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Abstract

Background: Tumors can evolve and adapt to therapeutic pressure by acquiring
genetic and epigenetic alterations that may be transient or stable. A precise
understanding of how such events contribute to intratumoral heterogeneity,
dynamic subpopulations, and overall tumor fitness will require experimental
approaches to prospectively label, track, and characterize resistant or otherwise
adaptive populations at the single-cell level. In glioblastoma, poor efficacy of
receptor tyrosine kinase (RTK) therapies has been alternatively ascribed to genetic
heterogeneity or to epigenetic transitions that circumvent signaling blockade.

Results: We combine cell lineage barcoding and single-cell transcriptomics to trace
the emergence of drug resistance in stem-like glioblastoma cells treated with RTK
inhibitors. Whereas a broad variety of barcoded lineages adopt a Notch-dependent
persister phenotype that sustains them through early drug exposure, rare subclones
acquire genetic changes that enable their rapid outgrowth over time. Single-cell
analyses reveal that these genetic subclones gain copy number amplifications of the
insulin receptor substrate-1 and substrate-2 (IRS1 or IRS2) loci, which activate insulin
and AKT signaling programs. Persister-like cells and genomic amplifications of IRS2
and other loci are evident in primary glioblastomas and may underlie the inefficacy
of targeted therapies in this disease.

Conclusions: A method for combined lineage tracing and scRNA-seq reveals the
interplay between complementary genetic and epigenetic mechanisms of resistance
in a heterogeneous glioblastoma tumor model.

Keywords: Therapy resistance, Glioma stem cells, Epigenetic, Genetic, Tumor
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Background
Tumors comprise heterogeneous mixtures of cells that vary in their genetic makeup

and epigenetic states. Outgrowth of fit genetic subclones is a well-established mechan-

ism of drug resistance [1] and recent work has highlighted that genetic subclones may

rapidly adapt through dynamic alterations involving extrachromosomal DNA [2, 3].

Moreover, transient epigenetic changes or cell state transitions that allow tumor cells

to persist through drug exposure have been described in several cancer models [4–7].

The relative contributions of these respective models and how they cooperate to confer

drug resistance in cancer remains a critical question (Fig. 1a).

Genetic subclones and heterogeneous DNA methylation patterns within tumors have

been characterized by sequencing-based methods [8–10]. Outgrowth of preexisting

drug-resistant subpopulations has been tracked in experimental tumor models using

DNA barcodes [11]. Epigenetic modes of treatment resistance have also been inferred

[12, 13]. However, holistic assessment of preexisting and dynamic epigenetic and gen-

etic drug resistance mechanisms remains an important goal that requires new methods.

Treatment resistance is of paramount concern in GBM, which inevitably relapses

after treatment [14, 15]. Although these tumors frequently harbor RTK amplifications,

therapies targeted against RTKs have failed in the clinic [16]. GBMs are fueled by

stem-like subpopulations that tend to be relatively resistant to therapy [17] and can be

modeled experimentally as gliomaspheres [18]. We therefore sought to develop strat-

egies to evaluate the interplay between genetic and epigenetic mechanisms of RTK in-

hibitor resistance in gliomaspheres. We focused on a PDGFRA-amplified gliomasphere

model in which a subset of cells is able to withstand PDGFR inhibition by adopting a

slow-cycling persister state that is Notch-dependent and reversible [7]. We hypothe-

sized that longer term dasatinib-resistant cell populations might depend upon both epi-

genetic persister phenotypes and acquired genetic events. We developed, optimized,

and employed a combined single-cell RNA-seq (scRNA-seq) and lineage tracing ap-

proach to investigate.

Results
To track outgrowth and phenotypes of clonal lineages, we combined a lentiviral trans-

gene barcoding system [11] with single-cell RNA sequencing (scRNA-seq). A diverse li-

brary of DNA barcodes was subcloned into the 3′ UTR of a blue fluorescent protein

transgene such that the barcode would be transcribed and captured in scRNA-seq data

(Fig. 1b). For ease of identification, all barcode nucleotide sequences were converted to

unique lineage IDs using Base32 encoding (Supplementary Fig. S1a). Deep sequencing

confirmed that our starting library contained > 1 million barcodes (Supplementary Fig.

S1b, see “Methods”).

To maintain high barcode diversity in a patient-derived gliomasphere model (GSC8),

we transduced cells with lentiviral particles bearing this library at low multiplicity of in-

fection (Supplementary Fig. S1c). Barcode diversity was determined after targeted se-

quencing of genomic DNA prepared from stably transduced cells, and reads were

filtered to remove putative sequencing errors (Supplementary Fig. S1d). A homogenous

baseline distribution was confirmed, with each barcode accounting for < 0.11% of the

total reads (Supplementary Fig. S2a, Supplementary Table S1). The starting cellular

barcode diversity after lentiviral infection and puromycin selection was on average 36,
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580 and 84,926 lineage barcodes across replicates of each experiment, respectively

(Supplementary Table S1). Thus, in comparison to prior combined lineage tracing/

scRNA-seq strategies used to study organismal development [19–22], our method har-

nesses a highly diverse set of barcodes and is uniquely powered to detect very rare sub-

clones in malignant cell populations [23].

GSC8 gliomaspheres harbor a PDGFRA amplification and are largely sensitive to the

PDGFRA inhibitor dasatinib but a subset are able to adopt a drug persister phenotype

to survive initial drug treatment [7]. To ascertain mechanisms of drug persistence and

resistance, in a first experiment we distributed barcoded GSC8 cells across four

Fig. 1 Barcode lineage tracing identifies alternative modes of drug resistance in patient-derived
gliomaspheres. a Schematic depicts models of drug resistance involving outgrowth of fit genetic subclones
or broadly induced cell state transitions that confer tolerance. b Schematic depicts lineage barcoding
strategy wherein cells are lentivirally transduced with a unique barcode that is transcribed, enabling its
identification by gDNA sequencing or scRNA-seq. c Experiment #1 design notates four replicates of GSC8
cells treated with the PDGFRA inhibitor dasatinib and the timepoints at which barcode abundances were
analyzed by gDNA sequencing. d Barplots depict relative abundances of the top 20 lineages in each
Experiment #1 replicate after 70 days of dasatinib treatment, per gDNA sequencing. The barcode ID of the
dominant lineage in each replicate is indicated. e Dotplots depict relative abundances of indicated barcode
lineages at successive timepoints in the different Experiment #1 replicates. Each plot shows data for a
different lineage barcode that corresponds to the top lineage identified at day 70 in one of the replicates
(see panel d). The data show that each jackpot lineage was specific to one replicate. f–h Similar
representation as in panels c–e for six replicates of Experiment #2. The data indicate that a single “jackpot”
lineage (e86vac) outgrew in all replicates in Experiment #2, including at earlier timepoints
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separate cultures that were treated with dasatinib continuously over a 70-day time

course. Aliquots of viable cells were collected from each replicate at days 14, 28, 42, 56,

and 70, and barcode distributions were assessed by targeted DNA sequencing (Experi-

ment #1; Fig. 1c). After 70 days of dasatinib exposure, dominant clonal lineages outgrew

in three of the four replicates. These dominant “jackpot” lineages made up between

18.2 and 65.5% of these replicates, representing a > 2000-fold relative expansion over

the course of the experiment (Fig. 1d, Supplementary Fig. S2b; Supplementary Table

S1). Their expansion was also evident in barcode distribution data for earlier time

points (d42, d56) (Fig. 1e). Analysis of the fourth replicate did not reveal a jackpot

lineage, but rather a spectrum of persistent lineages, all with less than 6.7% abun-

dance at day 70 (Fig. 1d, Supplementary Fig. S2c). Notably, each of the three jack-

pot replicates was dominated by a different lineage. Moreover, the jackpot lineages

were replicate-specific and did not show preferential fitness in any of the other

replicates (< 0.012%; Fig. 1e). Control DMSO-treated populations grown from the

same parental populations did not exhibit jackpot clones (Supplementary Fig. S2d).

Furthermore, none of the jackpot lineages from dasatinib-treated replicates 1–3

were within the top lineages detected in DMSO-treated cells (Supplementary Fig.

S2e). This implied that the exceptional fitness of the dominant lineages in

dasatinib-treated cultures was conferred by distinct, replicate-specific events that

occurred after splitting of the barcoded population.

We repeated this experiment by transducing a separate parental culture of GSC8

gliomaspheres with cellular lineage barcodes (Experiment #2; Fig. 1f). After con-

firming a homogenous baseline distribution of diverse barcodes (Supplementary

Fig. S2a), we aliquoted the barcoded cells across six replicates that were exposed

to dasatinib as in the prior experiment. After 56 days of drug exposure, all six rep-

licates contained a jackpot lineage that comprised between 52.4 and 88.5% of the

population (Fig. 1g, Supplementary Fig. S2f). In contrast to the prior experiment,

we found that all replicates were dominated by the same lineage (lineage barcode

ID e86vac). This lineage was evident as a high abundance lineage as early as the

day 28 timepoint (0.4 to 2.8%, Fig. 1h). However, it was not over-represented at

the starting timepoint prior to dasatinib treatment (< 0.014%). These results sug-

gested that a single event incurred prior to splitting of the barcoded population

conferred the exceptional fitness of the dominant lineage shared across these

replicates.

We interpreted these lineage barcoding experiments as being representative of alter-

nate resistance models: (1) an acquired resistance model could explain the distinct jack-

pot lineages evident at later timepoints in Experiment #1, (2) a preexisting resistance

model could explain the single jackpot lineage shared across replicates in Experiment

#2, and (3) an induced model could explain the persistence of a spectrum of lineages

through the full course of Experiment #1 Replicate #4, as well as at earlier timepoints

in all Experiment #1 replicates. We hypothesized that the induced resistance could re-

flect an epigenetic persistence mechanism, such as that we and others have described

previously [6, 7, 24–26], while the instances of acquired and preexisting resistance

might reflect more stable genetic alterations.

We therefore investigated the underlying alterations and mechanisms. First, we per-

formed scRNA-seq on barcode-bearing gliomaspheres that we had collected from
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Experiments #1 and #2 at day 28, reasoning that these data might reveal discriminating

early features of the shared resistant subclone amongst a persister-rich background. We

used the nanowell-based Seq-well technology [27] to acquire 3012 high-quality single-

cell transcriptomes across both experiments at this timepoint. We were able to assign a

unique lineage barcode to over 42.1% of cells with high confidence based on single-cell

sequencing reads for the transcribed barcode. We identified a total of 1076 different

lineage barcodes across the 1268 single cells with assigned barcodes (Fig. 2a). The most

abundant lineage in the scRNA-seq data (n = 30, 1.9% of cells from Experiment #2) har-

bored the same barcode ID (e86vac) as the jackpot lineages identified in the DNA se-

quencing analysis of the six Experiment #2 replicates (Supplementary Fig. S3a).

However, the highly-represented lineages from later timepoints in Experiment #1 were

not over-represented at day 28, consistent with observations from targeted DNA se-

quencing that jackpot lineages from this experiment were not yet dominant at this early

timepoint.

We first analyzed the transcriptional programs of individual cells by t-SNE

visualization. This revealed strong overall concordance between the two experiments,

both of which contained similar distributions of single-cell transcriptomes at day 28

(Fig. 2b). The t-SNE visualization revealed two main clusters of cells distinguishable by

their expression of cell cycle genes (Fig. 2c, Supplementary Fig. S3b). Cells deriving

from the predominant Experiment #2 lineage (e86vac) were enriched within the cell

cycle-high cluster (Fig. 2d, e, Supplementary Fig. S3c), suggesting that they already had

a proliferative advantage at early timepoints.

Since the e86vac lineage was the dominant lineage across multiple replicates, we hy-

pothesized that it harbored a discrete genetic event such as a copy number alteration.

To investigate mechanisms underlying the dasatinib-resistant phenotype of the domin-

ant e86vac lineage, we aggregated single-cell transcriptomes for all cells matching this

lineage and compared the expression profiles of e86vac cells against data aggregated

from a cell-cycle matched cohort of cells from other lineages. We noticed that a num-

ber of upregulated genes in the e86vac lineage (e.g., COL4A1/2, SOX1, IRS2) reside

within a single chromosomal band, chr13q34 (Supplementary Fig. S3d). Systematic

evaluation of all chromosomal bands across the genome revealed that three bands on

chromosome 13 (chr13q12, chr13q14, chr13q34) score most highly in e86vac lineage

cells (Fig. 2f). We hypothesized that these transcriptional patterns reflect genetic copy

number alterations, which are frequent in glioblastoma and other tumors [28, 29]. In

particular, a potential role for focal chr13q34 amplification in RTK inhibitor resistance

was of particular interest as recurrent amplifications of this locus have been reported in

hepatobiliary, colorectal, breast, and rhabdomyosarcoma cancers [30–34]. We therefore

sought to confirm a genetic alteration at this locus and its relationship to RTK inhibitor

resistance.

To this end, we isolated clones from a variety of lineages identified in the dasatinib

time course experiments. We flow sorted single cells from the final timepoints of both

experiments into wells and expanded > 300 single-cell-derived cultures (Fig. 3a). Tar-

geted sequencing of 75 of these cultures enabled us to assign unambiguous lineage bar-

codes (38 unique barcodes). These included the e86var lineage from Experiment #2 (24

clones), two jackpot lineages from Experiment #1 (padnfk and t7nip5; 6 and 2 clones,

respectively), and 35 non-jackpot lineages from both experiments (43 clones). We next
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carried out low-coverage whole-genome sequencing (WGS) of 10 single-cell-derived

jackpot lineages as well as 12 non-jackpot barcodes (Fig. 3b, Supplementary Table S2).

Systematic analysis of copy number alterations across all 22 clones relative to parental

GSC8 gliomaspheres revealed two prominent amplifications specific to the three jack-

pot lineages (Supplementary Fig. S4a-b). In line with our hypothesis, all e86var clones

harbored a high-level amplification of chr13q34 (Fig. 3b; Supplementary Fig. S4c).

Interestingly, the two jackpot clones isolated from Experiment #1 (padnfk and t7nip5)

did not exhibit any copy number alterations at chr13q34, but instead contained distinct,

though overlapping, amplifications at chr2q36 (Fig. 3b; Supplementary Fig. S4b,c). In

contrast, we did not detect any focal high-level amplifications in the non-jackpot

clones, which were nonetheless persistent and viable after 56–70 days of dasatinib ex-

posure (Fig. 3b). All clones maintained critical copy number alterations seen in the par-

ental cells (e.g., PDGFRA, NMYC, MDM2; Supplementary Fig. S4a,c).

Fig. 2 Single-cell analyses identify chromosomal amplifications in “jackpot” drug-resistant lineages. a Plot
depicts barcode distributions in scRNA-seq data for 1268 individual cells from Experiments #1 and #2 at day
28. Blue circles indicate the number of barcodes (left axis) that were detected in the indicated number of
cells (x-axis). The “jackpot” lineage identified by gDNA analysis of Experiment #2 (e86var) was detected in
the largest number of cells (n = 30). The red line indicates the cumulative fraction of cells (right axis) for
which a lineage barcode was detected. b t-SNE plot displays single cells (points) clustered based on their
transcriptomes and colored by experiment. c t-SNE plot as in panel b with cells colored by their expression
score for cell cycle signature genes. d t-SNE plot as in panel b with cells that correspond to the jackpot
lineage e86vac (red) or other lineages (orange) indicated. Gray points indicate cells for which lineage could
not be determined. e Barplot depicts fraction of cells positive for the cell cycle signature (y-axis). Data are
shown for cells assigned to the jackpot e86vac or other lineages. f Rank-ordered plot shows chromosomal
bands that harbor genes that are higher expressed in the e86vac lineage relative to all others. Chromosome
13 bands are highlighted in red and the three most significant bands are labeled

Eyler et al. Genome Biology          (2020) 21:174 Page 6 of 21



These results suggest that, in addition to inducing a known epigenetic persister inter-

mediate population [7], dasatinib treatment of PDGFRA-amplified GSCs can prompt

outgrowth of subclonal populations with focal amplifications of chr13q34 or chr2q36.

Together, these varied mechanisms of treatment response suggest that cell populations

from the same patient-derived gliomaspheres may adapt to targeted RTK therapy via

multiple genetic and epigenetic mechanisms. We reasoned that the chr13q34 amplifica-

tion evident in e86var likely represented a relatively stable event as it was present

Fig. 3 Analysis of clonal cultures identifies distinct but functionally parallel chromosomal amplifications in
“jackpot” drug resistant lineages. a Schematic depicts isolation of single cells and derivation of clonal
cultures from multiple dasatinib-treated replicates of Experiments #1 (day 70; left) and 2 (day 56; right). b
Chart details characteristics of those clonal cultures isolated from dasatinib experiments that were analyzed
by low-coverage whole-genome sequencing (WGS), compared to drug-naïve GSCs (top row). Clones that
exhibited features consistent with induced drug persistence (epigenetic) in these experiments are shown in
the top part of chart. Clones that exhibited features consistent with genetic (acquired or preexisting)
resistance are shown in the bottom part of chart. For each single-cell-derived clone, the chart indicates the
experiment and replicate from which it was derived (Clone ID), the DNA barcode identity (Lineage ID), and
the rank and abundance of the respective lineage in the gDNA analysis of the corresponding experiment
(day 70 for Experiment #1; day 56 for Experiment #2). Genomic tracks depict read density in low-coverage
WGS over chromosomal bands 13q34 (containing IRS2) and 2q36 (containing IRS1). The final column
summarizes the extent to which the clone loses dasatinib resistance after a drug-free washout period. c
Single-cell-derived clones were subjected to a drug-free washout period and then re-challenged with
dasatinib. Plot depicts growth in the presence of dasatinib, relative to drug-naïve GSC8 cells (Y-axis); all
conditions were treated independently in at least 4 replicates. Circles represent the mean relative growth of
individual clonal cultures. Horizontal black bars reflect the mean growth of clones from the indicated
lineage (top). d Barplots depict relative growth of drug-naïve GSC8 cells transduced with IRS1, IRS2, or
luciferase expression constructs (**, p < 0.01 by two-tailed Student’s t test; standard error bars depicted).
Cells were grown at the indicated dasatinib concentrations. Western blot shows IRS1, IRS2, and Actin
protein expression in the indicated GSC8 cultures. Overexpression of IRS1 or IRS2 confers
dasatinib resistance
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across all six replicates in Experiment #2. Indeed, we found that despite enduring

dasatinib-induced inhibition of PDGFRA phosphorylation (Supplementary Fig. S4d),

e86var clonal isolates cultured in the absence of dasatinib for > 4 weeks retained their

drug-resistant phenotype when re-exposed to dasatinib (Fig. 3c). The chr2q36 amplified

clones that arose differentially in Experiment #1 replicates were more variable and dis-

played some degree of drug resistance reversibility: clonal isolates with high copy num-

ber amplifications retained more stable dasatinib resistance than isolates with low copy

number (Fig. 3c). In contrast, non-jackpot clones lost their drug tolerant phenotype en-

tirely when cultured in the absence of dasatinib, consistent with a reversible epigenetic

resistance mechanism.

To explore the mechanism by which GSC8 gliomaspheres acquire dasatinib resist-

ance, we further investigated genes from chromosomal band chr13q34 that were upreg-

ulated in the e86vac jackpot lineage (Supplementary Fig. S3d). One of these genes was

insulin receptor substrate 2 (IRS2; Fig. 3b), which has previously been identified as a

low-frequency amplified gene in GBM [35] and is described as a putative driver onco-

gene in several other cancers [30, 32, 36–39]. Consistently, drug-naïve GSC8 glioma-

spheres in which IRS2 was overexpressed exhibited robust dasatinib resistance

(Fig. 3d). When we examined copy number data from the Cancer Genome Atlas [29,

35], we found that that the chr13q34 locus including IRS2 was amplified in a subset of

primary glioblastomas as well as multiple other primary tumor types (Fig. 4a). Kaplan-

Meier survival analysis of samples from the IDH1-wildtype, proneural subtype of GBM

[29, 40, 41], which most closely reflects the GSC8 model used here [41, 42], indicated

that IRS2 overexpression was associated with poor patient prognosis (Fig. 4b). We ob-

served this correlation within the entire subtype-filtered cohort (very few patients are

annotated as having received RTK inhibitors), suggesting that IRS2 may serve an onco-

genic role even in the absence of targeted treatments.

Remarkably, the chr2q36 amplifications observed in the jackpot lineages padnfk and

t7nip5 from Experiment #1 contained the IRS2 paralogue insulin receptor substrate 1

(IRS1; Fig. 3b, Supplementary Fig. S4b,c) [43]. IRS1 has also been implicated in cancer

initiation and progression [39, 44]. We therefore hypothesized that these paralogous

members of the IRS protein family both confer resistance to RTK inhibitors. Indeed,

overexpression of IRS1 in our GSC model also conferred dasatinib resistance (Fig. 3d).

Combined with the observation that chr13q34 (containing IRS2) and chr2q36 (contain-

ing IRS1) were the two clear dominant high-level amplifications seen in jackpot clones

relative to parental cells (Supplementary Fig. S4b), these results strongly suggest that

amplification of the paralogous IRS1/2 genes provide outgrowth advantage for GSC8

cells under dasatinib treatment.

Finally, we sought to characterize the mechanisms that underlie dasatinib resistance

in glioblastoma. We previously documented a critical role for Notch signaling in sus-

taining a dasatinib-tolerant slow-cycling persister state [7]. Consistently, scRNA-seq

data for the dasatinib-treated gliomaspheres revealed subsets of cells that expressed a

Notch gene signature (Fig. 5a) and a persister-like gene expression signature (Supple-

mentary Fig. 5a). Notably, these clusters were depleted of cells from the IRS2-amplified

lineage e86vac, which had low Notch signature gene expression and low persister signa-

ture gene expression (Fig. 5a, b, Supplementary Fig. S5a). Further, whereas dasatinib-

treated GSC8 cultures and non-jackpot lineages expressed high levels of Notch
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intracellular domain (ICD) and downstream transcription factor RBPJK, the IRS2-

amplified lineage demonstrated decreased evidence of active Notch signaling (Fig. 5c).

Consistently, persister-rich GSC8 populations were sensitive to gamma secretase inhib-

ition of the Notch pathway, while the IRS2-amplified clones were largely insensitive to

Notch pathway inhibition (Fig. 5d). Thus, IRS2-mediated dasatinib resistance is inde-

pendent of Notch.

IRS1 and IRS2 are both highly regulated adaptor proteins that link insulin receptor (IR)

or insulin-like growth factor (IGF-1R) signaling to downstream effector pathways such as

AKT and ERK (schematic in Supplementary Fig. S5b) [45]. Further analysis of the

scRNA-seq data from Experiment #2 revealed an increased AKT expression signature

within the IRS2-amplified lineage, relative to all other lineages (Fig. 5e,f). Western blots

confirmed that in dasatinib-containing conditions, IRS2-amplified clonal lines demon-

strated increased AKT activation (p-AKT) relative to parental cells and control clonal

lines (Fig. 5g,h). In contrast, ERK appeared largely inactive in dasatinib-treated cells and

its activation was uncorrelated with IRS2 status (Supplementary Fig. S5c). Further, IRS2-

amplified clones lost sensitivity to MEK/ERK pathway inhibition (Supplementary Fig.

S5d). Nonetheless, the amplified clones were highly sensitive to inhibitors of IGF-1R/IR

signaling (Supplementary Fig. S5e), supporting a prominent role for IGF-1R/IR/IRS/AKT

signaling in their ability to rapidly proliferate in the absence of PDGFRA signaling.

Fig. 4 Localized amplifications of chr13q34/IRS2 exist across numerous tumor types. a Heatmaps display
copy number alterations across chromosome 13 for indicated tumor types (blue = copy number loss, red =
copy number gain). Inset shows molecular features for the subset of 50 GBMs with the highest IRS2 copy
number level. b Kaplan-Meier survival analysis of proneural subtype glioblastomas from the TCGA project
shows an inverse correlation between IRS2 expression and survival (p = 0.013).
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Fig. 5 Distinct signaling programs mediate dasatinib resistance and persistence. a t-SNE plot displays
single cells from day 28 cultures as in Fig. 2b, colored by their expression score for a Notch signaling
gene signature. Inset shows the same plot with cells from the e86vac jackpot lineage highlighted in
red. b Boxplots depict the distribution of Notch signature scores across all single cells (n = 2982) or
e86vac lineage cells (n = 30). Horizontal line depicts sample median, box delimits the interquartile
range, open circles indicate suspected outliers, and whiskers delimit the non-outlier distribution of
data (distribution of data falling within range of median ± 1.5(interquartile range)).c Western blot
shows expression of IRS2, activated intracellular Notch (Notch ICD), the Notch-associated
transcriptional factor RBPJK and Actin. Input samples correspond to drug-naïve GSC8, non-jackpot
clones from Experiment #2 and jackpot clones with IRS2 amplification grown in the presence of
dasatinib. The non-jackpot “persister” lineages have high Notch ICD and RBPJK levels, while the
jackpot lineage that outgrew Experiment #2 has high IRS2 expression. d Barplots compare growth of
parental GSC8, non-jackpot clones from Experiment #2, and jackpot clones from Experiment #2 with
IRS2 amplification after at least 30 days of culture in the presence of dasatinib. Dasatinib-containing
cultures were treated with the indicated concentrations of γ-secretase/Notch inhibitor or DMSO
control (**, p < 0.01; *, p < 0.05 by two-tailed Student’s t test; error bars depict the standard error of at
least 4 independently treated replicates). The IRS2-amplified lineage is not dependent on Notch
signaling. e t-SNE plot displays single cells from day 28 cultures as in Fig. 2b, colored by their
expression score for an AKT gene signature. f Boxplots depict the distribution of AKT signature scores
across single cells (n = 2982) or e86vac lineage cells (n = 30). Boxplot parameters are as in panel a. g
Western blot shows levels of AKT, its active phospho-serine 463 isoform (P-AKT), and tubulin loading
control. Input samples are as in panel c. h Barplot with standard error bars depicts densitometric
analysis (ImageJ, NIH) of multiple (n = 3) separate Western blot experiments assessing AKT
phosphorylation (Phospho-Serine 463) relative to total AKT in dasatinib-exposed cultures. *, p < 0.05 by
two-tailed Student’s t test. i Schematic depicts epigenetic and genetic events proposed to confer
drug tolerance, resistance, and relapse in glioblastoma. Gray circles represent drug-naïve glioma cells;
red circles represent Notch-dependent persisters that tolerate therapy but proliferate slowly; blue
circles represent a subclone that has acquired a genetic amplification of the IRS1 or IRS2 locus that
drives AKT signaling despite upstream therapeutic inhibition
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Discussion
Here, we combined a high complexity lineage barcoding system with scRNA-seq to in-

vestigate the mechanisms by which PDGFRA-dependent stem-like GBM cells evolve re-

sistance to PDGFRA inhibition. The data reveal alternate resistance mechanisms

involving genetic or epigenetic alterations (Fig. 5i). A stable IRS2 locus amplification

that enables rapid growth in the presence of dasatinib may preexist in patient-derived

gliomaspheres and has been documented in primary GBMs and other tumors prior to treat-

ment [35] (Fig. 4a). More variable copy number alterations of the IRS1 locus also facilitate

rapid growth and may arise de novo during drug exposure. Finally, a rapidly reversible per-

sister state sustains viability of a subset of cells by epigenetic mechanisms. Notch-positive

persister-like cells are already present in primary tumors [7] and may bridge GBM cells

through early treatment until fully drug-resistant genetic alterations arise.

These results are an important foundation for testing the hypothesis that epigenetic

persistence and genetic amplifications may jointly contribute to the development of re-

sistance to RTK inhibitors or other targeted therapies. Epigenetic persisters have been

characterized as a flexible, reversible phase of therapy response [4–7]. Here, we further

note that genetically distinct subclones bearing IRS1 amplifications also exhibit a de-

gree of reversibility to dasatinib resistance that may depend on copy number and yet

undetermined factors. Thus, certain genetic alterations may provide another layer of

dynamic adaptability in cancers, as noted in recent work profiling rapid adaptation via

extrachromosomal DNA [2, 3, 46]. Further characterization of the multiple layers of

epigenetic and genetic flexibility in models of treatment response could aid in the ra-

tional design of therapeutic approaches that address both the reversible and irreversible

phases of therapeutic response.

Evaluation of clinical samples from completed and ongoing clinical trials [47–49]

should be prioritized to determine the contribution of IRS1/2 expression to therapy re-

sponsiveness. Additionally, prospective evaluation of the contribution of IRS1/2 overex-

pression to patient outcomes and tumor aggressiveness in the absence of RTK

treatment could further elucidate the mechanistic specificity of these amplifications in

patient tumors.

Conclusions
Combining high complexity barcoding with single-cell RNA-seq permitted the identifi-

cation of IRS2 and IRS1 copy number amplifications as novel genetic mediators of

dasatinib resistance in a PDGFRA-amplified gliomasphere model, in addition to tran-

scriptionally characterizing an intermediate Notch-high epigenetic persister population.

Our study provides important insights into how these alternate modes of drug toler-

ance and drug resistance can conspire to overcome therapy and cause the inevitable re-

lapse of this disease.

Methods
Cell models and culture

Surgical GBM specimen-derived neurosphere cultures (GBM8 a.k.a. GSC8) were iso-

lated and previously characterized [50]. Based on gene expression and mutational ana-

lysis this model most closely resembles an IDH1-wildtype, PDGFRA-amplified
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glioblastoma of the proneural subtype [41, 42]. Cells were maintained in stem cell-

permissive, serum-free, non-adherent spheroid cultures using Neurobasal medium

(Gibco) supplemented with N2/B27 (Gibco), penicillin/streptomycin (Gibco), Gluta-

MAX (Gibco), recombinant human EGF (20 ng/mL, R & D systems), recombinant hu-

man FGF2 (20 ng/mL, R&D systems), and heparin (2000 ng/mL, Sigma). Cell

dissociation was accomplished with trituration or Accutase (BD Bioscience) treatment.

Barcode plasmid library construction

Plasmid pBA439 was a gift from Jonathan Weissman (Addgene plasmid # 85967) [51]

and was modified to remove the mU6 promoter by NotI and HpaI restriction digest

and self-ligation after Klenow (NEB M0210S) treatment. The resultant pBA439HN

modified plasmid was used as the backbone for generating the barcode library.

To generate the semi-random barcoded insert, synthetic oligos oligoF (ATGCCG

TCTCCCTAGGACTGACTGCAGTCTGAGTCTGACA

GWSWSWSWSWSWSWSWSWSWSWSWSWSWSWSAGCTACGCACTCTATGC-

TAGTGCTAG; W = adenine or thymine and S = guanine or cytosine) and oligoR

(gcatcgtctcGAATTCCTAGCACTAGCATAGAGTGCGTAGCT) were purchased from

IDT. This WSx15 semi-random sequence is referred to as the “lineage barcode.” OligoF

and oligoR were annealed and the double-stranded oligonucleotides were generated by

extension reaction with Phusion High-Fidelity DNA polymerase (NEB). Compatible

ends were generated by treating the pooled duplex barcoded insert and the vector with

AvrII and EcoR1. The pooled library was then subcloned into restriction-digested vec-

tor pBA439HN. Restriction enzyme-treated pBA439HN and the barcode double-

stranded oligos were mixed at a ratio 1:4 vector:insert with ~ 4 × 1011 digested vector

molecules, ligated with T4 DNA ligase (NEB) at 16 C and ligated products were puri-

fied by DNA clean & concentrator 5 kit (Zymo research). About 25% of the purified li-

gated products were transformed into ElectroMAX Stbl4 cells (Thermo Fisher

Scientific), and cells were plated on ampicillin/LB agar plates. All plated colonies were

pooled and collected, and the resultant plasmid library was purified with HiSpeed Plas-

mid Maxi Kit (Qiagen). The purified plasmid library was sequenced and reads filtered

as described below showing a diversity of 1.056 million barcodes with 2 or greater

reads/barcode.

Lentiviral-mediated stable lineage barcoding of GBM cells

For stable incorporation of the barcoded lineage construct, pooled pBA439 library plas-

mid was cotransfected with psPAX2 (Gift of Didier Trono, Addgene plasmid # 12260)

and VSV. G plasmids (Gift of Tannishtha Reya, Addgene plasmid # 14888) at a ratio of 3:

2:1 into 293T cells using FuGENE HD (Promega) per manufacturer’s instructions. Media

was changed after 6 h, and cells were cultured for 3 days. Then viral supernatant was col-

lected and concentrated using Lenti-X concentrator (Clontech) following the manufac-

turer’s instructions, and an estimated MOI for the viral preparation was determined with

serial dilution treatment of GSCs and evaluation for tagBFP expression by flow cytometry.

For each replicate, approximately 1 × 106 GSCs plated in stem cell-permissive monolayer

culture with laminin (5 μg/mL Engelbreth-Holm-Swarm laminin, Sigma) were infected
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with concentrated virus at an MOI of 10% for 24 h prior to selection of barcode-

incorporated GSCs using puromycin (0.5 μg/mL, Life Technologies) for 72 h.

Dasatinib treatment and passaging

Equivalent numbers (1 × 106) of stably transduced barcoded cells were plated in repli-

cates and treated with 1 μM dasatinib. Dissociation and passage of cells with renewal of

compound-containing cell culture medium was performed at least weekly. Each plate

was passed and treated independently without cross-contamination of replicates.

Isolation, amplification, and sequencing of genome-derived barcodes

Following previously reported protocols [11], dasatinib-treated cells bearing the lineage bar-

code library were harvested and counted at indicated experimental time points. Genomic

DNA (gDNA) was prepared with a QIAmp DNA blood mini Kit (Qiagen). The lineage bar-

code was amplified for multiplexed next-generation sequencing (NGS) using primers bear-

ing Illumina adaptor and index sequences. PCR amplification of barcode was performed on

half of the gDNA isolated for each replicate and time point. PCR amplification was per-

formed in one or more reactions to ensure the equal amplification of barcodes; up to 2 μg

of genomic DNA was used as a template for each PCR reaction with Titanium Taq DNA

polymerase (Clontech) per manufacturer’s instructions. Amplified DNA was pooled if mul-

tiple PCRs were performed for a given sample, and samples were purified with QIAquick

PCR purification columns (Qiagen). Tapestation HS D5000 (Agilent) analysis was used to

verify the purity and size of the indexed PCR product and quantification with Qubit dsDNA

HS (Thermo Fisher) was performed prior to multiplexed NGS Illumina sequencing using a

NextSeq500 instrument (Illumina). Read 1 was sequenced 38 bp (or longer) with a custom

spike-in primer (CACTGACTGCAGTCTGAGTCTGACAG) with 8 bp i7 sequencing read.

PhiX was added as about 10% of the total reads. Between 2.8 and 10.2 million reads were

generated for each library (Supplementary Table S1). Amplification and sequencing of the

barcode plasmid library was performed in a similar way.

Computational analysis of genome-derived barcodes

Fastq files from barcode sequencing libraries were assessed for high-quality barcode reads

by filtering to include only those reads that met the expected WSx15 pattern (see “Bar-

code Plasmid Library Construction” for details on semi-random barcode design). This se-

quence pattern was identified in at least 86.4% of reads in all samples. Most reads

containing sequencing errors (including single base insertions or deletions) are filtered

during this step as they do not match the expected pattern. This initial filtering step was

performed using the grep unix command. Further analysis on summarized barcode se-

quences was performed using the R programming language [52]. We employed a compu-

tationally efficient method to filter out additional sequences that likely contained

sequencing errors. For each sequence, we identified all 30 possible sequences with a single

base mismatch (i.e., a Hamming distance of 1). If one of these 30 sequences was observed

more frequently than the original sequence, the original sequence was filtered out as it

likely reflects a sequencing error. Notably, this approach does not only remove single base

sequencing errors, but also multiple base sequencing errors, which are in turn less fre-

quent than single base errors (illustrated in Supplementary Fig. 1d). After filtering,
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between 2,766 and 88,469 unique barcodes were detected for different samples (≥ 10 se-

quencing reads), greatly varying in abundance (top lineage abundance between 0.1 and

88.5%; detailed information on each sample is provided in Supplementary Table S1). Esti-

mation of the underlying barcode complexity in the plasmid library was performed in a

similar way, requiring at least two sequencing reads per barcode.

Single-cell transcriptome profiling using Seq-well

Nanowell-based single-cell transcriptome isolation, indexing, and sequencing were per-

formed as previously described [27, 53]. Briefly, Accutase-dissociated and filtered GSCs

were counted and 10,000 single cells were loaded onto a Seq-Well nanowell array of ~ 90,

000 wells with pre-loaded beads bearing oligonucleotides containing a primer-binding se-

quence, cell barcode identifier, UMI, and oligo-dT sequence (Chemgenes). The array was

sealed with a partially permeable polycarbonate membrane (Sterlitech Custom Order),

cells were lysed in the sealed wells, and mRNA were hybridized to the oligonucleotide-

conjugated beads. After liberating and pooling all beads from the array, reverse transcrip-

tion was performed with Maxima H-RT (Thermo) and a template switching oligo (AAG-

CAGTGGTATCAACGCAGAGTGAATrGrG+G, Exiqon). Exonuclease treatment with

exonuclease I (NEB) was performed prior to whole transcriptome amplification (WTA)

using 2x KAPA HiFi Hotstart Readymix (KAPA) and SMART PCR primer (AAGCAG

TGGTATCAACGCAGAGT, IDT). AMPure SPRI bead cleanup (0.6X, Beckman Coulter)

was performed and a Nextera XT tagmentation kit (Illumina) was used to prepare indexed

sequencing libraries, with a P5-SMART-Hybrid primer (AATGATACGGCGACCACC

GAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C) and

a barcoded N70X primer for sample identification (CAAGCAGAAGACGGCATACGAG

ATXXXXXXXXGTCTCGTGGGCTCGGAGATGT) from IDT. Libraries were then se-

quenced using a custom Read1 primer (GCCTGTCCGCGGAAGCAGTGGTATCA

ACGCAGAGTAC) on a NextSeq500 instrument (Illumina). The following specifications

were used for paired-end sequencing: 20 bp for read 1 (containing 12 bp cell barcode in-

formation and 8 bp UMI), 8 bp for i7 index, and 64 bp for read 2 (containing part of the

transcript). Fastq files for each library were generated using bcl2fastq allowing for up to

one mismatch to expected library barcodes. Identification of cell barcodes, genome align-

ment, and quantification of gene expression levels for each single cell was performed as

previously described [53] using the splice-aware aligner STAR version 2.6.0c [54] and the

R programming language version 3.3.0 [52]. For downstream analyses, we retained high-

quality cells with at least 2500 UMIs and normalized expression values to a total of 10,000

per cell before log-transformation (after addition of 1).

Barcode enrichment from single-cell transcriptomes

A portion (20%) of the WTA material was utilized for PCR enrichment of lineage

barcode-containing transcripts to efficiently link cell barcodes with lineage barcodes, as

previously described [53]. PCR was performed using Titanium Taq Polymerase (Clon-

tech) and the P5-SMART PCR Hybrid PCR and Biotin-R18 Oligo (/5Biosg/

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCATAGAGTGCGTAGCT)

from IDT. Cycling parameters were as follows: (1) 95 °C for 5 min; (2) 13–15 cycles of

(a) 95 °C for 30 s, (b) 55 °C for 30 s, and (c) 72 °C for 30 s, (3) final extension with
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72 °C for 2 min. Purified PCR products (Qiagen PCR Purification Kit) were incubated

with Streptavidin C1 Dynabeads (Thermo Fisher) in 1×BW buffer (5 mM Tris-HCl (pH

7.5), 0.5 mM EDTA, and 1M NaCl) for 15 min at room temperature, washed with

1×BW buffer 5 times, and washed with EB buffer twice. Beads were resuspended in EB

and used for PCR with P5-SMART-Hybrid and barcoded N70X primers, and Titanium

Taq Polymerase with the same parameters as above. The liberated PCR products were

separated from the beads and purified with 0.6X AMPure SPRI purification prior to

quantification with Qubit dsDNA HS (Thermo Fisher) and quality assessment with HS

D5000 Tapestation (Agilent). Following paired-end sequencing, reads were processed

using the cell barcodes identified in the corresponding Seq-Well library, as described

previously [53].

Computational analysis of transcriptome-derived barcodes

Similar to genome-derived barcode libraries, sequencing reads from transcriptome-

derived barcode libraries were assessed for high-quality lineage barcodes. Reads were

first filtered to include only those reads that started with the target sequence of the bio-

tinylated primer (CATAGAGTGCGTAGCT), followed by the WSx15 pattern. This ini-

tial filtering step was performed using the grep unix command. Further analysis on

summarized lineage barcodes (annotated by cell barcode and UMI) was performed

using the R programming language version 3.3.0 [52]. We filtered sequences according

to the following five criteria: (1) The combination of cell barcode, UMI, and lineage

barcode was detected by at least 20 reads. (2) The lineage barcode was identified in the

genome-derived libraries of any of the four replicates at day 0 in the respective experi-

ment. (3) The cell barcode matched a high-quality cell in the corresponding Seq-Well

library. (4) For a given cell barcode/UMI combination, at least 95% of reads represented

a single lineage barcode. (5) Similarly, for a given cell barcode, at least 95% of reads

represented a single lineage barcode. Using these criteria, 1268 of 3012 high-quality sin-

gle cells (42.1%) were matched to a defined lineage barcode.

Clustering, signature scores, and gene set enrichment analysis

All subsequent computational analyses were performed using the R programming lan-

guage version 3.3.0 [52]. For t-SNE visualization of single-cell expression profiles, we

first determined variably expressed genes as previously described across both experi-

ments (n = 427) and centered the log-transformed expression values for each gene. We

then used 1 minus the Pearson correlation coefficient as a distance measure between

cells and used the Rtsne package version 0.16 [55, 56] with the following non-default

parameters: pca = F, is_distance = T, theta = 0.

For deriving single-cell gene expression signature scores, we used previously reported

gene signatures that exemplified cycling cells [57], Notch1 signature (Naive GSC8 N1ICD

target genes) [7], persister signature (Cluster 4) [7], and AKT signaling [58]. Signature

scores were calculated as described previously [53], scoring each gene relative to the 100

genes with the smallest difference in average expression level, and averaging over all genes

in the signature. Since all signatures except the cycling signatures consisted of several

hundreds of genes, we refined signatures by first calculating scores using all genes, and
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then only retained the 50 most informative genes (identified by correlating gene expres-

sion levels with signature scores) and recalculated scores for the shortened signature.

Gene set enrichment analysis (GSEA) for chromosomal bands was performed in bulk

mode using the Liger package version 1.0 [59, 60] using default parameters. For

chromosomal bands with a minimal p value, we ran the analysis for a second time

using 106 random permutations.

Clonal culture isolation and characterization

Populations of lineage-barcoded, dasatinib-treated cells from d70 (Experiment #1) and

d56 (Experiment #2) were sorted using single-cell sorting parameters on a Sony SH800

flow cytometer. Viable cells were determined with Live/Dead near-IR staining (Invitrogen)

or propidium iodide exclusion and single viable cells were sorted into U-bottom Ultralow

Adhesion 96-well plates (Corning). Low clonal culture outgrowth was noted on initial at-

tempts utilizing 100% Neurobasal with growth factor supplements, so subsequent isola-

tions utilized 50% Neurobasal with growth factor supplements and 50% filtered

conditioned media from GSC8 cells cultured in Neurobasal with growth factor supple-

ments for 36 h with substantially higher success of clonal culture outgrowth. Clonal cul-

tures were permitted to grow in dasatinib-free conditions with periodic dissociation and

replating in serially increased volumes of fresh Neurobasal with growth factor supple-

ments until sufficient cell numbers were available to viably freeze 2 aliquots of cells and

harvest gDNA (DNeasy 96 Blood and Tissue Kit, Qiagen). gDNA was quantified with

Nanodrop, and lineage barcode isolation and analysis was performed on samples with suf-

ficient high-quality gDNA for analysis (> 10 ng/uL). Barcode amplification was performed

using Q5 2X High-Fidelity Mastermix (New England Biolabs) and the following primers

obtained from IDT: ClonePCR_Fwd: GATGCCTGGCGTCTACTATGT and ClonePCR_

Rev: CTGATCAGCGGGTTTAAACGG with the following cycling conditions: 1 cycle of

98 °C for 30 s; 35 cycles of 98 °C for 10 s then 67 °C for 30 s then 72 °C for 30 s; elongation

for 2min at 72 °C. Gel-purified PCR products (Qiagen Gel Purification Kit) were Sanger

sequenced (Quintara Biology) using the ClonePCR_Rev primer above. Clones were se-

lected for further analysis based on sequencing quality and lineage representation, and se-

lected clonal cultures were thawed and reassessed a second time by gDNA isolation and

Sanger sequencing to confirm lineage.

Low-coverage whole-genome sequencing

Cells were snap-frozen, gDNA was isolated using DNeasy Blood and Tissue Kit (Qiagen),

and then quality and quantity of gDNA was determined by Nanodrop. In total, 50 ng

gDNA was used for tagmentation and sample preparation/amplification using the Nextera

DNA kit (Illumina) and Nextera i7/i5 primers (Illumina) according to the manufacturer’s

instructions. AMPure-cleaned DNA was quantified with Qubit HS dsDNA kit (Thermo

Fisher) and PCR product size and purity assessed with Tapestation D5000 (Agilent). Sam-

ples were diluted and mixed in equimolar quantity and paired-end sequenced (2 × 38 bp)

in multiplexed fashion using a NextSeq500 instrument (Illumina), acquiring between 10.8

and 37.5 million reads for each library (detailed information on each sample is provided

in Supplementary Table S2). Fastq files were generated using bcl2fastq and aligned to the

human reference genome (hg19) using bwa mem (version 0.7.17). Alignments were
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coordinate sorted and putative PCR duplicates were removed using samtools. Addition-

ally, read pairs with an insert size larger than 1 kb were also removed. Read coverage in

genomic bins of 50 kb was calculated using igvtools count (version 2.5.0). Resulting cover-

age tracks were subsequently normalized by scaling the median coverage of chromosome

5 to 3 (chromosome 5 did not show any apparent copy number variations between all

samples). Samples were visualized using the IGV browser.

Cell growth assays

The following inhibitors were used: dasatinib (Selleck, S1021), IR/IGFR1 inhibitor

GSK1904529A (Selleck S1093), Notch/Gamma secretase inhibitor Compound E (Milli-

pore 565790), and MEK/ERK1/2 pathway inhibitor PD98059 (Selleck S1177). Accutase-

dissociated gliomaspheres were counted and plated at 1000–5000 cells/well of a 96-well

plate in 125 μL Neurobasal with growth factors with either DMSO or dasatinib and/or

other targeted inhibitors in at least triplicate. A set of cells of each type were analyzed

for total ATP content at day 0 for normalization. Cells were permitted to grow for 7

days before they were analyzed per manufacturer’s protocol by Cell Titer Glo (Pro-

mega) alongside ATP standards for end point luminescence on a Synergy HTX Plater-

eader (BioTek). At least 4 separately treated replicates were quantified for each

condition.

Resistance quantification by AUC analysis

Relative resistance to dasatinib was evaluated by comparing the drug-response survival

curves of cell populations normalized to drug-naïve GSC8 cells at various concentra-

tions of dasatinib ranging from 1.6 nM to 5 μM. Comparative AUC analysis was per-

formed using computeAUC in the PharmacoGx package in R [52] and normalizing

AUC values to that of drug-naïve GSC8 cells from the same experiment. A total of 12

clonal cultures from Experiment #1 and 12 from Experiment #2 were analyzed (includ-

ing but not limited to the clones evaluated by WGS in Fig. 3b).

Lentiviral-mediated overexpression of IRS1/2 in GBM cells

For stable incorporation of overexpression constructs, 10.5 μg pSMAL plasmid [61]

with control (pSMAL-luciferase) or IRS1/2 overexpression modules were cotransfected

with 1.9 μg REV, 3.8 μg RRE, 2.7 μg VSV-G, and 4.5 μg pADV plasmids per 10 cm dish

with FuGENE HD (Promega) per manufacturer’s instructions. Media was changed 8 h

after transfection, then harvested and concentrated at 48 h post-transfection. Approxi-

mate viral stock MOI was estimated by GFP positivity by flow cytometric analysis after

serial dilution treatment of GSCs. GSCs were treated with equivalent MOIs of control

(pSMAL-Luciferase) and pSMAL-IRS1 and pSMAL-IRS2 virus, and stable populations

with similar GFP positivity were obtained by flow sorting on a Sony SH800S Flow

Sorter and IRS overexpression levels were verified by Western blotting (Fig. 3d).

Western blot analysis

Cells were treated with DMSO or dasatinib continually for at least 30 days and then

harvested for analysis. PBS-washed, live cells were snap-frozen and lysed using RIPA

buffer (Thermo Fisher) supplemented with HALT protease and phosphatase inhibitors
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(Thermo Fisher) on ice for 20 min, lysates were homogenized by drawing through a 23-

Gauge needle, and debris was removed by centrifugation. Protein content was quanti-

fied in triplicate by BCA assay (Thermo Fisher). Equivalent lysate quantities (25–30 μg/

well) were brought to the same volume, prepared with 4X LDS sample buffer (Thermo

Fisher) and TCEP reducing agent (Thermo Fisher) per manufacturer’s instructions, and

treated at 95 °C for 5 min. Samples and molecular weight ladder (BioRad Kaleidoscope

Protein Ladder) were loaded on a NuPAGE 4–12% gradient bis-tris precast polyacryl-

amide gel (Thermo Fisher) and running at 90–125 V until the dye front passed from

the gel. Protein was transferred at 20 V for 6 min using the iBlot transfer system

(Thermo Fisher) onto prepared nitrocellulose iBlot transfer stacks. After blocking for 1

h in 5% BSA in TBST at room temperature, membranes were incubated in indicated

concentrations of antibodies overnight at 4 °C in TBST+ 5% BSA. Antibodies were used

at following concentrations: p-Ser473 AKT (Cell Signaling Technologies, CST #4060, 1:

1000, lot 23), total AKT (CST #2920, 1:1000, lot 8), p-ERK1/2 (CST #4370, 1:1000, lot

24), total ERK (CST #9107, 1:1000, lot 10), cleaved Notch ICD (CST #4147, 1:1000, lot

6 and 7), RPBJK (Abcam ab25949, 1:2000, lot GR3240322-1), IRS2 (Abcam ab134101,

1:2000, lot GR219213-16), IRS1 (Abcam ab40777, 1:2000, lot GR278510-7). Membranes

were extensively washed with TBST, incubated with secondary antibodies at 1:2500

(Goat anti Rabbit IgG Starbright Blue 700, Goat anti Mouse IgG Dylight 800, Biorad or

HRP anti-Rb/Mo, CST #7074 and 7076) and 1:2500 rhodamine-conjugated FAB anti-

actin or anti-tubulin (Biorad) for 1 h at room temperature, and then washed extensively

with TBST. Fluorescently labels were visualized with GelDoc imager (BioRad). Mem-

branes incubated with HRP-conjugated antibodies were treated for 1–5 min with ECL

prepared according to the manufacturer’s instructions (Millipore) prior to chemilumin-

escent imaging with GelDoc Imager (BioRad). Uncropped Western blot data, including

ladders, are displayed in Supplementary Fig. S6.

Analysis of tumor copy number and expression data from TCGA

To generate tumor type-specific heatmaps of copy number data across tumor types, the

Cancer Genome Atlas (TCGA) was accessed via UCSC’s xenabrowser.net. TCGA data

for each tumor type was sorted by IRS2 copy number level and chromosome 13 copy

number data visualized using custom display settings (origin = 0, threshold = 0.3, satur-

ation = 0.8).

Survival analysis of TCGA GBM samples was performed using processed exon array

gene expression data obtained from the NCI GDC data portal (https://portal.gdc.can-

cer.gov). Sample annotation was obtained from the supplementary tables of the primary

publication [29, 35]. We only included IDH-wildtype cases associated with the pro-

neural subtype as identified by previously reported subtype-specific gene lists in IDH1

WT tumors [41]. Kaplan-Meier analysis was performed using the survival package in R,

splitting cases in two equally sized groups based on their expression for IRS2.
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