pairs of primary NSCLCs and metastases showed that 34 of

the 35 patients (97%) followed the monoclonal seeding mode (Additional file 2: Fig.

S4). Furthermore, we obtained WES data from 3 tumor regions of the brain metastasis

of patient 8 in our cohort and 4 tumor regions of two brain metastases of patient

PB0308 in the Brastianos cohort (Additional file 2: Fig. S5). Subclonal analysis of multi-

regional sequencing data was also consistent with the monoclonal seeding model ex-

cept for one tumor region of PB0308 that harbored a small number of clones indicative

of polyclonal seeding. Taken together, these data suggest monoclonal/monophyletic

seeding may be a predominant mode of metastasis in the majority of NSCLCs.

Mutational processes of shared and private mutations between primary NSCLCs and

paired distant metastases

Each organ has its unique microenvironment, and tumor cells may be exposed to dis-

tinct environmental mutagens in different organs that could theoretically lead to dis-

tinct mutational processes. It is well known that different cancer types have distinct

mutational signatures [23, 24]. However, whether the mutational processes change

when NSCLC metastasizes to different organs has not been well studied. Shared muta-

tions (between primary NSCLC tumors and metastases) and private mutations (specific

to primary tumors or metastases) provide a unique opportunity to address this ques-

tion. We next calculated the contribution of different mutational signatures in primary

NSCLCs and paired metastases from the 7 patients in our cohort and 35 patients in the

Brastianos cohort [11] to investigate whether the different mutational processes were

operative in primary NSCLC tumors and metastases (Additional file 1: Table S3).

As shown in Additional file 2: Fig. S6, COSMIC signature 4 (associated with tobacco

exposure) was the dominant mutational signature in both primary tumors and metasta-

ses reflecting the fact that a majority of patients (37/42; 88%) had a history of cigarette

smoking. Other top mutational signatures in primary tumors included signature 1 (as-

sociated with spontaneous deamination), signature 2 (associated with APOBEC-

mediated processes), signature 24 (exposure to aflatoxin), and signature 13 (associated

with APOBEC-mediated processes), which were also the top mutational signatures in

metastases.

To further dissect the mutational processes associated with early clonal expansion be-

fore metastasis took place versus later subclonal diversification in primary NSCLC tu-

mors and metastases, we delineated the mutational signatures of shared mutations
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between primary NSCLC tumors and metastases representing early genomic events

and mutations private to primary tumors or metastases representing later subclonal

mutations in primary or metastases, respectively. As the mutations private to primary

tumors or metastases were too few for signature analyses for most patients, we first did

this analysis by combining shared or private mutations from all patients. As shown in

Additional file 2: Fig. S7, signature 4 was the dominant mutational signature in shared

clonal mutations, consistent with previous reports that mutations associated with to-

bacco carcinogen exposure were often early clonal mutations [18]. Signature 4 was also

associated with a small proportion of mutations unique to metastases that might repre-

sent rare subclonal mutations in primary tumors missed by single sampling. On the

other hand, signature 5 (etiology-unknown, associated with smoking in lung cancers

[23]) and signature 30 (etiology-unknown, associated with base excision repair in model

system [25]) emerged as the top mutational signatures for primary-only mutations and

signatures 2 and 13, both of which are associated with APOBEC-mediated processes,

had become the top mutational signatures for mutations identified exclusively in metas-

tases. Additionally, signature 1 (associated with spontaneous deamination) and signa-

ture 3 (associated with homologous recombination, HR) also appeared among the top

mutational processes in mutations unique to primary NSCLC tumors or metastases.

Furthermore, we re-ran analyses at the individual patient level on the 14 patients with

more than 50 mutations for shared, primary-only, and metastasis-only mutations (Add-

itional file 1: Table S4). Similar to the results from combined mutations, the contribu-

tion of signature 4 was significantly higher in early mutations shared by primary NSCL

C tumors and metastases: the average contribution was 58% in shared mutations, 12%

in primary-only mutations, and 13% in metastasis-only mutations (p = 0.00037 for

shared versus primary-only and p = 0.0017 for shared versus metastatic-only muta-

tions). In addition, compared to shared mutations, primary-only mutations were signifi-

cantly enriched for signatures 1, 3, 13, and 18, while metastasis-only mutations were

significantly enriched for signatures 1 and 13 (Additional file 2: Fig. S8 and Fig. S9).

Taken together, these results suggest distinct mutational processes might be operating

at different molecular time during the neoplastic evolution of NSCLC. While smoking-

associated processes may be the main driver for mutagenesis during early clonal expan-

sion of primary NSCLC tumors, other mechanisms such as spontaneous deamination,

HR-DNA repair, and APOBEC-mediated processes may have played more important

roles during subclonal diversification in both primary tumors and metastases.

Increased chromosome instability in metastases compared to paired primary tumors

Somatic copy number aberration (SCNA) is another key feature of human malignancies

that could potentially impact expression of large groups of genes. We next delineated

the genome-wide SCNA profiles of primary NSCLCs and paired distant metastases

using a gene-based SCNA analysis algorithm for exome sequencing data that allows fair

comparison of the SCNAs between different samples [26–28] to identify shared and

unique SCNA events (Additional file 2: Fig. S10). To minimize the impact of tumor

purity on SCNA analysis, we obtained purity-adjusted log2 copy number ratios for each

tumor in this study (see the “Methods” section for details). As shown in Fig. 2a, on

average, 59% of SCNA events were shared between primary tumors and paired
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metastases suggesting the majority of SCNA events were early molecular events during

the carcinogenesis of these NSCLCs. Similarly, analysis of pairs of primary NSCLC tu-

mors and brain metastases in the Brastianos cohort also revealed an average of 54% of

SCNA events shared between primary NSCLCs and metastases from the same patients

(Additional file 2: Fig. S11). Interestingly, patients with similar SCNA profiles between

primary tumors and paired metastases did not necessarily have similar somatic muta-

tion profiles (Spearman’s correlation of concordant ratio between SCNA profiles and

somatic mutation profiles rho = 0.21, p = 0.19; Additional file 2: Fig. S12) suggesting

Fig. 2 The level of concordance for somatic copy number aberrations (SCNAs) and allelic imbalance (AI). a
The proportions of trunk, primary-specific, and metastasis-specific SCNA events. SCNA events were defined
at gene level. Specifically, segment log2 ratio means were assigned to genes within each segment with
SCNA so each sample would have log2 ratio values of the same number of genes for fair comparison
between samples. b The proportions of trunk, primary-specific, and metastasis-specific AI events
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SCNA and mutations were independent genomic events in these tumors. On the other

hand, metastases demonstrated a significantly higher SCNA burden than paired pri-

mary tumors (p = 0.021) (Additional file 2: Fig. S13). No particular SCNAs were found

to be enriched in metastases. Furthermore, compared to the ITH dataset from the

TRACERx study [18], the SCNA landscape between primary tumors and paired metas-

tases was more different than between spatially separated tumor regions within the

same NSCLC tumors (p = 5.1e−11, Additional file 2: Fig. S14) once again supporting

clonal expansion during metastasis of these NSCLC tumors.

Next, we compared genome-wide allelic imbalance (AI) events in primary tu-

mors and matched metastases. We first used FACETS, a widely accepted algo-

rithm for AI analysis [29], and observed a trend of higher AI burden in

metastases although the difference did not reach statistical significance (Add-

itional file 2: Fig. S15). We subsequently applied hapLOHseq, a sensitive algo-

rithm specifically developed by our group to identify AI from exome sequencing

data [30]. From hapLOHseq analysis, metastases demonstrated a higher AI bur-

den than paired primary tumors by either the number of genomic segments sub-

jected to AI (paired-sample Wilcoxon test p = 0.0079) or the total size of genome

affected by AI (paired-sample Wilcoxon test p = 0.013) (Additional file 2: Fig.

S16). Importantly, the majority of AI events (an average of 70% in our cohort

and 82% in the Brastianos cohort) were shared between primary NSCLC tumors

and matched metastases (Fig. 2b and Additional file 2: Fig. S17) suggesting that

the majority of AI events had occurred prior to metastatic spread. We did not

observe any particular AI events (chromosomal regions) that were enriched in

primary tumors or metastases. Taken together, these results suggest that there

might be a higher level of chromosomal instability (CIN) in metastases leading to

more chromosomal aberrations. These findings are in line with TRACERx data

that a higher level of CIN was associated with inferior survival [18].

Majority of cancer gene mutations occur before metastasis

Next, we sought to investigate whether canonical cancer gene mutations were associ-

ated with metastasis. In our cohort, we identified 16 canonical cancer gene mutations

defined as non-synonymous mutations of oncogenes and tumor suppressors leading to

identical amino acid changes previously reported in cancers [31] or disrupting muta-

tions in tumor suppressors (stop-gain, splicing, and frameshift INDELs) and 13 of 16

(81%) canonical cancer gene mutations were shared by primary and paired metastatic

tumors, suggesting that these are acquired early prior to the occurrence of metastasis

(Fig. 1). In patient 4, a frameshift deletion on beta2-microglobulin (B2M) was exclu-

sively identified in the metastasis. In patient 8, two cancer gene mutations (a MAP3K1

frameshift deletion and a KDM6A frameshift insertion) were identified only in the pri-

mary tumor, suggesting both were later molecular events in the primary tumor ac-

quired after the spread of metastatic clones. Using the same definition, we identified 74

canonical cancer gene mutations from the 35 pairs of NSCLCs and brain metastases

and 64 (86%) were shared between primary NSCLCs and brain metastases (Additional

file 1: Table S5). Of note, 83% (148/178) of canonical cancer gene mutations were

shared between regions of the same tumor in the TRACERx dataset [18] comparable to
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that between primary NSCLCs and paired metastases suggesting that a majority of ca-

nonical cancer gene mutations could have been acquired early before metastatic

progression.

Similar DNA methylation profiles between metastases and primary NSCLC tumors

In addition to genomic aberrations, somatic epigenetic alterations, such as DNA methy-

lation, may also impact neoplastic transformation and fitness. DNA methylation

changes during metastatic progression have not been well documented in lung cancer.

We next compared the methylome of primary tumors and paired metastases with the

intent to identify DNA methylation changes associated with metastasis. Unsupervised

hierarchical clustering using the methylation levels of approximately 27,000 CpG

islands demonstrated that all tumor-adjacent uninvolved tissues from different patients

clustered together based on the organ of origin (lung, brain, and liver) (Fig. 3a) separat-

ing remotely from tumor tissues highlighting the tissue-specific methylation patterns

and significant divergence between uninvolved and tumor tissues. Furthermore, metas-

tases clustered with their paired primary NSCLC tumors rather than with other metas-

tases from other patients suggesting the marked heterogeneity in methylation patterns

between individuals.

Fig. 3 DNA methylation similarity between primary tumors and paired metastases. a Unsupervised
clustering of all samples including normal tissues based on DNA methylation level of all CpG islands (n =
27,000). b Correlation of promoter DNA methylation between primary tumors and metastases for the 1084
genes showing a negative correlation between DNA methylation and gene expression (Spearman’s rank
correlation ≤ − 0.5 based on the data in our main cohort). c Correlation of promoter DNA methylation level
between primary tumors and metastases for the 521 genes previously reported to be regulated by DNA
methylation in NSCLC from the study examining 73 cell lines
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Next, we compared primary NSCLC tumors and metastases in a supervised approach to

identify DNA methylation aberrations associated with metastasis. For this analysis, we fo-

cused on DNA methylation changes that could potentially impact expression of certain

genes. We identified 1048 genes with promoter methylation levels negatively correlated with

mRNA expression of the same tumors (Spearman’s rank correlation ≤ − 0.5 between pro-

moter methylation and gene expression; Additional file 1: Table S6) based on the data from

our main cohort of samples including normal samples (n = 24). The promoter methylation

levels of these genes were well correlated between primary NSCLCs and metastatic tumors

(r= 0.925, Fig. 3b), and none of the genes was significantly differentially methylated after

adjusting for false discovery rate (FDR). Moreover, we scrutinized a set of genes that were

previously reported to be significantly downregulated by DNA hypermethylation (n = 521)

[32]. However, no single gene was differentially methylated between primary tumors and

metastases from our main cohort (Fig. 3c and Additional file 1: Table S7). With the small

sample size acknowledged, these consistent findings suggest the overall somatic methylation

aberrations may have occurred before metastatic spread in this cohort of NSCLCs and were

largely maintained during neoplastic evolution at both primary and metastatic sites.

Upregulation of metabolic pathways and downregulation of immune pathways in

metastases

To explore the potential molecular aberrations associated with metastasis beyond gen-

omic and epigenetic changes, we compared the transcriptomic profiles between primary

Fig. 4 Differential signaling pathways in metastasis and immunohistochemical assessment of leukocyte
antigens. a Unsupervised clustering of gene expression profiles using highly variable genes (standard
deviation > 2.0; n = 4139). The complete linkage and 1-correlation distance metric were used. Each row
represents a gene, and each column represents a sample. Tumor versus normal: T, tumor; N, normal. Tissue
type: P, primary tumor; M, metastasis; PN, adjacent normal lung; MN, metastasis adjacent normal tissue.
Organ: L, lung; B, brain; H, liver. b Upregulated and downregulated pathways in metastasis (nominal p <
0.01 and q < 0.25). Pathways in red are upregulated pathways in metastasis, and pathways in blue are
downregulated pathways in metastasis. c Comparison of immune cell infiltration between primary NSCLC
tumors and paired metastases by immunohistochemistry (IHC) of immune markers (CD3, CD4, CD8, CD20,
and PD1). The density was defined as the number of cells positive for each marker per square millimeter.
The y axis shows the ratio (log2) of density of each cell type in metastases versus that in paired primary
lung cancers
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NSCLC tumors and metastases. Similar to DNA methylation aberrations, the unsuper-

vised hierarchical clustering demonstrated that tumor-adjacent uninvolved lung tissues

were separated from tumor samples overall and further clustered according to their

organ of origin (Fig. 4a) highlighting the tissue-specific gene expression patterns as well

as tumor-specific (irrespective of primary NSCLCs or metastases) transcriptomic

changes. In the tumor cluster, metastases were overall more similar to their corre-

sponding primary tumors than to each other, suggesting more pronounced inter- than

intratumor gene expression heterogeneity.

Further, we compared the transcriptomic profiles of primary NSCLCs and metas-

tases to identify specific pathways associated with metastases. Using gene set en-

richment analysis (GSEA), 5 pathways were significantly upregulated and 17

pathways were significantly downregulated (p < 0.01 and FDR < 0.25) in metastases

compared to primary NSCLC tumors (Fig. 4b). Upregulation of the recycling path-

way of L1 known to be associated with neuronal development was noted, likely

due to localization of 7 of 8 metastases within the brain. All remaining upregulated

pathways were associated with metabolism. Interestingly, among the 17 signaling

pathways downregulated in metastases, 14 were immune-related (Fig. 4b). Import-

antly, there was no significant association between TMB and tumor purity (cor =

0.19) suggesting that identification of up- or downregulated pathways was unlikely

driven by tumor purity. Moreover, metastases showed significantly lower immune

score [26] than primary tumors (Additional file 2: Fig. S18, p = 0.042). These pat-

terns were accompanied by lower CD3, CD4, CD8, CD20, and PD-1 densities in

metastases than primary tumors in 4 of 5 patients by IHC (Fig. 4c). Beyond the

overall decreased infiltration of immune cells in metastases, a higher CD4/CD8 T

cell ratio was seen, potentially supportive of the immunosuppressive environment

predominating in metastases (Additional file 2: Fig. S19).

To further understand downregulation of immune-related pathways in metastases,

we deconvoluted the transcriptomic data using various algorithms. We first applied

ESTIMATE, an algorithm estimating infiltration of overall immune cells [33], and

the analysis revealed significantly lower ESTIMATE scores in metastases than pri-

mary tumors (Fig. 5a) suggesting an overall lower immune cell infiltration in me-

tastases. Next, we deconvoluted gene expression data by TIMER [34] to infer the

infiltration of main immune cell types. As shown in Fig. 5b–g, the infiltration of

most immune cell types was higher in primary lung cancers than metastases with

the exception of macrophages, which were higher in metastases (Fig. 5d) and

CD4+ T cells that were similar between primary and metastases (Fig. 5f), which

led to higher CD4/CD8 ratio in metastases, although the difference did not reach

statistical significance (Fig. 5h). We further applied CIBERSORT to classify the im-

mune subsets at a more granular level [35]. Unfortunately, the inferred infiltration

of most immune cell subsets derived by CIBERSORT was very low in this cohort

of tumors (Additional file 2: Fig. S20) precluding comparison between primary tu-

mors and metastases. Nevertheless, CIBERSORT data suggested the macrophages

were predominately pro-tumor M2 macrophages [36], which were significantly

higher in metastases (Additional file 2: Fig. S20H). Taken together, these results

suggest that downregulation of immune-related pathways was mainly due to re-

duced immune cell infiltration in metastases.
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Immunosuppression may not be due to immune privilege

As 7 of 8 metastatic tumors were in the brain, immune privilege of the central nervous

system (CNS) [37–39] and/or steroid treatment prior to resection could have contrib-

uted to downregulation of immune pathways. To evaluate whether the immunosup-

pression only applied to brain metastases, we first specifically analyzed patient 7, who

had a liver metastasis. Importantly, not only did liver metastasis show a lower immune

score than the primary tumor (Additional file 2: Fig. S18B), but the GSEA analysis

using patient 7 only also showed that 15/17 downregulated signaling pathways in the

liver metastasis were directly related to immune responses (Additional file 1: Table S8).

Next, we analyzed a recently published treatment-naïve NSCLC patient dataset with ex-

tracranial metastases [16] and found that in 3 of 4 patients, metastatic samples showed

a lower immune score than their primary counterparts (Additional file 2: Fig. S21). Fur-

thermore, we re-analyzed transcriptomic data from 4 extracranial metastases from a

genetically engineered mouse model (GEMM) of human lung adenocarcinoma [17].

Once again, immune scores were decreased specifically in metastases (Additional file 2:

Fig. S21). Taken together, these data suggest that downregulation of immune pathways

may be a common phenomenon associated with NSCLC metastases irrespective of site.

Genomic basis for immunosuppression in metastases

As mentioned above, a higher SCNA burden in metastases has been associated with

immunosuppression in multiple cancer types [40]. We attempted to identify additional

genomic aberrations that could contribute to the suppressive immune microenviron-

ment in metastases but did not detect mutations of any gene critical to immune sur-

veillance exclusively in metastases [41] from the combined WES cohort of 43 patients.

We next evaluated loss of heterozygosity (LOH) of human leukocyte antigen (HLA)

class I, a potential immune evasion mechanism in cancer [42, 43], and found 16 of 43

Fig. 5 Immune cell infiltration in primary lung cancers versus metastases by deconvolution of
transcriptomic profiles. a The overall immune cell infiltration was inferred by RNA-seq data using ESTIMATE.
b–g The immune cell subsets were inferred by deconvolution of RNA-seq data using TIMER. The y axis
represents the proportion of each immune cell type in the specimen. h The CD4/CD8 ratio inferred using
TIMER. The difference was assessed by the paired-sample Wilcoxon test
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patients harbored HLA LOH in either primary NSCLC and/or metastases (Additional

file 2: Fig. S22). Among these 16 patients, 5 harbored HLA LOH only in metastases,

while 1 patient had HLA LOH only in the primary tumor. Interestingly, HLA LOH was

associated with a higher SCNA burden, chromosomal losses in particular, regardless of

primary or metastasis (Additional file 2: Fig. S23). We further compared the expression

of HLA genes between the 8 pairs of primary NSCLCs and matched distant metastases

to explore whether decreased HLA expression may lead to ineffective neoantigen pres-

entation and immune evasion. As shown in Additional file 2: Fig. S24, the expression of

HLA genes was overall lower in metastases, but the difference did not reach statistical

significance.

Discussion
Lung cancer is the leading cause of cancer mortality globally and metastases account

for most deaths. Little is known about the timing and mechanisms underlying metasta-

sis. Metastasis is believed to be an evolutionary process shaped by the dynamic inter-

action of tumor cells with host factors, particularly host anti-tumor immune

surveillance. The molecular aberrations of tumors as well as tumor microenvironment

at different molecular levels could profoundly impact this process, and comprehensive

molecular analyses of primary tumors and distant metastases are warranted to depict

cancer metastatic evolution. Through multiomics analyses of primary NSCLC tumors

and paired distant metastases, we demonstrated that overall, metastases resemble their

corresponding primary NSCLC tumors closely regarding shared somatic mutations in-

cluding canonical cancer gene mutations, DNA methylation profiles, and transcrip-

tomic profiles suggesting a majority of these are early molecular events occurring

before metastatic spread. On the other hand, metastases differed from primary tumors

by showing more profound immunosuppressive microenvironment than primary tu-

mors. It suggests that cells with metastatic plasticity may be the ones enabled to escape

immunosurveillance, thus leading to successful metastasis to distant organs.

Monoclonal and polyclonal seeding represent the two main hypothesized modes of

metastasis. In monoclonal seeding, clones in the primary tumor compete and a single

clone or cell eventually seeds the metastases, while in the polyclonal seeding hypothesis,

multiple distinct clones cooperatively, collectively, or independently seed the metastases

[21, 22, 44]. Through comparison of the subclonal architecture of primary NSCLC tu-

mors and their paired distant metastases, we discovered evidence of monoclonal seed-

ing in 41 of 42 tumors (one patient without germ line control was excluded). Similarly,

in their pioneer study comparing brain metastasis to matched primary tumors, Brastia-

nos et al. revealed monoclonal seeding in a majority of cancer types including renal cell

carcinoma, ovarian cancer, breast cancer, melanoma, and esophageal cancer [11] sug-

gesting that monoclonal seeding is a predominant mode of metastasis regardless of

cancer type or metastatic site.

Another critical question is what capacities are associated with cells that are capable

of metastasis. Xenograft studies have suggested that metastases originate from particu-

lar subclones with distinct “metastatic” profiles [45–48] while others have shown that

metastases develop through stochastic events from primary tumor cells with an equal

metastatic potential [49, 50]. In our study, comparison of transcriptomic profiles of me-

tastases to primary NSCLCs revealed a more suppressed immune microenvironment in
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metastases. This was supported by the lower densities of immune cell infiltration in

metastases, which could highlight immune exclusion or a lack of ability to proliferate

locally within the tumor. This is also supported by the lack of PD-1 expression in me-

tastases, which could highlight the inability of T cells to become activated and expand

upon encountering their cognate antigens within tumors. Furthermore, though the

overall immune cell densities were lower in metastases, we evaluated the relationship

between cell types considered to be pro- and anti-tumor to gain insight into their bal-

ance within the tumor microenvironment. These analyses demonstrated a higher level

of infiltration of M2 macrophages known to associate with immunosuppressive tumor

microenvironment [51] in metastases. These are complemented by the higher CD4/

CD8 ratio in metastases, which could portend the presence of regulatory T cells further

known to inhibit anti-tumor responses, though our inability to evaluate additional

markers prevents us from confirming this hypothesis.

Immunosuppression in brain metastases has been reported [15, 52, 53]. However,

these findings have been confounded by immune privilege associated with the blood-

brain barrier (BBB) [37–39]. Here, suppressed immune pathways were observed not

only in brain metastases, but also in extracranial metastases in both human autopsy

cases and murine GEMM lung cancers suggesting immune evasion in metastases may

be a universal phenomenon in NSCLC. Metastasis involves cancer cells breaking away

from the primary tumor, traveling through blood or lymphatics, and forming a new

tumor at other sites. During this process, cancer cells must survive many challenges,

particularly immune surveillance. Therefore, being able to escape from destruction by

immune cells is necessary for cancer cells to successfully metastasize, which has been

experimentally demonstrated in animal studies [54, 55]. Cancer cell shedding into

blood is not uncommon, even for early stage diseases [56], though not all patients with

circulating tumor cells develop metastases. Therefore, it is possible that only the cells

capable of escaping immune surveillance could survive and form distant metastases.

In our search for unique “metastatic” genomic profiles, in addition to a previous report

of more HLA loss in metastasis [42], distant metastases showed more SCNA and

genome-wide AI events than their primary counterparts. Emerging evidence has shown

that SCNA is associated with a cold immune microenvironment across cancer types [26,

57]. The exact mechanisms underlying the association between SCNA and immunosup-

pression are not well understood. Several hypotheses including relatively low neoantigen

concentration and protein imbalance leading to impaired tumor signal in high aneuploidy

tumors were proposed [40]. It is possible that, at least in a subset of NSCLCs, different

cancer cells with different SCNA/AI profiles break off from tumor cells and only the cells

with high SCNA/AI burdens can survive the immune attack during seeding and become

metastatic clones. Furthermore, the HLA gene expression also appeared to be lower in

metastases, although the difference did not reach statistical significance, which could be

due to small sample size. Given the heterogeneous nature of NSCLC, the molecular

mechanisms leading to immune evasion are likely heterogeneous across different tumors.

Further studies with larger cohorts of primary metastasis are needed to identify particular

molecular features associated with immunosuppression in metastases.

One important limitation of the current study is the small sample size, particularly

for transcriptomic profiling analyses. Unfortunately, there are very little molecular pro-

filing data available from lung cancer distant metastases even for unpaired specimens.
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For example, MET500 is a comprehensive molecular profiling study on 500 adult pa-

tients with metastatic solid tumors, thus far the largest dataset on molecular profiling

of metastases [58]. However, there were only 24 lung cancer patients in the cohort and

5 specimens of distant metastases (n = 3 for liver; n = 1 for adrenal; n = 1 for brain).

This highlights the need for more multiomics studies on lung cancer metastases, to

underscore the molecular mechanisms underlying distant metastases of NSCLC.

Immunosuppression has already occurred in primary lung cancers [14, 15]. Our

current data revealed more profound immunosuppression in metastases than primary

tumors, in line with reports that immune checkpoint blockade therapy may have differ-

ent efficacy in primary NSCLC tumors versus metastases [59]. Future comprehensive

profiling studies with larger cohorts of ideally paired primary NSCLCs and metastases

have the potential to identify distinct immunosuppressive features in primary tumors

and metastases to provide novel insights into precise immunotherapy strategies for pa-

tients exhibiting different primary versus metastatic tumor burdens.

Conclusions
Metastasis may be a late event during the molecular evolution of NSCLC when the ma-

jority of genomic and epigenetic events have occurred. Immunosuppression, endowed

by different molecular features such as somatic copy number aberrations, may be a

common characteristic of cancer cells with metastatic plasticity in NSCLC.

Methods
Patient cohort and sample collection

Peripheral blood, primary NSCLC tumors, distant metastases, and tumor-adjacent nor-

mal tissues were collected from 7 patients with metachronous metastatic NSCLC and

one patient with synchronous metastatic NSCLC (Additional file 1: Table S2). Periph-

eral blood mononuclear cells (PBMC) were immediately isolated from 10ml whole

blood and stored at − 80 °C. Surgical specimens were snap frozen in liquid nitrogen im-

mediately after surgical resection and stored at − 80 °C. All surgical specimens were

subjected to pathological examination to confirm the diagnosis and ensure the sample

quality before DNA or RNA extraction.

Whole exome sequencing

Genomic DNA was extracted and subjected to library preparation for sequencing with

Agilent SureSelect Human All Exon V4 kit according to the manufacturer’s instruc-

tions. The 76-bppaired-end WES was performed on Illumina HiSeq 2000 platform with

mean target coverages of 200× and 100× for tumor and normal samples, respectively.

Somatic mutation calling

We ran MuTect [60] for somatic single nucleotide variants (SNVs), and Pindel [61] for

somatic small insertions and deletions (INDELs). Mutations previously reported in public

database (dbSNP138, 1000Genomes, ESP6500, and EXAC) with > 1% allele frequency

were removed. Next, we applied the following mutation filtering criteria: (i) sequencing

depth ≥ 50 for tumor and ≥ 30 for normal, (ii) tumor allele frequency ≥ 5% for single nu-

cleotide variants and ≥ 10% for INDELs, and (iii) normal allele frequency < 1%.
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Genetic distance calculation

Using cancer cell fractions (CCFs) of all somatic mutations including SNVs and INDELs,

we calculated genetic distance between any given two samples (primary tumor versus

paired metastasis or two different regions of the same tumors). We used three

different definitions of genetic distance. First, Nei’s genetic distance [62, 63] was

calculated as follows:

D ¼ − ln

P
xiyi þ 1 − xið Þ 1 − yið Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi2 þ 1 − xið Þ2� � P

yi2 þ 1 − yið Þ2� �q

Here, xi and yi denote the CCFs of the ith mutation in sample x and sample y,

respectively.

Next, we calculated the genetic distance by taking the mean of absolute CCF differ-

ence defined as below:

D ¼
P

xi − yij j
n

In the formula, xi and yi denote the CCFs of the ith mutation in sample x and sample

y, respectively, and n is the number of total mutations.

Finally, the Jaccard distance [64] was calculated as follows:

D ¼
P

xi − yið Þ2
P

xi2 þ
P

yi2 −
P

xiyið Þ

In the Jaccard distance definition, xi and yi denote the CCFs of the ith mutation in

sample x and sample y, respectively.

For the ITH dataset, one tumor can have multiple two-sample combinations. In this

case, we took the average distance among all the possible pairwise combinations.

Mutational signature analysis

Mutation signatures were determined by deconstructSigs [65] with 30 COSMIC signa-

tures provided by the package.

Somatic copy number aberration analysis

We applied ExomeCN, a gene-based SCNA analysis algorithm for exome sequencing

data that allows fair comparison of the SCNAs between different samples. Specifically,

we first obtained copy number segments with copy ratios between tumor and normal.

The log2 copy number ratios of the segments were then assigned to the genes within

the segments by CNTools [66], so each sample would have log2 ratio values of the

same number of genes for fair comparison between samples. We defined copy number

gains and losses in all tumor samples using +log21.5 for gain and −log21.5 for loss, re-

spectively. Since the signal to noise ratio of SCNA could be reduced in the samples

with lower tumor purity, we obtained purity-adjusted log2 ratios by log2((original copy

ratio − 1)/purity + 1) [67] if any of the paired samples from the same patients passed

the original log2 thresholds of +log21.5 and −log21.5. Tumor purity was estimated by
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Sequenza [68]. Copy number gain burden and loss burden were defined as the number

of copy number gains and losses in a given sample.

Allelic imbalance analysis

We applied two algorithms for the AI analysis, FACETS [29] and hapLOHseq [30].

FACETS is an allele-specific copy number analysis pipeline utilizing next-generation se-

quencing (NGS) data. It processes BAM file and segments total- and allele-specific read

counts to estimate integer copy number calls adjusted for tumor purity, ploidy, and

clonal heterogeneity. For hapLOHseq, the germline variants were first called with

GATK and germline haplotypes were then estimated using the simple phaser utility of

hapLOHseq. Next, we ran hapLOHseq to identify putative regions of AI in all samples.

For each patient, we took the hapLOHseq AI event calls that were made for each sam-

ple, one at a time, and tested if these events existed in the other samples of the same

individual using a binomial test, assessing if there is higher than expected phase con-

cordance of 0.5 over a tested region (p < 1e−4) [69]. Finally, for each patient, we charac-

terized segments of the genome as follows: normal (no AI in any sample), norm-

specific (AI region unique to the normal tissue), private (AI region only seen in a single

tumor sample of a patient), shared (AI region seen in multiple samples of a patient),

met-specific (AI region unique to a metastatic sample), or trunk (AI region seen in all

samples of a patient’s tumor, or in the case of metastatic patients, AI regions seen in

both the primary and metastatic samples of a patient).

Subclonal architecture analysis and phylogeny inference

For each patient, we ran PyClone [19] with 10,000 iterations and 1000 burn-in parame-

ters. To be specific, we only used somatic SNVs because their variant allele frequency

is expected to be relatively more accurate than INDELs. With local copy number data

obtained from Sequenza [68], the PyClone was run with paired samples (primary and

metastasis). We only considered mutation clusters with at least 5 mutations. To infer

phylogenetic trees, mutation data was converted to the binary data with mutations be-

ing 1 and wild-type being 0 and fed into Phangorn R package. Tree topologies were es-

timated by pratchet, and branch lengths were inferred by acctran.

DNA methylation analysis

Methylation profiling was done using Infinium MethylationEPIC Kit (Illumina, Inc.) ac-

cording to manufacturer’s protocol. Data normalization and beta value determination

were carried out using Illumina GenomeStudio Software with the additional Methyla-

tion Module Software. RnBeads package in R was then used to derive 27,000 CpG is-

land methylation values. The hierarchical clustering based on DNA methylation level of

the CpG islands was performed with the correlation distance metric (1 – Pearson’s cor-

relation coefficient). We identified a list of genes whose promoter DNA methylation

was negatively correlated with mRNA expression (Spearman’s rank correlation coeffi-

cient ≤ − 0.5) by correlating DNA methylation and gene expression data of all samples

including normal tissues in our cohort. We also obtained previously reported 521 Sig-

nificantly Repressed in Association with DNA Methylation (SRAM) genes known to be

regulated by DNA methylation in NSCLC from the study examining 73 cell lines [32]
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and compared their promoter DNA methylation levels between primary tumors and

paired metastases in our cohort.

RNA sequencing

Extracted RNA was converted to cDNA using Ribo-SPIA Technology (NuGEN, San

Carlos, CA). The cDNA library was then sequenced on Illumina HiSeq 2000 platform

using 76 bp paired-end reads.

Transcriptomic data processing and gene set enrichment analysis

RNA sequencing reads were mapped to the hg19 reference genome using the STAR

aligner [70]. For calculation of gene expression, raw count data of each gene were first

obtained using HTSeq [71] and normalized by scaling the raw library size using calc-

NormFactors in edgeR package in R [72]. Then, Voom [73] transformation was applied

to normalized counts and a linear model fit to the data for differential expression ana-

lysis using Limma package [74]. To identify upregulated and downregulated pathways

in metastasis, we run GSEA (v3.0) [75, 76] against the combined gene sets including

KEGG, BioCarta, and Reactome.

Estimation of immune infiltration by de-convolution of transcriptomic data

Immune scores were calculated by taking the average of normalized expression levels

of 40 genes including cytolytic markers, HLA molecules, genes associated with IFN-γ

pathway, chemokines, and adhesion molecules as previously described [26]. The overall

immune cell infiltration was derived using ESTIMATE [33] and various immune cell

subtypes were inferred by TIMER [34].

Immunohistochemistry

Immune profiling by IHC with multiple immune markers including CD3, CD4, CD8,

CD20, and PD1 was performed on primary tumors and matched distant metastases as

previously described [77]. The density was defined as the number of cells positive for

each marker per square millimeter.
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