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Abstract

Background: Glioma is the most common intrinsic brain tumor and also occurs in
the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas.
However, the cooperative partners of EGFR driving gliomagenesis remain poorly
understood.

Results: We explore EGFR-mutant glioma evolution in conditional mutant mice by
whole-exome sequencing, transposon mutagenesis forward genetic screening, and
transcriptomics. We show mutant EGFR is sufficient to initiate gliomagenesis in vivo,
both in the brain and spinal cord. We identify significantly recurrent somatic
alterations in these gliomas including mutant EGFR amplifications and Sub1, Trp53,
and Tead2 loss-of-function mutations. Comprehensive functional characterization of
96 gliomas by genome-wide piggyBac insertional mutagenesis in vivo identifies 281
known and novel EGFR-cooperating driver genes, including Cdkn2a, Nf1, Spred1, and
Nav3. Transcriptomics confirms transposon-mediated effects on expression of these
genes. We validate the clinical relevance of new putative tumor suppressors by
showing these are frequently altered in patients’ gliomas, with prognostic
implications. We discover shared and distinct driver mutations in brain and spinal
gliomas and confirm in vivo differential tumor suppressive effects of Pten between
these tumors. Functional validation with CRISPR-Cas9-induced mutations in novel
genes Tead2, Spred1, and Nav3 demonstrates heightened EGFRvIII-glioma cell
proliferation. Chemogenomic analysis of mutated glioma genes reveals potential
drug targets, with several investigational drugs showing efficacy in vitro.

Conclusion: Our work elucidates functional driver landscapes of EGFR-mutant
gliomas, uncovering potential therapeutic strategies, and provides new tools for
functional interrogation of gliomagenesis.
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Introduction
Gliomas constitute 30% of all brain tumors. Their high-grade form, glioblastoma

(GBM), accounts for 80% of malignant brain tumors and is one of the most lethal can-

cers, with median survival of 12.2 to 18.2 months [1–3]. Spinal gliomas (astrocytomas)

form 60% of all spinal tumors in children and adolescents, with higher-grade lesions

having a mean survival of 15.5 months. Surgical resection of spinal gliomas is challen-

ging due to their infiltration of the spinal cord, presenting a barrier to molecular stud-

ies, and there is a lack of animal models.

Whole-genome sequence analysis of human brain gliomas has shed some light on the

genetic and epigenetic landscapes of this disease [4–8]. Aside from mutations, driver

genes may also be altered through transcriptional, methylation, or large-scale copy

number changes making the affected genes more difficult to pinpoint as drivers. A fur-

ther complicating issue is that mutations in individual gliomas can affect different genes

in various combinations. This can alter prognosis and response to therapy [9, 10] and

poses a challenge to confidently identify genes which are truly collaborating with one

another. Understanding the functional genomic landscapes of gliomas is therefore of

central importance. Genetic screens in mice offer a way to pinpoint functional drivers.

Challenges to genetic analysis in normal mouse brains include efficiencies of genome

manipulation, cell delivery, and tumor production as well as generating both activating

and loss-of-function mutations in a single screen. Conditional piggybac mutagenesis is

a powerful cancer screening platform that has not previously been applied to central

nervous system tumors.

Activating mutations in the epidermal growth factor receptor (EGFR) occur in up to

60% of IDH1 wild-type GBMs [5] of which EGFRvIII is the most common (an in-frame

deletion of exon 2 to 7 in the extracellular domain leading to constitutive receptor acti-

vation [11, 12]). EGFR alterations, including amplification, point mutations, and vIII,

confer similar drug sensitivities to EGFR inhibitors in patient-derived GBM cells [13],

and EGFR amplification and EGFRvIII are retained in most recurrent GBMs (when

present in primary tumors) [14], suggesting these alterations have similar functional

driving effects in these tumors. Frequent driver mutations and amplifications of EGFR,

including extrachromosomal ones, have also been detected in IDH1 wild-type, histolog-

ically low-grade gliomas (LGGs) [15, 16]. Some evidence suggests EGFRvIII is a late

event human GBM: its expression is heterogeneous, and it is found on double minute

chromosomes with EGFR inhibitors causing selective pressure to drive its disappear-

ance yet unable to elicit a cure [17]; however, the EGFRvIII mutation has also been de-

tected throughout GBMs, including regions with and without its expression, suggesting

EGFRvIII may be an early event in some cases [18]. Challenges for translational studies

include lack of understanding of the cooperative drivers of EGFR and the paucity of

EGFRvIII-GBM cell lines due to loss of EGFRvIII during in vitro culture of primary

cells, highlighting the need for relevant models [19].

EGFR has been shown to initiate brain gliomas with short latency in mice only when

combined with multiple tumor suppressor losses, such as Cdkn2a [20–22] and Pten

[12, 23]. Moreover, EGFR amplification and expression have been identified in a human

spinal glioma subset (leptomeningeal-disseminated pediatric LGGs [24, 25]). However,

the role of EGFR mutations in spinal gliomas and their cooperative genetic drivers in

brain and spinal tumors remain largely unknown [26].
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Here, we show EGFRvIII is sufficient to initiate gliomagenesis from the normal mouse

brain and spinal cord with long latency. We hypothesized that conditional genome-

wide piggyBac mutagenesis in the presence of a strong initiating EGFR mutation may

be a fruitful approach for mapping cooperative glioma driver landscapes in vivo. This

novel approach in combination with genomic sequence analysis sheds light on the na-

ture of tumor-genome evolution in genetically engineered mouse models (GEMMs) of

glioma. We show these approaches can help decipher the complex genomes of human

gliomas and the driver landscapes illuminate potential molecular intervention points

for therapeutics.

Results
EGFRvIII expression initiates progressive gliomagenesis

To study the role of mutant EGFR in gliomagenesis, we generated double heterozygous

mice carrying a conditional human EGFRvIII transgene [12] and cre under the control

of the Nestin promoter [27] (nes-cre) which specifically activates EGFRvIII expression

in the central nervous system, (Fig. 1a, b). EGFRvIII; nes-cre mice were born at expected

frequencies with structurally normal brains. By 60 weeks of age, 100% of mice had suc-

cumbed to brain and/or spinal tumors (n = 48) (Fig. 1c).

Examination of brains prior to clinically overt disease (mice aged 12–28 weeks) re-

vealed focal cellular expansions in the subventricular zone (SVZ) and small glioma pre-

cursors with proliferative activity, also described as “microneoplasias” [28, 29] (12/12

mice, Additional file 1, Fig. S1). Multiple lesions were detected bilaterally protruding

into the lateral ventricles and from the brain surface (Fig. 1d). These microneoplasias

expressed markers of neural stem cells and transit-amplifying cells, specifically Sox2,

Nestin, PDGFRa, GFAP and Olig2, (Fig. 1g, Additional file 1: Fig. S2).

Mice later developed neurological signs due to one or multiple gliomas within the lat-

eral ventricles and/or brain surface with evidence of subarachnoid involvement (40/48

mice had brain gliomas; mean survival 41.1 weeks); immunostaining for human EGFR

and EGFRvIII confirmed EGFRvIII expression specifically and clonally in tumor cells of

microneoplasias and gliomas (Additional file 1: Fig. S3, S4). These tumors had histo-

logical features comparable to those of human gliomas, Additional file 1: Fig. S5; a

small proportion displayed necrosis and microvascular proliferation, characteristic of

GBMs, Additional file 1: Fig. S6. The proportions of grade II, III, and IV tumors and

their proliferative indices (Ki67) are shown in Fig. 1e, f and Additional file 1: Fig. S7. A

histopathological difference between these mouse and human gliomas however is that

EGFRvIII is largely found in human GBMs whereas the majority here are mouse LGGs,

as observed in some other EGFRvIII mouse models [21].

Overall, these results show that EGFRvIII can initiate gliomagenesis in the brain, with

the long latency reflecting the need for secondary mutations.

EGFRvIII drives spinal cord gliomas

In addition to brain tumors, EGFRvIII; nes-cre mice also developed multiple and wide-

spread spinal tumors with 100% penetrance (48/48 mice, Additional file 2: Table S1),

causing neurological deficits including limb weakness and ataxia. The tumors were lo-

cated on the spinal cord surface and locally invaded surrounding soft tissue, nerve
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Fig. 1 EGFRvIII initiates gliomagenesis in the brain and spinal cord of mice. a Outline of the experiment: EGFRvIII was
conditionally expressed throughout the central nervous system using nes-cre. b Structures of EGFRvIII [12] and nes-cre
alleles. Notation: CAG= cytomegalovirus (CMV) early enhancer, chicken β-actin promoter; pA=poly-adenylation signal;
red triangle = loxP site; hGH(pA) = human growth hormone polyadenylation signal; nestin enhII = enhancer in second
intron of rat nestin gene [27]. c Kaplan-Meier plot of EGFRvIII; nes-cremice and control (nes-cre) mice (p<0.0001, log-
rank test, n=48 and n=10 mice respectively). d Low- and high-power views of a small glioma (microneoplasia)
protruding from the cortical surface of the brain. Scale bar corresponds to 90μm for left panel and 25 μm for right
panel. e Pie charts show proportions of brain and spinal tumors of various grades in heterozygous EGFRvIII; nes-cre
mice. f Pie charts show relative proportions of Ki67 proliferative index for brain and spinal tumors of these mice. g Top
panel (left to right): low-power view of H&E stain of a brain with a typical microneoplasia (same as in d), and high-
power view of immunostains of this neoplasm showing positivity for neural lineage markers double-cortin (DCx),
GFAP (reflecting reactive astrocytes between tumor cells), Olig2, Sox2, and PDGFRa (n=5/5). Histopathologic diagnosis
was made by an expert consultant neuro-oncological pathologist. Lower panel (left to right): low-power view of spinal
cord with an encasing glioma, and high-power views of immunostains of this tumor for neural lineage
markers—tumor cells are negative for DCx, reactive astrocytes are positive for GFAP, and tumor cells are positive for
Olig2, Sox2, and PDGFRa. Scale bar corresponds to 1mm for left H&E panel, 70μm for upper immunostain panels; 0.7
mm for lower H&E panel, 140 μm for lower immunostain panels
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roots, and cranial nerve ganglia (Additional file 1: Fig. S8). At an advanced stage of

tumor progression, tumor cells were seen invading the parenchyma, reminiscent of

intramedullary spread of spinal astrocytomas in humans. They were present throughout

the leptomeningeal space indicating leptomeningeal spread, a poor prognostic indicator

in patients [30]. Tumors showed striking resemblance in histology and location with

human leptomeningeal-disseminated spinal gliomas.

In 8/48 mice without established brain tumors (but with microneoplasia), there were

widespread spinal tumors. Histology of spinal tumors universally classified them as

grade II glioma even in the presence of grade IV intracranial gliomas, suggesting these

are primary spinal gliomas, most likely arising independently (Fig. 1e). These spinal tu-

mors expressed classical glioma markers, such as GFAP, Sox2, Olig2, and PDGFRa, and

had a lower proliferative index than the corresponding brain tumors (Fig. 1f, g). These

EGFRvIII-induced spinal tumors represent, to our knowledge, the first mouse model of

spinal gliomas with leptomeningeal dissemination.

Whole-exome sequencing reveals the mutational landscape

To identify somatic mutations and copy number changes acquired after glioma initi-

ation by EGFRvIII, we performed whole-exome sequencing (WES) on 17 tumors (9

brain and 8 spinal gliomas). To increase power for detection of recurrent mutations,

WES analysis was performed on the pooled group of gliomas from all CNS compart-

ments [31]. Across all tumors, we found 85 significant recurrently mutated genes with

mutations in two or more tumors identified by MuSiC [32] (adapted for mouse data);

most had single-nucleotide variants (SNVs) but some genes exhibited INDELS (Fig. 2a,

Additional file 3: Table S2). The median number of exonic mutations per tumor was 29

of which missense mutations were the most common. Sub1, a transcriptional coactiva-

tor, was the most frequently mutated gene (6 mutations in 5/17 tumors, p = 1.1 × 10−16,

FDR 2.27 × 10−12, likelihood ratio test, LRT) displaying INDELs and SNVs, all in splice

sites suggesting loss of function. Trp53, a known tumor suppressor in human LGG and

GBM [33], was the second most frequently mutated gene (5/17 tumors had a Trp53

missense mutation, all within Trp53’s DNA-binding domain; p = 1.13 × 10−12, FDR

7.75 × 10−9, LRT; Additional file 1: Fig. S9), validating the application of WES to iden-

tify relevant collaborative mutations. Similarly, Nf1, a known genetic driver of brain

and spinal gliomas [34], was found to be mutated in two tumors (p = 0.0010, FDR 0.17,

LRT). Other frequently mutated genes were Tead2, Nt5c2, Ces1c, Prex2, Uimc1, and

Itga6. Tead2, a transcription factor in the Hippo pathway, had recurrent mutations

across its TEA/ATTS (DNA-binding) domain (4 mutations in 3/17 tumors; p = 2.80 ×

10−11, FDR 1.15 × 10−7, LRT), including splice site mutations and one frameshift muta-

tion, suggesting loss of function. Uimc1 and Itga6 had three mutations each (p = 1.39 ×

10−7 and FDR 1.9 × 10−4, p = 2.7 × 10−7 and FDR 3.2 × 10−4, LRT, respectively), all of

which were INDELS and one of which caused a frameshift in Itga6 (Fig. 3i). These gli-

omas were all wild-type for Idh1, consistent with gliomas in humans in which IDH1

and EGFR mutations tend to be mutually exclusive.

In contrast to the relatively small number of recurrent mutations, EGFR-mutant tu-

mors had complex genomes by DNA copy number analysis (Fig. 2b). Significant focal

amplifications and deletions, identified by GISTIC2 [35], were evident in regions with
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Fig. 2 (See legend on next page.)
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known cancer genes, for example, significant focal Cdkn2a deletions (GISTIC q value =

1.39 × 10−5) were evident and EGFRvIII (in Col1a1 locus, GISTIC q value = 0.017) was

recurrently amplified. Significantly recurrent focal deletions were present in a novel pu-

tative glioma driver Adgrl2 (GISTIC q value = 2.19 × 10−6, Additional file 4: Table S3).

Several of the most significantly mutated genes were also in regions with frequent dele-

tions, including Trp53, Tead2, and Uimc1, supporting putative tumor suppressive roles

(Fig. 3i).

The significance and translational relevance of the most frequently mutated and/or

focally deleted genes detected in mouse gliomas were assessed by comparison with hu-

man glioma datasets from The Cancer Genome Atlas (TCGA; n = 283 LGGs, 273

GBMs) [36, 37]. This revealed that TEAD2 is recurrently deleted in 48% of human

LGGs in a mutually exclusive manner with TP53 (Bonferroni-adjusted p < 0.001, Fish-

er’s exact test, Additional file 1: Fig. S10). Recurrent deletions in previously unknown

glioma genes NT5C2, ADGRL2, and UIMC1 were observed whilst SUB1, CES1, and

ITGA6 were frequently methylated in human LGGs (Additional file 1: Fig. S10); fre-

quent CNVs in these genes were also present in human GBMs. Subgroup analysis con-

firmed recurrent mutations/CNVs (> 2 tumors) in these genes specifically in EGFR-

mutated/amplified human LGGs and GBMs. These data cross-validate the relevance of

these novel putative drivers in humans.

Transcriptomic profiling defines glioma oncogenic pathways

To delineate the signaling pathways deregulated in tumors, we performed RNA-

sequencing (RNA-seq) on 11 EGFRvIII-expressing mouse brain gliomas and 10 spinal

gliomas.

Compared with normal mouse brains (n = 6), EGFRvIII-brain gliomas show 2000 up-

regulated and 1784 downregulated genes (log2 fold change > ± 2 and Benjamini-

Hochberg adjusted p value < 0.01, Additional file 5: Table S4). Gene ontology (GO)

(See figure on previous page.)
Fig. 2 Whole-exome and transcriptome analysis of EGFR-mutant mouse brain and spinal cord gliomas. aMutational
profile of 17 brain and spinal tumors. Genes are ranked according to the frequency of mutations (indels or SNVs).
Known glioma drivers include Trp53 and Nf1, and novel ones found mutated are Sub1 and Tead2. b Copy number
profile, left axis shows frequency of larger amplifications and deletions, whereas right axis represents frequency of focal
copy number changes; key genes with focal alterations are highlighted. c Gene set enrichment analysis reveals
collaborative pathways in EGFR-mutant brain tumors, including oncogenic pathways, stem cell, and epithelial to
mesenchymal (EMT)-related pathways. Each line identifies a transcriptomic profile with a Bonferroni-adjusted p value
< 0.01. Although not displayed here, spinal tumors are enriched for the same pathways implying conserved molecular
mechanisms. d Plot showing stronger upregulation of EGFRvIIImRNA expression (from RNA sequencing) compared
with wild-type Egfr in tumors, highlighting the former is the more prominent driver (****p<0.0001, paired t test; n=
11 brain tumors, n=10 spinal tumors, relative to wild-type brain, n=6, and spinal cord, n=6). Mean expression and
standard deviation values are plotted. e Hox gene upregulation in EGFRvIII-brain gliomas. Genes are ranked according
to log2 fold change compared to wild-type brain, Benjamini-Hochberg adjusted p<1× 10−12 for each gene. f Heat
map showing expression of HOX genes in human GBMs relative to normal brain from three datasets (TCGA, Murat
and Sun; n=542, 80 and 81 GBMs respectively); log2 fold changes are all significant with Benjamini-Hochberg
adjusted p<0.05, except for “NC” (“no change”). Genes are ranked according to the greatest upregulation in mouse
tumors. Heatmap shows upregulation for HOX genes in human GBMs, with no cases of downregulation. g Gene set
enrichment analysis (GSEA) plots for EGFRvIIImouse gliomas showing significant positive enrichment for human
mesenchymal GBM and negative enrichment for the neural GBM signature (Verhaak dataset); normalized enrichment
score (NES) and FDR q value are stated on the plots. There was also weaker positive enrichment for Verhaak human
proneural GBM and classical GBM signatures (NES 2.22 and 1.92, FDR q value 0.004 and 0.018 respectively)
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Fig. 3 (See legend on next page.)
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analysis of upregulated genes showed a significant enrichment for genes related to the

cell cycle and mitosis, differentiation, and neurogenesis (FDR < 0.001). Downregulated

genes showed enrichment for pathways such as neuron differentiation and migration

(FDR < 0.001). Gene set enrichment analysis (GSEA) of differentially expressed genes in

EGFRvIII-brain gliomas showed significantly enriched gene sets (p < 0.01) including

p53, Wnt, MAPK, Jak-Stat, Rb pathways, and stemness, implicating these oncogenic

pathways in driving gliomagenesis in cooperation with EGFRvIII (Fig. 2c, Add-

itional file 1: Fig. S11).

The most “upregulated” gene was the EGFRvIII transgene, but as this human transgene

is not present in normal tissue, fold change is not meaningful. The endogenous Egfr gene

was also upregulated (mean log2 fold change = 3.71) in both brain and spinal tumors, sug-

gesting both mutant EGFR and wild-type Egfr expression are advantageous to tumor

growth (Fig. 2d), consistent with previous reports suggesting collaboration between the

two as observed in human GBMs [38]. The majority of the top mutated genes are also

expressed, including Sub1, Trp53, Tead2, Nt5c2, Prex2, Uimc1, and Itga6.

Hox (homeobox) genes have been implicated in escape from apoptosis, epithelial-

mesenchymal transition, and angiogenesis in other cancers [39]. Nineteen of the 30

most strongly upregulated genes in the brain tumors were Hox genes (Benjamini-Hoch-

berg adjusted p < 1 × 10−12, Fig. 2e), and these top genes associate with patient survival

from human GBM TCGA data (Additional file 1: Fig. S12). Comparative analysis with

large human GBM (Sun, Murat, and TCGA [37, 40, 41]) datasets revealed 14 of these

most upregulated Hox genes in mice are also upregulated in human tumors, supporting

a proposed role in oncogenesis [42, 43], Fig. 2f. In contrast, spinal tumors did not show

such strong upregulation of Hox genes, although they did exhibit enrichment for the

other oncogenic pathways (p < 0.01, Additional file 1: Fig. S13, S14, Additional file 6:

Table S5).

Human gliomas may be classified according to gene expression profiles [44]. Com-

parison with human glioma subsets (Verhaak dataset) using GSEA revealed these

(See figure on previous page.)
Fig. 3 Conditional piggyBac transposon mutagenesis substitutes for genomic instability in EGFRvIII-mutant
gliomas. a Mouse constructs for piggyBac transposition. The ATP1-S2 transposon line, with 20 copies per
cell. Conditional piggyBac transposase targeted to Rosa26 (tissue-specific piggyBac transposase, TSPB), SA =
splice acceptor; SD = splice donor; CAG = CAG promoter; SB = Sleeping Beauty; PB = piggyBac inverted
repeats; iPBase = insect version of the piggyBac transposase. The transposon can activate gene transcription
if it inserts in the same orientation as the gene, usually in a 5′ position. Gene inactivation can occur if the
transposon inserts in the body of the gene as a consequence of gene trapping which can occur in either
orientation because of the presence of two splice acceptors and bidirectional poly(A) (pA) sites. b Outline
of the experimental design: quadruple transgenic mice conditionally activate EGFRvIII expression and
piggyBac transposition in the central nervous system. Resultant tumors are examined molecularly by whole-
exome sequencing and mapping of transposon insertions. c Histology of EGFRvIII-PB tumors; although not
statistically significant, a higher proportion of grade IV brain tumors are observed compared with tumors
lacking transposition. d Immunostaining profile of a typical grade III brain glioma from an EGFRvIII-PB
mouse, showing strong expression of neural stem and transit-amplifying cell markers. Scale bar corresponds
to 2.8 mm for top panel, and 200 μm for all other panels. e Representative karyotype of EGFRvIII-only and
EGFRvIII-PB brain tumors, showing polyploidy in the non-PB tumor. f Chromosomal aberrations in EGFRvIII-
only and EGFRvIII-PB tumors (n = 3 and n = 5 tumors respectively; mean chromosomal aberrations 19 vs 6.4,
p = 0.013, unpaired two-tailed t test; plots show mean ± standard deviation). g Copy number profile of
EGFRvIII-PB tumors (n = 20) with focal amplifications and deletions in key genes highlighted. h Mutational
profile of 20 EGFRvIII-PB brain and spinal tumors from whole-exome sequencing. i Key cancer genes
identified, either as significantly mutated from MuSiC or copy number altered from GISTIC2, across all
mouse brain and spinal tumors in both cohorts; each column represent one tumor
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mouse tumors showed strongest enrichment for the human mesenchymal GBM signa-

ture (q value < 0.01), although there was also weaker enrichment for the proneural and

classical GBM signatures and negative enrichment for the neural GBM signature,

Fig. 2g. Therefore, these tumors recapitulate key molecular features of a clinically rele-

vant human GBM subset.

Transposon mutagenesis replaces genomic instability in glioma progression

Transposons have been successfully used for identifying cancer driver genes [45–53].

Mobilized piggyBac transposons randomly integrate in the genome and activate and/or

disrupt gene expression [54]. Given large chromosomal aberrations or transcriptional

changes make pinpointing driver genes difficult to identify, we performed a conditional

piggyBac transposon mutagenesis screen in vivo to further identify genes that cooperate

with mutant EGFR in gliomagenesis.

To limit transposition to the central nervous system, a conditional piggyBac transposase

allele was activated by nes-cre (Fig. 3a, b). An experimental cohort of quadruple transgenic

mice carrying conditional EGFRvIII, 20 copies of a piggyBac transposon (ATP1S2) [54], a

conditional piggyBac transposase, and nes-cre were generated (EGFRvIII-PB, n = 72;

Fig. 3b, see Methods). As controls, we established transgenic mice expressing EGFRvIII

but lacking transposition (EGFRvIII; nes-cre = EGFRvIII-only, n = 48) and a set with trans-

position but lacking EGFRvIII (transposase; ATP1S2; nes-cre = PB-only, n = 20). Mean sur-

vival times between EGFRvIII-PB and EGFRvIII-only cohorts were similar (41.4 vs 41.1

weeks, p = 0.95, log-rank test), and both groups had similar incidences of brain and spinal

gliomas (Fig. 3c, d, Additional file 1: Fig. S15, S16, S17). There was a trend towards in-

creased GBMs in EGFRvIII-PB mice compared with EGFRvIII-only mice (13.9% vs 4.2%

GBMs respectively; p = 0.082, two-sided chi-square test).

Genomic instability is a hallmark of cancer (including human gliomas) and a key

driving force [55–58]. EGFRvIII has also been associated with genomic instability

in vitro [59]. We hypothesized that the absence of reduced survival times of EGFRvIII-

PB mice may reflect genomic instability providing secondary molecular alterations in

EGFRvIII-only mice that is similar in consequence to transposon mutagenesis in EGFR-

vIII-PB mice. Supporting this, cytogenetic analysis revealed significantly more chromo-

somal aberrations in EGFRvIII-only compared to EGFRvIII-PB tumors (19 vs 6.4 mean

number of chromosomal aberrations, p = 0.013, unpaired two-tailed t test; Fig. 3e, f).

Whole-exome sequence of 20 brain and spinal gliomas from EGFRvIII-PB mice con-

firmed these had substantially less complex tumor-genomes with fewer copy number

changes than EGFRvIII-only tumors (Fig. 3g). Nevertheless, whole chromosome 11

amplification was still common as well as focal amplifications of EGFRvIII (Col1a1

locus) and localized deletions in Cdkn2a and Adgrl2 in tumors arising from both co-

horts. GISTIC2 analysis shows these alterations occur significantly more frequently

than expected by chance (q value < 0.05; Additional file 1: Fig. S18, Additional file 4:

Table S3), suggesting they provide a selective advantage for tumor progression.

Whole-exome sequence analysis revealed that while the median number of mutations

was similar between the cohorts, their mutational profiles differed substantially. The

top mutated genes identified in the EGFRvIII-PB tumors were Obscn, Hspg2, Rrbp1,

Rpgrip1, and Atp5o which have unknown functions in cancer (Fig. 3h). Although the
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frequency of mutations in these genes was high (70–40%), Obscn and Hspg2 are par-

ticularly large genes (more likely to harbor mutations) and contained many synonym-

ous changes, suggesting they were passengers. Nevertheless, in EGFRvIII-PB mice,

there were low-frequency mutations in a subset of putative drivers we previously identi-

fied in EGFRvIII-only tumors, including frequent splice site mutations in Sub1 and

Nt5c2, and mutations in Trp53, Tead2, Uimc1, and Itga6 (Fig. 3i).

We hypothesized genomic instability may be generated through oncogene-induced

replicative stress [60]. We studied H2AX phosphorylation by immunostaining, which

marks sites of DNA damage (focal nuclear staining) and replication stress (pan-nuclear

staining) [61]. Mouse EGFRvIII-GBMs displayed large areas with a substantial fraction

of cells showing intense pan-nuclear γ-H2AX and others with γ-H2AX foci (Add-

itional file 1: Fig. S19a, b). Gene set enrichment analysis of RNA-seq data from these

tumors revealed significant enrichment for upregulated gene sets involved in DNA re-

pair, double strand break repair, base excision repair, and DNA damage checkpoints

(Additional file 1: Fig. S19c). Specific DNA repair genes significantly upregulated in

these tumors include Chek2, Xrcc2, Xrcc4, Ercc2, and Foxm1. These data are consistent

with a model of oncogene-induced replication stress leading to genomic instability and

activation of the DNA damage response (DDR), previously proposed for other onco-

genes such as K-ras [62].

Together, these results suggest that piggyBac mutagenesis substitutes for genomic in-

stability and highlight the relevance of transposon-mediated mutations for gliomagen-

esis. Replacing large chromosomal anomalies with precise genetic hits enables

functional genomic interpretation.

Transposon mutagenesis identifies EGFR-mutant glioma driver landscape

To identify the genetic driver landscape with piggyBac, common integration sites

(CIS—genes into which the piggyBac transposon has recurrently inserted more fre-

quently than expected by chance, p < 0.01) were identified by transposon-host PCR [63]

and sequence analysis (quantitative insertion site sequencing, QI-seq). Gaussian kernel

convolution was used to identify CIS from 46 brain and 50 spinal tumors [50]. Brain

and spinal tumors from the same mice had different transposon integration sites, con-

firming these tumors arose independently. In total, 281 significant CIS genes were

ranked according to the number of insertions across all tumors (Fig. 4a, Additional file 7:

Table S6). Pathway analysis using Gene Ontology and Panther [64] revealed that CIS

genes were enriched for oncogenic pathways including Ras-MAPK, Wnt, PI3K-AKT,

and stem cell-related pathways (Additional file 1: Fig. S20). Analysis of CIS genes with

STRING [65] showed PB mutagenesis significantly enriched for mutations that affect a

functionally interacting network of proteins in gliomagenesis (Benjamini-Hochberg ad-

justed p = 4.9 × 10−13, hypergeometric test, Additional file 1: Fig. S21).

The highest-ranked CIS was Cdkn2a, followed by Nf1 (Fig. 4b). Loss-of-function mu-

tations of CDKN2A and NF1 have been observed as drivers in a range of human gli-

omas including LGG and GBM [66, 67]. Interestingly, Spred1 (whose product also acts

as negative regulator of the Ras pathway [68] and is a recently discovered melanoma

tumor suppressor [69]) ranked within the top 10 CIS and exhibited a disruptive piggy-

Bac insertional pattern, suggesting Spred1 acts as a novel tumor suppressor in glioma
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(Fig. 4c). Other MAPK signaling-related genes with recurrent mutations include Prkca,

Pebp4, and Map3k1.

Genes involved in the PI3K-AKT oncogenic pathway were also identified including

known tumor suppressor genes in gliomas such as Pten [70] and Pi3kr1 [71] as well as

novel genes including Prex2, and the protein tyrosine phosphatases Ptpro and Ptprj, all

with inactivating transposon insertional patterns. The glioma oncogene and PI3K-AKT

activator, Pdgfrα [72], was also a CIS, with an insertional pattern consistent with gene

activation (Additional file 1: Fig. S22). This supports the validity of our transposon

screen in identifying both tumor suppressor genes and oncogenes. Other genes in-

volved in the PI3K pathway with recurrent insertional mutations include Cbl and

Pik3c3.

Several top CIS genes known from their function in nervous system development

were not previously recognized as tumor suppressors. Sox6 and its paralog, Sox5, are

expressed in a mutually exclusive pattern during brain development [73]—both were

Fig. 4 PiggyBac transposition identifies 281 known and novel driver genes cooperating with mutant EGFR in
brain and spinal gliomas. a Oncoprint showing the top CIS genes across all 96 brain and spinal gliomas
(Bonferroni adjusted p < 0.01 for each gene, Gaussian kernel convolution analysis). “IS,” total number of
insertion sites; “% tum.,” percentage of tumors with an insertion in corresponding gene. The most well-
known brain glioma tumor suppressors are among the top 4 genes (Cdkn2a, Nf1, and Pten). Novel glioma
genes include Sox6, Spred1, and Tcf12. b The position of all transposon insertions across Nf1 (a known brain
tumor driver) in brain and spinal gliomas, showing a gene-disruption insertion pattern. Blue arrow =
antisense orientation; red arrow = sense orientation with respect to gene direction. c. Novel glioma drivers,
Sox6, Spred1, and Tcf12 also have disruptive insertional patterns. These figures show all piggyBac insertions
in brain tumors
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identified as CIS. Tcf12 and Tcf4, transcription factors implicated in neurogenesis [74],

were also identified as CIS. Nav3, a gene belonging to the neuron navigator family pre-

dominantly expressed in the nervous system, had recurrent insertional mutations too.

NAV3 silencing in breast cancer cells increased tumorigenicity in a xenograft model,

supporting our data here for gliomas [75]. Inactivating transposon insertion patterns

suggest tumor suppressor roles for these genes (Fig. 4c). Frequent insertional mutations

were also observed in other genes with developmental roles: Qki, Zeb2, Dmd, Zfhx3,

Zfhx4, and Exosc9.

To explore the evolutionary mechanisms underlying brain gliomas in our mouse

model, we performed multi-region tumor sampling and QI-seq. This revealed intratu-

mor heterogeneity, with clonal and subclonal piggyBac insertions, implying branching

tumor evolution (Additional file 1: Fig. S23). With the exception of clonal Pdgfra and

Nav3 insertions in one tumor, transposon insertions in MAPK/PI3K pathway and neu-

rodevelopmental genes (including Nf1, Pten, Pik3r1, Ptprj, Sox6, Sox5, and Tcf4) were

subclonal in these tumors, implying these were late evolutionary events. Altogether,

piggyBac mutagenesis has comprehensively identified known and novel putative cancer

genes and pathways driving EGFR-mutant gliomas.

Comparative validation of CIS genes with human TCGA gliomas

To assess the clinical relevance of the putative glioma driver genes, we analyzed the fre-

quency with which genetic alterations occur in our top CIS genes in 283 human brain

LGGs and 273 GBMs from TCGA datasets [36, 37]. Aside from the known brain gli-

oma tumor suppressors, CDKN2A, NF1, and PTEN, we found SPRED1 is deleted (het-

erozygous or homozygous) in 12% of LGGs and 27% of GBMs; and TCF12 deletions

and/or truncating mutations are present in 15% of LGGs and 23% of GBMs—indeed

SPRED1 and TCF12 are mostly co-deleted (p < 0.001, Fisher’s exact test) likely as part

of a 15q deletion [76]. SOX6 is deleted with high frequency: 31% of LGGs and 18% of

GBMs, Fig. 5a and Additional file 1: Fig. S23. Subgroup analysis confirmed these top

CIS genes had recurrent mutations/CNVs (> 2 tumors) in EGFR-mutated/amplified hu-

man LGGs and GBMs.

QKI, UST, PPP1R14C, and MAP7, all mapping to chromosome 6q, are frequently co-

deleted in both human LGGs and GBMs (Bonferroni-adjusted p < 0.001, Fisher’s exact

test; Fig. 5a, Additional file 1: Fig. S24). In mice, all four genes had recurrent piggyBac

insertions across their sequence (implying gene disruption), supporting the hypothesis

that there are multiple putative tumor suppressors in this region [77]. Similarly,

EXOSC9 and CLCN3 are frequently co-deleted on human chromosome 4q and both

had disruptive transposon insertions in mice. These data illustrate the potential utility

of piggyBac in pinpointing cancer drivers hidden within large copy number altered

regions.

To understand the clinical relevance of top mutated novel genes, we analyzed the

REMBRANDT [78] and TCGA GBM datasets for correlation of gene expression with

patient survival (n = 329 and n = 348 tumor samples respectively): expression levels of

SOX6, UST, QKI, PPP1R14C, TCF12, SPRED1, TEAD2, and NAV3 significantly corre-

lated with patient survival in one or both of these independent datasets (p < 0.05, log-

rank test, comparing patients with upper 30% vs lower 70% of expression levels,
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Fig. 5 Top piggyBac CIS genes are recurrently altered in human brain gliomas. a Patient data was analyzed
from The Cancer Genome Atlas (TCGA) datasets (n = 283 LGGs, 273 GBMs; LGG data shown here, GBM data
shown in Additional file 1: Fig. S24), for cross-comparison of the main CIS genes in mouse brain and spinal
tumors. The frequency of alterations of CIS genes observed in patient samples is indicated. Similar genes
(NF1 and SPRED1) and co-deleted/co-amplified genes have been grouped together. TCF12 and SPRED1 are
co-deleted (chromosome 15q), as are QKI, UST, PPP1R14C, and MAP7 (chromosome 6p), as well as EXOSC9
and CLCN3 (chromosome 4q). ASAP1 and CSMD3 (chromosome 8q) are co-amplified in human tumors.
From these 20 top CIS genes, there are 28 gene pairs with significantly co-occurring alterations in human
LGGs, many of which are on neighboring chromosomal locations; 8 pairs had mutually exclusive alterations
(Bonferroni-corrected p value < 0.05, Fisher’s exact test); for simplicity, only the key co-occurring alterations
are highlighted here. b–e Kaplan-Meier plots of GBM patient survival in relation to expression levels of key
mutated novel genes SOX6 (b), UST (c), and TCF12 (d) in TCGA and REMBRANDT (e–g) datasets. P values
were calculated using the log-rank test comparing the top 30% of expression level with the lower 70% for
each gene. All survival data from TCGA and REMBRANDT GBM datasets were used (n = 348 and n = 329
patients respectively with survival data), to ensure a sufficient sample size; analyses were performed using
the open web interface “Project Betastasis” (www.betastasis.com)

Noorani et al. Genome Biology          (2020) 21:181 Page 14 of 36

http://www.betastasis.com


Fig. 5b–g). Moreover, deletions in these genes associate with correspondingly lower

gene expression (Additional file 1: Figure, S25). Altogether, these results further sup-

port roles for these genes in gliomagenesis.

Validating the effects of transposon insertions from glioma transcriptomes

Transposition results in fusions with endogenous genes that can be detected by

RNA-seq [79]. To produce direct evidence of piggyBac insertions affecting tran-

scription of target CIS genes, we performed paired-end RNA-sequencing of 36

brain and spinal gliomas from EGFRvIII-PB mice and implemented IM-Fusion to

detect gene-piggyBac fusion transcripts [80], Fig. 6a, b. Of the 281 CIS genes iden-

tified by QI-seq, 80 had supporting fusion transcripts from RNA-seq analysis

(4.43 × 10−11, two-sided Fisher’s exact test, Fig. 6c). Moreover, 16 of the top 20 CIS

genes had supporting fusion transcripts from at least one tumor, including Cdkn2a,

Nf1, Pten, Sox6, Sox5, Spred1, and Tcf12 (all containing PB splice acceptor fusions,

Fig. 6 Effects of PB insertions on glioma transcriptomes. a RNA-seq was performed on tumors from EGFRvIII-PB
mice (n = 36), with IM-Fusion [80] analysis of the data to identify fusion transcripts. b Overview of the effect
ATP1-S2 transposons on the transcriptome: the transposon can insert in the sense orientation upstream of a
gene’s promoter or in an early intron, driving gene transcription through the transposon’s promoter and splice
donor (SD). Alternatively, it can cause transcript termination by inserting in an intron in either sense or
antisense orientation because of its two splice acceptors (SA1 = CbASA; SA2 = En2SA) and bi-directional polyA
sites; transcript termination can have the effect of inactivating tumor suppressor genes, but also potentially
activating an oncogene if there are downstream inhibitory domains for the protein that are removed. c Of all
genes with fusion transcripts, 80 genes overlapped with CIS genes identified by QI-seq. P value was calculated
using a two-sided Fisher’s exact test. All fusion transcripts detected with the carp-beta-actin splice acceptor
(CbASA) and splice donor (SD) contained piggyBac in the sense orientation, and all those with Engrailed-2
exon-2 splice acceptor (En2SA) contained piggyBac in the antisense orientation, suggesting the transposon
insertion had functional consequences in all cases. d Bar plot showing percentage of gliomas with fusion
transcripts among top 20 CIS genes (Qki is also included here). e Top fusion transcripts containing the PB splice
donor ranked by read count; among them, only Rad51b was also identified as a CIS gene
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implying transcript termination; Fig. 6d). Other key genes with fusion transcripts

suggesting disruption included Qki and Ust (Additional file 8: Table S7). Of the

genes with the most fusion transcript sequencing reads containing PB splice donor

(implying activating insertions, see Fig. 6b), Rad51b was also a CIS gene (Fig. 6e);

its fusion transcripts found in two tumors imply a putative oncogenic role, sup-

porting data demonstrating RAD51 inhibition radio-sensitizes gliomas by reducing

DNA repair [81]. These transcriptomic signatures of piggyBac support the func-

tional effects of the identified CIS genes on gliomas.

Brain and spinal tumors share core genetic drivers

Of the 281 CIS genes, 206 (73%) were shared by both brain and spinal tumors, Fig. 7a.

These include known tumor suppressors underlying multiple types of human gliomas,

such as Cdkn2a, Nf1, and Pik3r1, as well as several putative tumor suppressors such as

Sox6, Tcf12, and Spred1. However, the frequency of insertions in particular shared

genes differed between brain and spinal tumors. For example, Pten had significantly

more insertions in spinal than brain tumors (22 vs 8 insertions respectively, p = 0.008,

Fisher’s exact test). Conversely, Sox6 has significantly more insertions in brain com-

pared with spinal tumors (26 vs 3 insertions, respectively, p < 0.0001, Fisher’s exact test;

Fig. 7b and Additional file 1: Fig. S26). Other CIS occurred uniquely in each tumor

type, for example, Pdgfra had activating insertions in brain but not spinal tumors (4

and 0 insertions, respectively). Although CIS genes with lower frequency insertions re-

quire further characterization to confirm their tumor-type specificity, collectively, these

results show there is a shared core set of driver genes for both brain and spinal

gliomas.

Differential tumor suppressive effects of Pten in brain and spinal gliomas

PTEN loss is a common event and known to cooperate with EGFR in brain gliomas but

its role is unclear in spinal tumors [83], with no previous mouse models (to our know-

ledge) showing whether Pten drives spinal gliomas. Pten was a CIS in both brain and

spinal gliomas, Fig. 7c. To explore the role of Pten inactivation on brain compared with

spinal gliomagenesis, we generated triple transgenic mice carrying the conditional allele

of EGFRvIII, nes-cre and a conditional knockout Pten allele [82], PtenLoxp/+ (n = 11;

Fig. 7d).

EGFRvIII; nes-cre; Pten+/− mice developed signs of spinal (focal paralysis) rather

than brain disease (hydrocephalus or seizures) and showed a reduction in survival

time compared with mice just carrying the EGFRvIII and nes-cre alleles (median

age 13.0 vs 41.1 weeks, p < 0.001, log-rank test; Fig. 7e). Histological examination of

EGFRvIII; nes-cre; Pten+/− mice identified extensive grade II gliomas surrounding

the spinal cord at all levels with widespread leptomeningeal and nerve root inva-

sion (9/9) (Fig. 7f, g). Of lesser clinical significance, microneoplasias in the SVZ

and base of brain were observed. These data identify Pten as a novel spinal glioma

tumor suppressor and suggest a stronger cooperative driving effect of Pten loss on

spinal compared with brain tumors, highlighting context-dependent tumor suppres-

sive effects (Fig. 7h).
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Fig. 7 (See legend on next page.)
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Druggable targets in the glioma driver network

Knowledge of cancer driver landscapes presents opportunities for therapeutic strategies.

Using canSAR [84], we have applied established chemogenomic technologies to

pharmacologically annotate the glioma set of putative driver proteins identified here.

This set was derived from all CIS genes (EGFRvIII-PB cohort) and from recurrent sig-

nificantly mutated genes (EGFRvIII-only cohort); given loss-of-function (LOF) of sev-

eral proteins identified directly lead to Akt activation (e.g., Pten, Ptpro, Pik3r1) [85–87],

and Ras/Erk/Mek activation (e.g., Pdgfra, Nf1, Spred1) [88–90], these linked down-

stream oncoproteins were included as targets. The glioma set thus comprised 375 pro-

teins. Each protein was assessed in multiple ways for “druggability” (probability of the

protein being targeted by small molecule drugs). Comparative genomic analysis with

human LGG and GBM data from TCGA confirmed all druggable genes in the set, ex-

cept Ddx3y and Usp9y, are genetically altered in patients. CanSAR analysis revealed a

highly druggable network of putative drivers, with 14 targets of approved drugs (for

other indications), 3 targets of clinical investigational drugs, 34 targets under drug dis-

covery or chemical biology investigation, and 96 proteins predicted to be druggable and

thus of potential interest for future drug discovery efforts. In addition to targeted EGFR

therapies, the network highlights targets being investigated clinically for glioma treat-

ment, including not only PI3K, but also ESR1 and PDGFRA, Additional file 9: Table S8

and Additional file 10: Table S9.

Next, to validate the potential therapeutic effects of targeting these proteins with

drugs, we analyzed large-scale drug sensitivity data from 21 human glioma cell lines

(including EGFR-mutated and wild-type; 13 GBM, 8 LGG; GDSC [91]). Twenty-four

drugs acting on our glioma network were tested by GDSC, of which 9 demonstrated

significant growth inhibitory effects (IC50 Z score < − 2) and 15 showed partial inhibi-

tory activity on at least one cell line, Additional file 11: Table S10. These results high-

light potential efficacy of drugs targeting PI3K, AKT, MEK, ERK, EGFR, and PDGFRA,

as well as APP, ESR1, SMARCA2, HDAC9, AURKC, and NAMPT in selected gliomas.

(See figure on previous page.)
Fig. 7 Novel context-dependent differential tumor suppressive effects of Pten in the brain and spinal cord.
a Brain and spinal gliomas share a core set of drivers. Upper Venn diagram shows the top genes from each
tumor cohort, with core drivers including genes such as Cdkn2a, Pten, and Sox6. Lower Venn diagram
shows among all transposon CIS genes, brain and spinal cord tumors share 206 genes (with at least one
insertion in each tumor type), and there are 35 brain glioma-specific CIS genes and 40 spinal glioma-
specific CIS genes. b Bar plot comparing number of insertions between brain and spinal tumors for the top
10 CIS genes. Cdkn2a, Ppp1r14c, and Pten have significantly more insertions (normalized for number of
tumors analyzed) in spinal than brain tumors, and Sox6 has more insertions in brain tumors (Fisher’s exact
test, p < 0.05). c All Pten piggyBac insertions from brain gliomas and spinal cord gliomas are plotted across
the structure of the gene, with the pattern implying disruption; note the higher density of insertions in this
gene in spinal cord tumors. d Conditional mice with both EGFRvIII and Pten heterozygous loss (exons 4 and
5 deleted with cre [82]) were generated and monitored for brain and spinal tumor development. e Pten
loss significantly shortened survival time of mice in the context of conditional EGFRvIII expression (p <
0.0001, log-rank test, n = 11 EGFRvIII; nes-cre; Pten+/− mice and n = 48 EGFRvIII; nes-cre mice). f EGFRvIII; nes-
cre; Pten+/− spinal tumor growth and nerve root invasion. Left panels: cervical and thoracic spinal cord with
encasement by tumor cells growing within the subarachnoid space. Middle panels: detailed view of the
spinal cord and tumor cells. Right panels: tumor cells invading root structures. Scale bar corresponds to 0.8
mm for left upper panel and 1.6 mm for left lower panel, and 180 μm for all other panels. g Histological
assessment of EGFRvIII; nes-cre; Pten+/− tumors. In the brain, lesions were predominantly microneoplasias
(tumor precursors) rather than fully formed gliomas; in contrast, in the spinal cord, gliomas were uniformly
fully established and grade II. h Illustration showing the tumor tissue-of-origin in the CNS influences Pten
tumor suppressive effect strengths
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Further testing is additionally required in genetically faithful models for drug sensitivity,

but blood-brain barrier penetration is a challenge that will need to be overcome to

realize the clinical potential of these observations. Nevertheless, such orthogonal dem-

onstrations of functional genes and targets are essential for prioritizing potential thera-

peutics for preclinical and clinical trials.

EGFRvIII-glioma cells can serially engraft in recipient mice and are suppressed by afatinib

EGFRvIII-glioma cellular models are needed for pre-clinical studies. Cells from EGFR-

vIII-mouse GBMs were expanded ex vivo as gliomaspheres. We aimed to delineate the

engrafting capacity of EGFRvIII-driven tumor cells as further evidence of their neoplas-

tic nature by subcutaneous injection in the flanks of severe combined immunodeficient

(NOD-SCID-γ) mice (Fig. 8a); subcutaneous rather intracranial injection was chosen as

previous studies show the tumorigenic potential of mouse gliomas is equivalent for

both methods [22] and tumor growth assessment was simplified. Tumors formed and

were harvested within 20 days of injection in all mice (n = 6, Fig. 8c), and EGFRvIII was

expressed in the vast majority of tumor cells as confirmed by immunostaining (Fig. 8b),

demonstrating their transformed nature. Afatinib suppressed growth of these glioma-

spheres with an IC50 of 0.1 μM (relative to equal volume vehicle treatment with

DMSO; Additional file 1: Fig. S27a). Collectively, these data imply EGFRvIII is needed

for initiation and maintenance of gliomagenesis in this model.

Novel genes drive EGFRvIII-tumor cell proliferation and drug sensitization

We next decided to explore the putative tumor suppressive effects of genes not previ-

ously linked to gliomagenesis, but strongly implicated by our mutational analysis and

piggyBac experiments—Tead2, Nav3, and Spred1. We performed CRISPR-Cas9 knock-

out experiments using ex vivo EGFRvIII-gliomaspheres derived from mouse GBMs.

Lentiviral transduction enabled Cas9 expression from these tumor cells, and subse-

quent targeted sgRNA transduction led to the production of frequent on-target indels

in coding exons of Tead2, Nav3, and Spred1. A non-targeting sgRNA was transduced

as a wild-type control. Tumor cells with these alterations were assessed for glioma-

sphere growth at 4 weeks post-sgRNA transduction—loss of each of these genes led to

significantly increased gliomasphere proliferation (Tead2-loss—6.44x, Nav3-loss—

5.04x, Spred1-loss—3.58x, relative cell viability compared with non-targeting sgRNA

control (1x); p < 0.0001, < 0.0001, and 0.036 respectively, adjusted one-way ANOVA

test, 3D, CellTiter-Glo 3D cell viability assay, Fig. 8d, e, Additional file 1: Fig. S27b, c,

Additional file 12: Table S11). These results confirm that loss of these genes heightens

tumor cell proliferation and gliomasphere growth and highlight the use of EGFRvIII-

mouse gliomaspheres as a platform for functional genetic validation studies.

To demonstrate the utility of our model for pre-clinical drug testing, we conducted a

proof-of-principle experiment comparing the sensitivity of EGFRvIII-gliomaspheres,

with and without CRISPR-induced mutations in Nav3 and Spred1, to key small-

molecule inhibitors. Although neither Spred1 nor Nav3 mutations affected tumor cell

sensitivity to EGFR inhibition with afatinib (Additional file 1: Fig. S27a), loss of Spred1

or Nav3 increased sensitivity of EGFRvIII-tumor cells to MEK inhibitor treatment with
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Fig. 8 (See legend on next page.)

Noorani et al. Genome Biology          (2020) 21:181 Page 20 of 36



trametinib (Fig. 8f, g). These preliminary results illustrate our model can be used for

drug screening and the potential therapeutic relevance of EGFR-collaborative drivers.

Discussion
Understanding how a cancer-initiating mutation influences downstream genomic evo-

lution from human studies is challenging because of the absence of data from tumors

before they become clinically overt, the large number of passenger mutations, co-

occurring mutations caused by frank chromosomal anomalies and extensive tumor het-

erogeneity. Studies in mice offer a more uniform and defined genetic background and

the opportunity to establish a temporal sequence of genetic changes, including in this

case the introduction of a predisposing mutation which was activated during

development.

We examined mouse tumor-genomic evolution through whole-exome sequencing

and RNA-seq. Given the number of exonic mutations in each tumor was modest, gen-

etic drivers could be discerned based on recurrent mutations as well as the impact of

these on gene function. The most frequently mutated genes Sub1, Trp53, and Tead2

had loss-of-function mutations, and recurrent focal deletions in other novel genes were

detected; many of the mutated and deleted genes are also altered in human patients,

supporting tumor suppressor roles. These findings are in keeping with elegant demon-

strations of somatically acquired events driving mouse lung cancer evolution [92, 93].

Traditionally, mouse phenotypes have been solely attributed to the initiating events,

but given somatically acquired events occur in GEMMs, these mutational landscapes

should be considered in mouse glioma preclinical modeling and therapeutic efforts.

Given their genomic complexity, transcriptomes of these mouse tumors exhibited

many changes from normal tissue. Recurrent amplification of EGFRvIII was observed,

suggesting strong selection for increased expression, consistent with human gliomas

where even extrachromosomal amplification of EGFRvIII has been reported [16, 17].

Although EGFR mutations are present in multiple GBM subsets (based on transcrip-

tional profiles), our tumors most strongly enriched for the human mesenchymal GBM

signature (a subtype more responsive to aggressive treatment) [44], likely because the

specific cooperative drivers acquired in this model also occur in the human subset (in-

cluding Nf1, Pten, and Trp53) [44].

(See figure on previous page.)
Fig. 8 Validation of putative tumor suppressors using an ex vivo glioma model derived from EGFRvIII-mouse
GBMs. a Cells from mouse GBMs were propagated as gliomaspheres in culture and subcutaneously
transplanted into NOD-SCID-γ mice. b Histology of allografted cells confirmed tumor formation with diffuse
expression of EGFRvIII in tumor cells (left panel), and a high level of Ki67 expression (right panel). Scale
bar = 100 μm c Kaplan-Meier curve of survival of mice with allografts of EGFRvIII-tumor cells; 6/6
transplanted mice developed tumors with a median survival of 17 days. d Bar plot showing cell growth 4
weeks after CRISPR-cas9 induced mutations in Tead2, Nav3, and Spred1 in EGFRvIII-glioma cells,
demonstrating significantly increased viable cells relative to wild-type cells (with non-targeting, NT, sgRNA).
Measurements were performed in triplicate with three independent experiments. Data are represented as
mean values ± SEM. Significance was determined using the one-way ANOVA test. e TIDE confirms a high
level of gene editing of Spred1 using CRISPR-cas9 in glioma cells. f Treatment of EGFRvIII-glioma cells
carrying CRISPR-induced Nav3 mutations and Spred1 mutations (g) with trametinib shows significantly
reduced cell viability compared with WT cells (carrying NT sgRNA) at 0.1 μM. Significance was determined
using the two-sided t test. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05. Data are represented as
mean values ± SEM
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By using conditional piggyBac insertional mutagenesis, there was a trend for in-

creased GBMs, although the expected reduction in mouse survival [50] was not ob-

served. This can be explained by the marked chromosomal instability (which EGFR can

drive [59]) observed in the absence of transposition providing an adequate reservoir of

additional mutations to facilitate oncogenesis. Supporting this is the obvious difference

in ploidy observed in tumors from the two cohorts, similar to findings with Sleeping

Beauty in osteosarcoma [48]. A difference in the spectrum of mutations was also appar-

ent: in the absence of transposition, the most frequently mutated genes included known

cancer genes, such as Trp53. These data imply piggyBac replaces the need for genomic

instability for providing secondary molecular alterations to drive tumor progression.

Transposon studies complement human oncogenomic studies by pinpointing driver

alterations hidden in large chromosomal aberrations of human cancer genomes and

helping us prioritize key genes among the many alterations observed. Analysis of the

CIS provided strong evidence for many known and novel genetic drivers collaborating

with EGFRvIII. Multiple lines of evidence support this conclusion. First, the observation

of integration sites in the same (CIS) genes in a significant fraction of the 96 tumors

provides strong statistical evidence for selection of these events as putative driver muta-

tions. Second, the position of these integrations with respect to the gene body and con-

sequence on expression, consistently disrupting or activating gene expression, such as

disruption of Nf1 and Spred1. Third, RNA-seq data support the integration pattern be-

cause the transposon is designed to affect gene expression—transcripts were observed

emanating from transposons splicing into Rad51b, as were transcripts from the gene

splicing into the acceptor sites encoded by the transposon thereby disrupting gene ex-

pression such as Cdkn2a, Nf1, Pten, Sox6, Sox5, Spred1, Qki, and Ust. Fourth, the over-

lap of genes identified with mutations/focal deletions by exome sequencing and

mutated by piggyBac cross-validates their biological selection—including Cdkn2a, Esr1,

and Myo10 (focal deletions) and Nf1, Prex2, and Dgkb (recurrent mutations). Finally,

the correlation with human genetic data is compelling, not only for the known genes

but also for genes like SPRED1, TCF12, and SOX6. The conserved role of these genes

in both species validates the similarity and therefore relevance of the mouse model to

human disease.

Relatively few activating insertions were detected with RNA-seq: this may reflect that

glioma driver landscapes are dominated by tumor suppressors, but also be partly due to

the biology of the transposon with gene disruption being a more likely event than acti-

vation. Although these mutations occurred in the context of mutant EGFR (implying

genetic cooperation), this does not preclude these being drivers in other contexts with-

out EGFR, as exemplified by Pten and Nf1 also causing multiple glioma types with

other drivers [94]. Future work will help provide mechanistic insight into the roles of

the novel putative drivers identified here.

In this study, EGFRvIII initiated gliomas in mice after long latency. Previous studies

reported EGFRvIII caused brain tumors with short latency, only in the presence of pre-

disposing tumor suppressor loss, such as Cdkn2a and Pten [12, 21, 95], or with

NrasG12D and Trp53 loss [96]. These differences may be due to the longer observation

times here (allowing for accumulation of secondary mutations we identified by sequen-

cing and piggyBac) and/or the nes-cre driver which also targets neurogenic niches such

as the SVZ. The cell-of-origin (COO) of EGFRvIII-glioma was not the focus of this
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study but warrants further investigation. The COO of gliomas is unknown, yet evidence

suggests that neural stem cells, oligodendrocyte precursors, and astrocytes can all act as

the COO [97, 98].

A species differences between the mouse and human tumors is that most gliomas in

this model were histologically low-grade, whereas in humans the majority with EGFR-

vIII mutations are histologically GBM. However, recent work on human samples dem-

onstrates histologically low-grade appearing, IDH1-wildtype astrocytomas with EGFR

amplification likely represent early GBMs with corresponding molecular features and

poor prognosis [15, 99]; also, extrachromosomal EGFR driver mutations and amplifica-

tions are frequently detected in both human LGGs and GBMs [16]. Caution must thus

be applied in histologically classifying these tumors in the absence of microvascular

proliferation or necrosis. EGFRvIII is heterogeneously expressed in human GBMs, al-

though the mutation has been detected throughout human GBMs suggesting it is an

early event in some cases [18], and similarly is a clonal initiating event in these mouse

tumors. The strength of the models here are molecular features recapitulating human

EGFR-mutant gliomas, including the matched transcriptomic signatures and coopera-

tive mutations.

It has been suggested EGFRvIII expression may induce senescence in the absence of

tumor suppressor losses [21]. Although it is possible EGFRvIII led to transformation of

rare cells with pre-existing tumor suppressor losses, multi-region transposon analysis

revealed few clonal mutations making this possibility unlikely here. The genomic in-

stability observed in the mouse tumors may be explained at least partially by oncogene-

induced replicative stress, with the high frequency of Cdkn2a and Trp53 mutations in-

dicating strong selection for mechanisms to bypass oncogene-induced senescence in

early gliomagenesis.

Few human genomic studies have been conducted for spinal tumors [26]. Although

the frequency and nature of EGFR alterations (particularly extrachromosomal ones) in

these tumors remains to be determined in larger studies, EGFR amplification and ex-

pression has been detected in a subset of human spinal tumors—leptomeningeal-dis-

seminated pediatric spinal LGGs [24]. Clearly, not all tumor subsets can be

recapitulated by one model, but this tumor subset shares a similar histology and unique

location (leptomeningeal) as tumors from our mice. The mice have EGFRvIII as the

driver, but these tumors could conceivably be generated by other mechanisms for in-

creased EGFR signaling including alternative EGFR mutations, amplification, and/or

overexpression. In patients, germline NF1-loss predisposes to spinal glioma [100] and a

study of spinal gliomas detected frequent CDKN2A deletion and loss of heterozygosity

at 10q23 (containing PTEN) [101]. Here, mice with conditional mutant EGFR and Pten

loss exhibited accelerated spinal tumor development, confirming a key role of Pten in

spinal gliomagenesis. This may have therapeutic implications—targeting Pten signaling,

such as with PI3K inhibitors, may be warranted in spinal gliomas, although precise

mechanisms of Pten loss driving spinal gliomagenesis must be explored [102].

Previous studies using the Sleeping Beauty transposon yielded common integration

sites from gliomas [103–106], despite the incidence of tumors in some being low. Given

piggyBac has different integration preferences and less local hopping (aiding genome-

wide mutagenesis) compared with Sleeping Beauty [107–109], our work complements

these studies. The model used here has the additional advantages of conditional rather
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than whole-body transposition (limiting tumor generation outside the CNS), being an

autochthonous screen, and having a strong initiating mutation to drive complete pene-

trance of gliomas, increasing the power for detection of CIS driver genes.

Given the poor morbidity and mortality of glioma (particularly GBM) patients, add-

itional therapies are needed. A key finding of this study is that many of the mutated gli-

oma genes are druggable or predicted to be so. Several drugs suppressed growth even

in wild-type EGFR human cell lines, supporting the idea that the drivers identified can

act independently of EGFR too. Many of the glioma genes are putative tumor suppres-

sors, which may be more challenging to target than oncogenes. However, tumor sup-

pressors (and their downstream pathways) are increasingly regarded as potentially

powerful therapeutic targets [110], particularly if a definite structure such as a pocket

can be identified, as exemplified by molecules blocking the interaction of p53 with

MDM2 thus increasing wild-type p53 [111].

Our novel models of gliomas will provide further opportunities for insights into their

pathogenesis and therapeutic development. This is the first study to employ piggyBac

mutagenesis in vivo in gliomas. The functional genomic datasets presented here will

help decipher whole-genome sequencing studies of brain and spinal gliomas. Genome-

wide piggyBac autochthonous screening in immunocompetent mice with high inci-

dences of gliomas can feasibly be applied to explore resistance mechanisms to therap-

ies. The finding of extensive cooperative mutations in mutant EGFR gliomas that can

influence prognosis and drug treatment response highlights the importance of inte-

grated genomic diagnosis for developing rational, personalized polytherapy strategies in

patients to improve survival.

Conclusions
Understanding the driver landscapes in the context of mutant EGFR is essential for ad-

vancing targeted glioma therapies. We show mutant EGFR is sufficient to initiate glio-

magenesis in the brain and spinal cord. Through whole-exome sequencing, we defined

the mutational landscape of these tumors in mice. Functional genomic landscapes of

EGFR-mutant gliomas were elucidated by genome-wide piggyBac transposon mutagen-

esis and transcriptomics, identifying 281 known and novel cancer genes (tumor sup-

pressors and oncogenes), with clinical relevance demonstrated by confirming

corresponding human genetic alterations in patients. A genetic network susceptible to

drug targeting was identified, providing potentially translatable therapeutic opportun-

ities for gliomas.

Methods
Mice and genotyping

All animal experiments were in accordance with the Animal Scientific Procedures Act

1986 at the Wellcome Trust Sanger Institute (Hinxton, Cambridgeshire, UK). EGFRvIII

mice were obtained from the NCI Mouse Repository, nestin-cre (nes-cre) mice from

the Jackson Laboratory. EGFRvIII mice were crossed with tissue-specific piggyBac

transposase (conditional transposase; TSPB) mice to yield EGFRvIII/+ TSPB/+ mice.

The offspring were crossed with each other to yield homozygotes for both alleles

(EGFRvIII/EGFRvIII TSPB/TSPB). Simultaneously, nestin-cre (nes-cre) mice were
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crossed with those carrying the ATP1S2 allele (containing 20 transposon copies) to

yield nes-cre/+ ATP1S2/+ mice, which were then crossed with each other to give

double homozygotes for these two alleles. To generate the main experimental cohort

with both EGFRvIII expression and transposition, EGFRvIII/EGFRvIII; TSPB/TSPB

mice were crossed with nes-cre/nes-cre; ATP1S2/ATP1S2 mice, giving mice heterozy-

gous for these four alleles (EGFRvIII/+; TSPB/+; nes-cre/+; ATP1S2/+ = EGFRvIII-PB).

Mice in the final experimental (EGFRvIII-PB) and control (EGFRvIII/+ nes-cre/+

ATP1-S2, or EGFRvIII/+; nes-cre/+ = EGFRvIII-only) cohorts were of mixed back-

ground. To generate EGFRvIII; nes-cre; Pten+/− mice, EGFRvIII mice were crossed with

PtenLoxp/+ mice, and offspring carrying both alleles were crossed with nes-cre.

Genotyping of mice and PCR detection of transposition were completed as described

previously [12, 27, 50, 54, 82]. The strains of the original mice are as follows: EGFRvIII

mice are FVB, nes-cre mice are C57BL/6J; the ATP1S2 and TSPB mice are C57BL/6J

albino.

Necropsy and histopathological analysis

Mice were monitored daily in particular for neurological signs, including limb weak-

ness, ataxia, hydrocephalus/macrocephaly, head tilt and/or circling, lethargy, and weight

loss. Mice were sacrificed when the neurological signs were sufficient to impair basic

functions. For downstream DNA and RNA extraction, tissue was immediately snap-

frozen and/or placed in RNA-later. Tissues were fixed in 4% paraformaldehyde and

then embedded in paraffin. Four-micrometer sections were stained with hematoxylin

and eosin for morphological analysis. A consultant neuropathologist (SB), with expert-

ise in neuro-oncological pathology of human and mouse tumors, and who was blinded

to EGFRvIII and transposition genotype, reviewed all histological sections for patho-

logical diagnosis. Neuropathological grading of gliomas was determined as follows:

grade 1: tumors of low-to moderate cellularity, overall bland cytological appearance,

bland nuclear morphology and only rare, or no mitotic figures; grade 2: tumors with

moderate or high cellularity, occasional mitotic figures, and absence of microvascular

proliferation and necrosis; grade 3: tumors with high cellularity, clear presence of mi-

totic figures, including brisk mitotic activity, hyperchromatic nuclei, but with no micro-

vascular proliferations and no necrosis; and grade 4: highly cellular tumors, with

densely packed nuclei, often a high nucleus to cytoplasm ratio, frequent mitotic figures,

and with either microvascular (vascular endothelial) proliferations, or necrosis, or both.

No characteristic histologic features of ependymomas or meningiomas were observed.

Immunohistochemistry

Immunohistochemistry staining was performed using the Ventana Discovery XT in-

strument, using the Ventana DAB Map detection Kit (760-124). For pre-treatment, ei-

ther Ventana CC1 (950-124), equivalent to EDTA buffer, or Protease 1 (equivalent to

pronase, 760-2018), was used. Slides were hematoxylin counterstained. The antibodies

used were as follows: Olig2 (1:100, Millipore ab9610), Sox2 (1:500, Abcam ab97959),

Nestin (1:500, Abcam ab22035), Ki67 (1:100, Cell Signaling 12202S), GFAP (1:1000,

Dako Z0334), PDGFRα (pre-diluted, Abcam ab15501), EGFR (Invitrogen 280005), and

EGFRvIII (1:100, Sigma MABS1915).
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Glioma primary cultures

Mouse brain tumors were carefully dissected under the microscope. A small portion of

the brain tumor was placed in cold saline on ice. This sample was then processed as

soon as possible for primary culture establishment: it was incubated in Accutase

(STEMCELL Technologies) for 15 min at 37 °C to dissociate the cells in sterile condi-

tions. Cells were washed with PBS before being adding to culture medium and plated

in a 6-well plate. The culture medium was composed of DMEM/F12 medium (50%),

neurobasal medium (50%), hEGF (25 ng/ml), bFGF (25 ng/ml), N2 (1x), B2 (1x), BME

(1x), and PSL (1x). The cultures were incubated at 37 °C and split every 2–3 days as re-

quired. To test for sensitivity to the EGFR inhibitor, afatinib (Selleckchem, S1011), the

drug was added in varying concentrations (0–80 nM) to gliomaspheres in a 96-well

plate on the day of plating (20,000 cells per well), with equal volume DMSO as a ve-

hicle control. Spheres were counted and assessed for mean diameter after 10 days. The

experiment was repeated in triplicate.

Flank xenograft studies

5 × 105 EGFRvIII-GBM cells were subcutaneously injected into the flanks of NOD-

SCID-γ mice (n = 6). Once tumors reached a maximum surface area of 1.2cm2, the

mice were euthanized, and tumors were dissected and fixed in formalin for later em-

bedding in paraffin.

Fluorescence in situ hybridization (FISH)

For multiplex-fluorescence in situ hybridization (M-FISH), a chromosome-specific

DNA library for each mouse chromosome was generated from 5000 copies of flow-

sorted chromosomes, provided by the Flow Cytometry Core Facility of the Well-

come Trust Sanger Institute, using Genome-Plex Whole Genome Amplification

(WGA2) kit (Sigma-Aldrich). A mouse 21-color painting probe was made following

the pooling strategy (Jentsch et al. 2001). Five chromosome pools were labeled with

ATTO 425-, ATTO 488-, CY3-, CY5-, and Texas Red-dUTPs (Jena Bioscience), re-

spectively, using WGA 3 re-amplification kit (Sigma-Aldrich) as described before

(Gribble et al. 2013). The labeled products were pooled and sonicated to achieve a

size range of 200–1000 bp, optimal for use in chromosome painting. Sonicated

DNA sample (enough for 10 hybridizations) was precipitated with ethanol together

with mouse Cot-1 DNA (Invitrogen) and re-suspended hybridization buffer. Meta-

phase preparations were dropped onto pre-cleaned microscopic slides and followed

by fixation in acetone and dehydration through an ethanol series. Metaphase

spreads on slides were denatured by immersion in an alkaline denaturation solution

and dehydration. The M-FISH probe was denatured before being applied onto the

denatured slides. Hybridization was carried out in a 37 °C incubator for 2 nights.

The post-hybridization washes included a 5-min stringent wash in 0.5 × SSC at

75 °C, followed by a 5-min rinse in 2 × SSC containing 0.05% Tween20 (VWR)

and a 2-min rinse in 1 × PBS, both at room temperature.

Slides were mounted and images were visualized on a Zeiss AxioImager D1

fluorescent microscope equipped with narrow band-pass filters for DAPI, DEAC,

FITC, CY3, TEXAS RED, and CY5 fluorescence and an ORCA-EA CCD camera
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(Hamamatsu). M-FISH digital images were captured using the SmartCapture soft-

ware (Digital Scientific UK) and processed using the SmartType Karyotyper soft-

ware (Digital Scientific UK). At least 10–20 metaphases per samples were fully

karyotyped.

We quantified the cytogenetic anomalies found on FISH as follows: single transloca-

tions, copy number gains, or losses were counted as one anomaly for each chromo-

some; for polyploidy in all chromosomes, this was counted as one anomaly for each

cell in which this was seen for a particular culture.

Whole-exome sequencing

For whole-exome sequencing, extracted DNA was first quantified (using Accuclear

UltraHS dsDNA Standards Assay reagent kit and BMG FLUOStar Omega fluorescence

reader), followed by normalizing each sample to 4.17 ng/μl in 120 μl in preparation for

library creation. DNA was sheared into fragments of 150 bp (on the Covaris LC220 and

Agilent Bravo automated workstation) followed by library creation and amplification

using unique indexed tags and adaptors (Agilent’s SureSelectXT Automated Library

Prep & Capture Kits and MJ Tetrad). The amplified libraries were then purified (using

Agencourt AMPure XP and Beckman Coulter Biomek NX96 automation) and eluted in

nuclease-free water, followed by a second round of quantification. The libraries were

then diluted down to an appropriate concentration for introduction into the exome-

capture stage. Exome pulldown (hybridization) was performed using Mouse-All-Exon

oligo-baits (Agilent) for 23 h at 65 °C. Uniquely indexed samples were baited and cap-

tured into pools. The pulldown was then purified and eluted using streptavidin-coated

Dynal beads ready to be amplified (on the MJ Tetrad). The amplified product was fur-

ther purified, followed by quantification using the Agilent Bioanalyzer and finally se-

quencing on the HiSeq Illumina 2500.

Somatic variant calling and CNV analysis

Sequencing reads were mapped to the Mus musculus genome (GRCm38/mm10) using

BWA-MEM (version 0.7.16a) [112] with default parameters. Duplicate reads were

marked by biobambam2, and base quality scores were recalibrated with GATK (version

3.7) [113]. Sequencing coverage ranged from 50 to 80 x for each sample. Somatic vari-

ant calling of tumor and its matched normal BAM files were performed using Mutect2

(version 3.8) [114]. Mutations were annotated to a database of GRCm38.86 by SnpEff-

4.3i [115]. Significantly mutated genes (SMGs) were identified by MuSiC (Version 0.4)

[32] with default parameters; genes were called SMGs if mutated in two or more tu-

mors, corrected likelihood ratio test p value < 0.01 and FDR < 0.2, and convolution test

p value < 0.01. To detect somatic copy number alterations, the pileup files of tumor

and its matched normal BAM files were generated by samtools mpileup (version1.5)

[116], followed by copy number analysis using varScan2 (version 2.4.2) [117] with de-

fault parameters. Copy number variations were segmented using circular binary seg-

mentation algorithm [118], which was implemented in DNAcopy (version 1.52). GIST

IC2 (version 2.0.23) [35] with the following parameters: “qvt = 0.05, confidence level =

0.99, and maxseg = 20000” was performed to find focal CNVs using the Mus musculus

(mm10) refSeq gene annotations.
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RNA-sequencing and bioinformatics analysis

RNA was purified from tumors and normal brain/spinal cord tissue (microdissected

SVZ as brain tissue controls; all from age-matched control mice, n = 6) using the

RNeasy microkit (Qiagen) according to the manufacturer’s instructions. RNA-seq li-

braries were constructed using the Illumina Tru-Seq Stranded RNA protocol with oligo

dT pulldown and sequenced on Illumina HiSeq2500 by 75-bp paired-end sequencing.

The RNA-seq data for samples were generated as 75 bp paired-end Illumina reads and

aligned using STAR [119] to the human genome (GRCh37). The total number of reads

that align to the exons of each gene as defined by Ensembl (version 75) [120] were ob-

tained using STAR. The obtained gene counts were used obtain expression fold

changes (FC) and false discovery rates (FDRs) for genes between any two conditions

using DESeq2 [121]. The genes were considered differentially expressed if their − 2.0 >

logFC > 2.0 and the Benjamini-Hochberg adjusted p value ≤ 0.01. These differentially

expressed genes are given in Additional files 5 and 6: Tables S4 and S5. The gene set

enrichment analysis (GSEA) against each of the MsigDB [122] datasets was performed

using the GSEA tool [123].

To detect the presence of human EGFRvIII transcripts in RNA-seq data from mouse

tumors (indicating that recombination of the conditional EGFRvIII allele has occurred),

we introduced the human EGFR sequence with exons 2 to 7 removed into the mouse

reference genome prior to RNA-seq alignment. The total number of reads aligned to

the EGFRvIII gene was then counted as given above for all our RNA-seq samples. This

process was applied both to brain and spinal tumors as well as to wild-type brain and

spine control samples (that do not carry the EGFRvIII allele).

Transposon insertion sites from RNA-sequencing were obtained using IM-Fusion

[80]. In any given sample, genes with at least one read traversing the transposon-gene

junction or by a fragment (read pairs) spanning across the junction were identified.

Based on the orientation of the inserted transposon and the feature (splice donor, or

splice acceptor) of the transposon inserted, the gene transcript was either declared as

activated or truncated. As controls, we analyzed 10 EGFRvIII; nes-cre; ATP1S2 tumors

(lacking TSPB)—there were no read counts supporting fusion transcripts in these tu-

mors, implying detection of fusion transcripts occurs specifically in the presence of

transposition only as expected.

Splinkerette PCR and Illumina sequencing

Tradis library preparation was performed as described before [63]. Briefly, DNA ex-

tracted from tumor tissue was quantified using the Qubit and sheared on the Covaris

AFA sonicator to a mean fragment size of 250 bp (with re-shearing to be done if the

fragment size were considerably larger). DNA samples were subjected to custom Splin-

kerette adaptor ligation. A PCR for amplification of the adaptor-ligated library to enrich

for transposon-containing amplicons was performed using KapaHiFi HotStart and a

separate primer for each DNA end (3′ and 5′), with 18 PCR cycles. A further 12-cycle

transposon-PCR was performed using a separate primer for each library (one for 3′

and one for 5′) and an index primer for each individual sample (allowing for multiplex-

ing of the samples for sequencing). To avoid individual samples being heavily overrep-

resented in the sequencing pool, the indexed samples in the libraries were quantified
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by quantitative PCR and then combined into an equimolar pool. Each library pool (one

for each transposon end) was sequenced on the Illumina MiSeq platform in a separate

sequencing run yielding, on average, 10 million 75 bp paired-end reads. The libraries

were multiplexed for up to 55 samples in each pool in this study, requiring 4 MiSeq

runs in total, in order to give high coverage sequencing.

Insertion mapping

We used the Gaussian kernel convolution (GKC) approach of de Ridder et al. [124] for

identifying piggyBac (PB) common insertion sites (CIS), as described previously [54,

63]. CIS are genomic regions of several tens of kilobases in length where transposons

insert significantly more frequently than by chance considering the background rate of

insertions and number of TTAA canonical insertion motifs. Briefly, the sequencing

reads were filtered for Splinkerette primer sequences contained within the PB ITRs.

Transposon insertion sites (IS) were established by mapping the sequencing reads to

the mouse genome (assembly version GRCm38) using the SMALT aligner (http://

smalt.sourceforge.net). For each tumor sample, sequencing reads mapping to the same

location in the genome counted as a single IS. The top 300 IS, by read count, of each

sample were pooled in a non-redundant set and subjected to a GKC analysis with “win-

dow sizes” (kernel widths), ranging from 10 to 100 kb in 10 kb steps. Similar numbers

of CIS were found for each window size, and most CIS were detected across multiple

windows. Significant CIS were taken to be those with a Bonferroni-corrected p value <

0.001 for multiple window sizes. Significant CIS were associated with genes as anno-

tated in ENSEMBL release 90 [125]. Mouse genes labeled as “predicted” in the ENSE

MBL annotation were not considered in the analyses. Cancer genes were obtained from

COSMIC v82 [126].

Pathway and network analysis

Pathway analysis was performed using DAVID [127] (with KEGG, Biocarta, and GO-

term datasets) for transposon and RNA-seq data; for the latter, GSEA was performed

as above. Further analysis of transposon genes was performed using the Panther tool,

focusing on the pathway gene sets. For network analyses to determine functional con-

nectivity between CIS genes, we used the STRING tool to visualize known and pre-

dicted interactions between proteins [65].

Glioma comparative genomics analysis

Data on somatic variant and copy number variant calls, RNA-seq expression z-scores,

and methylation scores were obtained through Cbioportal from TCGA human low-

grade glioma and glioblastoma datasets on 10 December 2017 [128]. Patient survival

data from TCGA and REMBRANDT GBM datasets were analyzed through the Betasta-

sis software (www.betastasis.com). These were brain tumors; there are currently no

such large genomic datasets from human spinal gliomas for comparative genomics ana-

lysis. Mutual exclusivity and co-occurrence between genetic alterations in these data-

sets were determined by the Fisher’s exact test, with a Bonferroni adjusted p value <

0.05 taken as statistically significant.
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For comparative transcriptomic analysis for Hox genes, RNA-seq log2 fold changes

and p values were taken for the three large human patient datasets described compar-

ing GBM with normal brain tissue, from publicly available Oncomine software (www.

oncomine.org). To capture all levels of differential expression, p value significance was

set at 0.05 and fold change/gene rank were set to “all.”

Clonal heterogeneity analysis

To analyze intratumoral clonal heterogeneity, we sampled three independent sites from

two established EGFRvIII-PB gliomas. DNA from the samples was extracted for Splinker-

ette PCR and Illumina sequencing, followed by insertion mapping as described above.

Given that lineage relationships between tumor samples can be inferred from patterns of

shared mutations, we identified the matching insertions in CIS genes (with supporting

read count of 2 or more for a particular insertion) between different regions of the same

tumor, as well as the unique insertions in CIS genes for a given tumor region.

Lentiviral production

For lentiviral production of sgRNA constructs, 2.2 × 104 293FT cells were plated on

each well of 96-well plate and 24 h later were transfected with 25 ng of the lentiviral

vector, 75 ng of Virapower Lentiviral Packaging Mix (Invitrogen) per well with the Li-

pofectamine LTX & PLUS reagent (Invitrogen). The viral media was collected and

pooled at 72 h post-transfection, centrifuged at 1000g for 5 min prior to filtration.

CRISPR-cas9 knockout assays

Neurospheres from EGFRvIII-mouse gliomas were dissociated into single cells with

Accutase and transduced with lentiCas9-Blast (Addgene #52962) in the presence of

2 μg/ml polybrene. Media was changed 24 h after transduction and selection performed

with 2.5 μg/ml blasticidin. Cas9 expression was confirmed by qPCR. Single-guide RNAs

(sgRNAs) against target genes of interest were selected using from the Brie library

[129] and were ligated into the sgRNA expressing plasmid (Addgene #67975). Cas9-

GBM cells were infected with lenti-sgRNA lentivirus as described above and selected

with puromycin for 1 week before seeding in the proliferation/drug viability assays.

Three independent experiments were performed in triplicate for each condition. TIDE

was used to assess the efficiency of gene editing with PCR amplicons flanking the cut-

ting sites. Additional file 11: Table S10 shows the sequences for all sgRNAs used.

Cell viability was assessed using the CellTiter-Glo-3D cell viability assay (Promega).

Briefly, EGFRvIII-GBM cells were plated in a 24-well opaque-walled plate, with

2500 cells per well. CellTiter-Glo-3D reagent was added in equal volume to each well,

and the plate was mixed by shaking for 5 min then incubated at room temperature for

25 min. Luminescence was quantified using a luminescent plate reader.

To measure the effect of drugs on cell viability, single-cell split EGFRvIII-GBM cells

were plated in a 96-well plate (5000 cells per well). Cells were left untreated, treated

with dimethyl sulfoxide (DMSO), trametinib, or afatinib at concentrations of 0.001,

0.01, 0.1, 1, and 10 μM. After 4 days of treatment, cell viability was assessed using

CellTiter-Glo-3D. Three independent experiments were performed in triplicate for each

condition.
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Chemogenomic analysis

We constructed a core set of glioma genes by combining all CIS genes (EGFRvIII-PB

cohort; 281 genes) and all recurrent significantly mutated genes (EGFRvIII-only cohort;

85 genes), in addition to 9 additional genes whose proteins are directly activated by loss

of genes in the set (AKT1, AKT2, ERK1, ERK2, MEK1, MEK2, HRAS, NRAS, KRAS).

This yielded set of 375 proteins. To determine if the corresponding genes are genetic-

ally altered in LGGs and GBMs in patients, the TCGA dataset was checked for hetero-

zygous/homozygous deletions, amplifications, and mutations using Cbioportal; all genes

with at least one tumor containing one of these alterations were included as genes also

altered in patients. To annotate the glioma protein set with druggability and pharmaco-

logical data, we used the canSAR software (Cancer Protein Annotation Tool, CPAT,

https://cansarblack.icr.ac.uk) [130]. Druggable proteins in the set were classified as (1)

targets of clinically approved drugs (approved for indications other than glioma); (2)

targets of drugs in clinical investigations; (3) targets of drugs at discovery or preclinical

stages active against the proteins at concentrations of less than or equal to 100 nM; or

(4) proteins predicted to be druggable using established structural druggability predic-

tion methods [84, 130–132], which are potential future drug targets.

Proteins with compounds available were assessed for human glioma cell line sensitiv-

ity using the Genomics of Drug Sensitivity in Cancer (GDSC, www.cancerrxgene.org)

database. IC50 Z-scores represent the relative sensitivity of a cell line to a given drug

relative to all other cancer cell lines tested, with a value of − 2.0 taken to be statistically

significant for sensitivity and values between − 0.5 and − 2.0 taken to represent partial

or weak sensitivity [91].

Statistical analysis

Software calculations were performed using Microsoft Excel, GraphPad Prism version 7

or R version 3.2.0 (The R Project for Statistical Computing, http://www.r-project.org/).

The p values, specific test, and data representation for each analysis is described in the

main text or figure legends. Data were verified to meet the assumptions of the statis-

tical tests used.

Cell line authentication

Cell lines used in this study were directly derived from the mice generated, so formal

authentication was not applicable.
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