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Abstract

3′ Untranslated regions (3' UTRs) length is regulated in relation to cellular state. To uncover key regulators of poly(A)
site use in specific conditions, we have developed PAQR, a method for quantifying poly(A) site use from RNA
sequencing data and KAPAC, an approach that infers activities of oligomeric sequence motifs on poly(A) site choice.
Application of PAQR and KAPAC to RNA sequencing data from normal and tumor tissue samples uncovers motifs that
can explain changes in cleavage and polyadenylation in specific cancers. In particular, our analysis points to
polypyrimidine tract binding protein 1 as a regulator of poly(A) site choice in glioblastoma.
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Background
The 3′ ends of most eukaryotic mRNAs are generated
through endonucleolytic cleavage and polyadenylation
(CPA) [1–3]. These steps are carried out in mammalian
cells by a 3′ end processing complex composed of the
cleavage and polyadenylation specificity factor (which in-
cludes the proteins CPSF1 (also known as CPSF160),
CPSF2 (CPSF100), CPSF3 (CPSF73), CPSF4 (CPSF30),
FIP1L1, and WDR33), the mammalian cleavage factor I
(CFIm, a tetramer of two small, NUDT21 (CFIm 25)
subunits, and two large subunits, of CPSF7 (CFIm 59)
and/or CPSF6 (CFIm 68)), the cleavage factor II (com-
posed of CLP1 and PCF11), the cleavage stimulation fac-
tor (CstF; a trimer of CSTF1 (CstF50), CSTF2 (Cstf64)
and CSTF3 (CstF77)), symplekin (SYMPK), the poly(A)
polymerase (PAPOLA, PAPOLB, PAPOLG), and the nu-
clear poly(A) binding protein (PABPN1) [3, 4]. Cross-
linking and immunoprecipitation (CLIP) revealed the
distribution of core 3′ end processing factor binding
sites in pre-mRNAs [5] and the minimal polyadenylation
specificity factor that recognizes the polyadenylation

signal, consisting of the CPSF1, CPSF4, FIP1L1, and
WDR33 proteins, has been identified [6, 7].
Most genes have multiple poly(A) sites (PAS), which

are differentially processed across cell types [8], likely
due to cell type-specific interactions with RNA-binding
proteins (RBPs). The length of 3′ UTRs is most strongly
dependent on the mammalian cleavage factor I (CFIm),
which promotes the use of distal poly(A) sites [5, 9–12].
Reduced expression of CFIm 25 has been linked to 3′
UTR shortening, cell proliferation, and oncogene expres-
sion in glioblastoma cell lines [11], while increased levels
of CFIm 25 due to gene duplication have been linked to
intellectual disability [13]. The CSTF2 component of the
CstF subcomplex also contributes to the selection of
poly(A) sites [5, 14], but in contrast to CFIm, depletion
of CSTF2 leads to increased use of distal poly(A) sites
(dPAS), especially when the paralogous CSTF2T is also
depleted [14]. PCF11 and FIP1L1 proteins similarly pro-
mote the use of proximal poly(A) sites (pPAS) [12].
Many splicing factors modulate 3′ end processing. Most

strikingly, the U1 small nuclear ribonucleoprotein (snRNP)
promotes transcription, masking poly(A) sites whose pro-
cessing would lead to premature CPA, through a “tele-
scripting” mechanism [15, 16]. The U2AF65 spliceosomal
protein interacts with CFIm [17] and competes directly
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with the heterogeneous nucleoprotein C (HNRNPC) for
binding to uridine (U)-rich elements, regulating the spli-
cing and thereby exonization of Alu elements [18].
HNRNPC represses CPA at poly(A) sites where U-rich se-
quence motifs occur [19]. Other splicing factors that have
been linked to poly(A) site selection are the neuron-
specific NOVA1 protein [20], the nuclear and cytoplasmic
poly(A) binding proteins [12, 21], the heterogeneous ribo-
nucleoprotein K (HNRNPK) [22], and the poly(C) binding
protein (PCBP1) [23]. However, the mechanisms remain
poorly understood. An emerging paradigm is that position-
dependent interactions of pre-mRNAs with RBPs influence
poly(A) site selection, as well as splicing [24]. By combining
mapping of RBP binding sites with measurements of iso-
form expression, Ule and colleagues started to construct
“RNA maps” relating the position of cis-acting elements
to the processing of individual exons [25]. However,
whether the impact of a regulator can be inferred solely
from RNA sequencing data obtained from samples with
different expression levels of various regulators is not
known.
To address this problem, we have developed KAPAC

(for k-mer activity on polyadenylation site choice), a
method that infers position-dependent activities of se-
quence motifs on 3′ end processing from changes in
poly(A) site usage between conditions. By analogy with
RNA maps, and to emphasize the fact that our approach
does not use information about RBP binding to RNA
targets, we summarize the activities of individual motifs
inferred by KAPAC from different regions relative to
poly(A) sites as “impact maps”. As 3′ end sequencing re-
mains relatively uncommon, we have also developed
PAQR, a method for polyadenylation site usage quantifi-
cation from RNA sequencing data, which allows us to
evaluate 3′ end processing in data sets such as those
from The Cancer Genome Atlas (TCGA) Research
Network [26]. We demonstrate that KAPAC identifies
binding motifs and position-dependent activities of regu-
lators of CPA from RNA-seq data obtained upon the
knock-down of these RBPs, and in particular, that CFIm
promotes CPA at poly(A) sites located ~50 to 100 nucle-
otides (nt) downstream of the CFIm binding motifs.
KAPAC analysis of TCGA data reveals pyrimidine-rich
elements associated with the use of poly(A) sites in can-
cer and implicates the polypyrimidine tract-binding pro-
tein 1 (PTBP1) in the regulation of 3′ end processing in
glioblastoma.

Results
Inferring sequence motifs active on PAS selection with
KAPAC
As binding specificities of RBPs have only recently been
started to be determined in vivo in high-throughput [27],
we developed an unbiased approach, evaluating the

activity of all possible sequences of length k (k-mers, with
k in the range of RBP-binding site length, 3–6 nt [28]) on
PAS usage. Briefly, we first compute the relative use of
each PAS p among the P poly(A) sites (P > 1) in a given

terminal exon across all samples s, as Up;s ¼
Rp;s

ΣP
p0¼1Rp0;s

,

where Rp,s is the number of reads observed for poly(A) site
p in sample s (Fig. 1a). KAPAC aims to explain the ob-
served changes in relative poly(A) site usage Up,s in terms
of the activity of a k-mer k within a sample s and the
excess counts (over the background expected based
on the mononucleotide frequencies; see section 2.2.1
of the Supplementary methods in Additional file 1)
Np,k of the k-mer within a region located at a specific
distance relative to the poly(A) site p (Fig. 1b, c).
Running KAPAC for regions located at various rela-
tive distances with respect to the PAS (Fig. 1d) allows
the identification of the most significantly active k-
mers as well as their location.

KAPAC uncovers expected position-specific activities of
RBPs on pre-mRNA 3′ end processing
To evaluate KAPAC we first analyzed PAS usage data ob-
tained by 3′ end sequencing upon perturbation of known
RBP regulators of CPA. Consistent with the initial study of
the poly(C) binding protein 1 (PCBP1) role in CPA [23],
as well as with the density of its CCC—(C)3—binding
element around PAS that do and PAS that do not respond
to PCBP1 knock-down (Fig. 2a), KAPAC revealed that
(C)3 motifs strongly activate the processing of poly(A)
sites located 25–100 nt downstream (Fig. 2b, c; Additional
file 1: Table S1).
As in a previous study we found that the multi-

functional HNRNPC modulates 3′ end processing (see
also Fig. 2d), we also applied KAPAC to 3′ end sequencing
data obtained upon the knock-down of this protein. In-
deed, we found that (U)n sequences (n = 3–5 nt) have a
strongly repressive activity on poly(A) site choice, which,
reminiscent of HNRNPC’s effect on exon inclusion [18],
extends to a broad window, from approximately −200 nt
upstream to about 50 nt downstream of poly(A) sites (Fig.
2e, f; Additional file 1: Table S1). In contrast to the density
of (U)5 motifs, which peaks immediately downstream of
poly(A) sites, KAPAC inferred an equally high repressive
activity of (U)5 motifs located upstream of the poly(A)
site.
These results demonstrate that being provided only

with estimates of poly(A) site expression in different
conditions, KAPAC uncovers both the sequence spe-
cificity of the RBP whose expression was perturbed
in the experiment and the position-dependent, acti-
vating, or repressing activity of the RBP on poly(A)
site choice.
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The PAQR method to estimate relative PAS use from
RNA-seq data
As 3′ end sequencing data remain relatively uncommon,
we sought to quantify poly(A) site use from RNA sequen-
cing data. The drop in coverage downstream of proximal
PAS has been interpreted as evidence of PAS processing,
generalized by the DaPars method to identify changes in
3′ end processing genome-wide [11]. However, DaPars
(with default settings) reported only eight targets from the
RNA-seq data obtained upon the knock-down of
HNRNPC [29], and they did not include the previously
validated HNRNPC target CD47 [19], whose distal PAS
shows increased use upon HNRNPC knock-down (Fig.
3a). Furthermore, DaPars quantifications of relative PAS

use in replicate samples had limited reproducibility (Add-
itional file 1: Figures S1 and S2), as did the motif activities
inferred by KAPAC based on these estimates (Fig. 3b;
Additional file 1: Figure S2). These results prompted us to
develop PAQR, a method to quantify PAS use from RNA-
seq data (Fig. 3c). PAQR uses read coverage profiles to
progressively segment 3′ UTRs at annotated poly(A) sites.
At each step, it infers the breakpoint that decreases most
the squared deviation from the mean coverage of a 3′
UTR segment when dividing the segment in two regions
with distinct mean coverage (Fig. 3c and “Methods”) rela-
tive to considering it as a single segment with one mean
coverage. A key aspect of PAQR is that it only attempts to
segment the 3′ UTRs at experimentally identified poly(A)

Fig. 1 Schematic outline of the KAPAC approach. a Tabulation of the relative usage of poly(A) sites in different experimental conditions (here,
control and treatment). b Tabulation of k-mer counts for regions (blue) located at a defined distance with respect to poly(A) sites p. c Based on
the usage of poly(A) sites relative to the mean across samples and the counts of k-mers k in windows located at specific distances from the
poly(A) sites p, KAPAC infers activities Ak,s of k-mers in samples s. cs,e is the mean relative usage of poly(A) sites from exon e in sample s, cp is the
mean log2-relative usage of poly(A) site p across samples, and ε is the residual error. KAPAC ranks k-mers based on the absolute z-score of the
mean activity difference in two conditions (here, in control relative to treatment). d Fitting the KAPAC model for windows located at specific
distances relative to poly(A) sites, position-dependent activities of sequence motifs on poly(A) site use are inferred
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Fig. 2 (See legend on next page.)

Gruber et al. Genome Biology  (2018) 19:44 Page 4 of 17



sites, from an extensive catalog that was recently con-
structed [19]. Using the HNRNPC knock-down data set
that was obtained independently [29] for benchmarking,
we found that the PAQR-based quantification of PAS
use led to much more reproducible HNRNPC binding
motif activity and more significant difference of mean z-
scores between conditions (−22.92 with PAQR-based
quantification vs −10.19 with DaPars quantification; Fig.
3b, d; Additional file 1: Figure S2). These results indicate
that PAQR more accurately and reproducibly quantifies
poly(A) site use from RNA-seq data.

KAPAC reveals a position-dependent activity of CFIm
binding on cleavage and polyadenylation
As KAPAC allows us to infer position-dependent effects
of RBP binding on 3′ end processing, we next sought to
unravel the mechanism of CFIm, the 3′ end processing
factor with a relatively large impact on 3′ UTR length [5,
9, 10, 12]. We thus depleted either the CFIm 25 or the
CFIm 68 component of the CFIm complex by siRNA-
mediated knock-down in HeLa cells, and carried out RNA
3′ end sequencing. As expected, CFIm depletion led to
marked and reproducible 3′ UTR shortening (Fig. 4a; see
“Methods” for details). We found that the UGUA CFIm
binding motif occurred with high frequency upstream of
the distal poly(A) sites whose usage decreased upon CFIm
knock-down, whereas it was rare in the vicinity of all other
types of PAS (Fig. 4b). These results indicate that CFIm
promotes the processing of poly(A) sites that are located
distally in 3′ UTRs and are strongly enriched in CFIm
binding motifs in a broad region upstream of the poly(A)
signal. KAPAC analysis supported this conclusion, further
uncovering UGUA as the second most predictive motif
for the changes in poly(A) site use in these experiments,
after the canonical poly(A) signal AAUAAA (Fig. 4c;
Additional file 1: Table S1), which is also enriched at distal
PAS [5]. Interestingly, the activity profile further suggests
that UGUA motifs located downstream of PAS may re-
press processing of these sites, leading to an apparent de-
creased motif activity when CFIm expression is high.
We repeated these analyses on RNA-seq data obtained

independently from HeLa cells depleted of CFIm 25 [11],
obtaining a similar activity profile (Fig. 4d; Additional file 1:

Table S2), including the apparent negative activity of
sites that are located downstream of PAS processing.
These results demonstrate that CFIm binds upstream
of distal PAS to promote their usage, whereas binding
of CFIm downstream of PAS may, in fact, inhibit pro-
cessing of poly(A) sites.

KAPAC implicates the pyrimidine tract binding proteins in
3′ end processing in glioblastoma
We then asked whether KAPAC can uncover a role of
CFIm 25 in 3′ UTR shortening in glioblastoma (GBM),
as has been previously suggested [11]. We found that
while 3′ UTRs are indeed markedly shortened in these
tumors (Fig. 5a), UGUA was not among the 20 motifs
that most significantly explained the change in PAS
usage in these samples. This may not be unexpected be-
cause, in fact, once a certain threshold of RNA integrity
is met, normal and tumor samples have CFIm expres-
sion in the same range (Additional file 1: Figure S3).
Rather, KAPAC revealed that variants of the CU di-
nucleotide repeat, located from ~25 nt upstream to ~75
nt downstream of PAS, are most significantly associated
with the change in PAS usage in tumors compared to
normal samples (Fig. 5b; Additional file 1: Table S3).
Among the many proteins that can bind polypyrimidine
motifs, the mRNA level of the pyrimidine tract binding
protein 1 (PTBP1) was strongly anti-correlated with the
median average length of terminal exons in this set of
samples (Fig. 5c). This suggested that PTBP1 masks the
distally located, CU repeat-containing PAS, which are
processed only when PTBP1 expression is low, as it is in
normal cells. Of the 203 sites where the CU repeat motif
was predicted to be active, 181 were located most dis-
tally in the corresponding terminal exons. The PTBP1
crosslinking and immunoprecipitation data recently gen-
erated by the ENCODE consortium [30] confirmed the
enriched binding of the protein downstream of CU-con-
taining, KAPAC-predicted target PAS (Fig. 5d) whose
relative usage decreases in tumor compared to control
samples (Additional file 1: Figure S4). Furthermore, the
enrichment of PTBP1-eCLIP reads was highest for the
highest scoring PTBP1 targets (Fig. 5e). A similar pat-
tern of PTBP1-eCLIP reads was obtained when the 200

(See figure on previous page.)
Fig. 2 KAPAC accurately uncovers the activity of known regulators of poly(A) site choice. a Smoothened (± 5 nt) density of non-overlapping (C)3
motifs in the vicinity of poly(A) sites that are consistently processed (increased or decreased use) in two PCBP1 knock-down experiments from
which 3′ end sequencing data are available [23]. Shaded areas indicate standard deviations based on binomial sampling. b Difference of (C)3 motif
activity inferred by KAPAC in the two replicates of control (Ctrl) versus PCBP1 knock-down (KD) experiments (number of PAS n = 3737). The
positive differences indicate that (C)3 motifs are associated with increased PAS use in control samples. The table shows the three most significant
motifs, with the z-score and position of the window from which they were inferred. c Model of the KAPAC-inferred impact of PCBP1 on CPA.
d Smoothened (± 5 nt) density of non-overlapping (U)5 tracts in the vicinity of sites that are consistently processed (increased or decreased use)
in two HNRNPC knock-down experiments [29]. e Difference of (U)5 motif activity inferred by KAPAC in the two replicates of control (Ctrl) versus
HNRNPC knock-down (KD) experiments (n = 4703). The negative differences indicate that (U)5 motifs are associated with decreased PAS use in the
control samples. The table with the three most significant motifs is also shown, as in b. f Model of the KAPAC-inferred impact of HNRNPC on CPA
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PAS with the strongest decrease in relative usage were
considered instead of KAPAC-predicted targets. In con-
trast, no obvious enrichment was observed for the 200
distal PAS with the least change in usage in glioblastoma
compared to normal tissue (Additional file 1: Figure S5).
Strikingly, KAPAC analysis of mRNA sequencing data
obtained upon the double knock-down of PTBP1 and
PTBP2 in HEK 293 cells [31] confirmed this

hypothesized effect of PTBP1 on 3′ end processing (Fig.
5f ). These results implicate PTBP1 rather than CFIm 25
in the regulation of PAS use in glioblastoma.

A novel U-rich motif is associated with 3′ end processing
in prostate cancer
Cancer cells, particularly from squamous cell and adeno-
carcinoma of the lung, express transcripts with shortened

Fig. 3 Overview of PAQR. a Read coverage profile of the CD47 terminal exon, whose processing is affected by the knock-down of HNRNPC [19].
b KAPAC-inferred position-dependent activities of the (U)5 motif based on DaPars-based estimates of relative PAS use (number of PAS n = 13,388)
in the same data set as in a. c Sketch of PAQR. 1) Samples with highly biased read coverage along transcripts (low mTIN score), presumably
affected by RNA degradation, are identified and excluded from the analysis. 2) Usage of proximal PAS (pPAS) in a sample is determined based on
the expected drop in coverage downstream of the used PAS (ratio of the mean squared deviation from mean coverage (MSE) in the full region
compared to two distinct regions, split by the poly(A) site). 3) Step 2 is repeated iteratively for subregions bounded by already determined PAS.
4) The consistency between PAS called as used and the global best break points in corresponding regions is evaluated and in case of discrepancy,
terminal exons are discarded from the analysis. 5) Relative PAS use is calculated from the average read coverage of individual 3′ UTR segments,
each corresponding to the terminal region of an isoform that ends at a used poly(A) site. d Similar HNRNPC activity on PAS use is inferred by KAPAC
from estimates of PAS use generated either by PAQR from RNA sequencing data (n = 3599), or measured directly by 3′ end sequencing (Fig. 2e)
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3′ UTRs (Fig. 6a; Additional file 1: Table S4). The negative
correlation between the mRNA level expression of CSTF2
and the 3′ UTR length (Fig. 6b) led to the suggestion that
overexpression of this 3′ end processing factor plays a role
in lung cancer [32]. Applying KAPAC to 56 matching nor-
mal–tumor paired lung adenocarcinoma samples, we did
not find any motifs strongly associated with PAS use
changes in this cancer. In particular, we did not recover
G/U-rich motifs, as would be expected if CSTF2 were re-
sponsible for these changes [32]. This was not due to
functional compensation by the paralogous CSTF2T, as
the expression of CSTF2T was uncorrelated with the 3′

UTR length (Fig. 6c). Rather, the CSTF2-specific GU re-
peat motif had highly variable activity between patients
and between poly(A) sites, which did not exhibit a peak
immediately downstream of the PAS (Fig. 6d), where
CSTF2 is known to bind [5]. Thus, as in glioblastoma,
PAS selection in lung adenocarcinoma likely involves fac-
tors other than core 3′ end processing components.
Exploration of other cancer types for which many

paired tumor–normal tissue samples were available re-
vealed that U-rich motifs are more generally significantly
associated with changes in PAS use in these conditions
(Additional file 1: Table S3). Most striking was the

Fig. 4 Position-dependent activation of pre-mRNA processing by CFIm. a The distributions of average terminal exon lengths (see “Methods”)
computed from 5123 multi-PAS terminal exons quantified in CFIm 25, CFIm 68 knock-down, and control samples indicate significant shortening
of 3′ UTRs upon CFIm depletion (asterisks indicate two-sided Wilcoxon signed-rank test p value < 0.0001). b Smoothened (± 5 nt) UGUA motif
density around PAS of terminal exons with exactly two quantified poly(A) sites, grouped according to the log fold change of the proximal/distal
ratio (p/d ratio) upon CFIm knock-down. The left panel shows the UGUA motif frequency around the proximal and distal PAS of the 750 exons
with the largest change in p/d ratio, while the right panel shows similar profiles for the 750 exons with the smallest change in p/d ratio. c KAPAC
analysis of CFIm knock-down and control samples uncovers the poly(A) signal and UGUA motif as most significantly associated with changes in
PAS usage (n = 3727). d UGUA motif activity is similar when the PAS quantification is done by PAQR from RNA sequencing data of CFIm 25
knock-down and control cells (n = 4287) [11]
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Fig. 5 Regulation of PAS choice in glioblastoma samples from TCGA. a Cumulative distributions of weighted average length of 1172 terminal
exons inferred by applying PAQR to five normal and five tumor samples (see “Methods” for the selection of these samples) show that terminal
exons are significantly shortened in tumors. b Activity profile of CUCUCU, the second most significant motif associated with 3′ end processing
changes in glioblastoma (number of PAS used in the inference n = 2119). The presence of the motif in a window from −25 to +75 relative to
PAS is associated with increased processing of the site in normal tissue samples. c Expression of PTBP1 in the ten samples from a is strongly
anti-correlated (dark colored points; Pearson’s r (rP) = −0.97, p value < 0.0001) with the median average length of terminal exons in these samples.
In contrast, the expression of PTBP2 changes little in tumors compared to normal tissue samples, and has a positive correlation with terminal
exon length (light colored points; rP = 0.85, p value = 0.002). d Position-dependent PTBP1 binding inferred from two eCLIP studies (in HepG2 (thick
red line) and K562 (thick blue line) cell lines) by the ENCODE consortium is significantly enriched downstream of the 203 PAS predicted to be regulated
by the CU-repeat motifs. We selected 1000 similar-sized sets of poly(A) sites with the same positional preference (distally located) as the targets of the
CU motif and the density of PTBP1 eCLIP reads was computed as described in the “Methods” section. The mean and standard deviation of position-
dependent read density ratios from these randomized data sets are also shown. e The median ratio of PTBP1-IP to background eCLIP reads over
nucleotides 0 to 100 downstream of the PAS (position-wise ratios computed as in e), for the top 102 (top) and bottom 101 (low) predicted PTBP1
targets as well as for the background set (bg) of distal PAS. f Activity profile of the same CUCUCU motif in the PTBP1/2 double knock-down (where the
motif ranked third) compared to control samples (two biological replicates from HEK cells, number of PAS n = 2493)
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association of the presence of poly(U) and AUU motifs
with increased PAS use in colon and prostate cancer, re-
spectively (Fig. 6e, f ). These results indicate that KAPAC
can help identify regulators of 3′ end processing in com-
plex tissue environments such as tumors.

Discussion
Sequencing of RNA 3′ ends has uncovered a complex
pattern of PAS and 3′ UTR usage across cell types and
conditions, and particularly that the length of 3′ UTRs
increases upon cell differentiation and decreases upon

Fig. 6 Analysis of TCGA data sets. a For TCGA data sets with at least five matching normal–tumor pairs with high RNA integrity (mTIN > 70), the
distributions of patient-wise medians of tumor–normal tissue differences in average terminal exon lengths are shown. Except for adenocarcinoma
of the stomach (STAD), the median is negative for all cancers, indicating global shortening of 3′ UTRs in tumors. b Among 56 matching lung
adenocarcinoma (LUAD)-normal tissue pairs (from 51 patients) where global shortening of terminal exons was observed, the CSTF2 expression
(in fragments per kilobase per million (FPKM)) was negatively correlated (rP = −0.72, p value = 2.5e-18) with the median of average exon length. c
For the same samples as in b, no significant correlation (rP = −0.01, p value = 0.89) between the expression of CSTF2T and the median of
average exon length was observed. d Activity profile of the UGUG CSTF2-binding motif inferred from matched LUAD tumor–normal tissue sample
pairs (n = 1054). For visibility, ten randomly selected sample pairs are shown instead of all 56. e, f Activity profiles of UUUUU and AUU, the motifs
most significantly associated by KAPAC with changes in PAS use in colon adenocarcinoma (COAD; number of PAS n = 1294) (e) and prostate
adenocarcinoma (PRAD; number of PAS n = 1835) (f), respectively (11 tumor–normal tissue sample pairs in both studies)
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proliferation [33, 34]. However, the responsible regula-
tors remain to be identified.
The knock-down of most 3′ end processing factors

leads to short 3′ UTRs [12]. Paradoxically, similar 3′
UTR shortening is also observed in cancers, in spite of a
positive correlation between expression of 3′ end pro-
cessing factors and the proliferative index of cells [3].
This may suggest that 3′ end processing factors are not
responsible for 3′ UTR processing in cancers, and that
other regulators remain to be discovered. However, the
possibility remains that 3′ end processing factors, al-
though highly expressed, do not match the increased de-
mand for processing in proliferating cells. Although
reduced levels of CFIm 25 have been linked to 3′ UTR
shortening and increased tumorigenicity of glioblastoma
cells [11], once we applied a threshold on the RNA in-
tegrity in the samples to be analyzed, CFIm 25 expres-
sion was similar between tumors and normal tissue
samples (Additional file 1: Figure S3). Thus, it seems
that an apparent low expression of CFIm 25 is associated
with stronger 3′ end bias in read coverage and partial
RNA degradation (Additional file 1: Figure S6). Consist-
ently, our KAPAC analysis of samples with high RNA in-
tegrity did not uncover the CFIm 25-specific UGUA
motif as significantly explaining the PAS usage changes
in glioblastoma compared to normal brain tissue. Of
note, in the study of Masamha et al. [11] only 60 genes
had significantly shortened 3′ UTRs in glioblastoma
relative to normal brain, and only 24 of these underwent
significant 3′ UTR shortening upon CFIm 25 knock-
down in HeLa cells, in spite of 1453 genes being affected
by the CFIm 25 knock-down. However, applying KAPAC
to five normal and five glioblastoma tumor samples
which showed most separable distributions of terminal
exon lengths, we uncovered a pyrimidine motif, likely
bound by PTBP1, as most significantly associated with
changes in PAS use in these tumors. Our findings are
supported by previous observations that PTBP1 acts an-
tagonistically to CSTF2, repressing PAS usage [35], and
that increased PTBP1 expression, as we observed in glio-
blastoma tumors, promotes proliferation and migration
in glioblastoma cell lines [36]. Our analysis demonstrates
that, de novo, unbiased motif analysis of tumor data sets
with high RNA integrity can reveal specific regulators of
PAS usage.
In spite of mounting evidence for the role of CFIm in

the regulation of polyadenylation at alternative PAS in
terminal exons, its mechanism has remained somewhat
unclear. “Canonical” PAS, containing consensus signals
for many of the 3′ end processing factors, including
CFIm, tend to be located distally in 3′ UTRs [5]. If core
3′ end processing factors bind to specific PAS and select
them for processing, reducing the concentration of 3′
end processing factors should increase the stringency of

PAS selection. Yet the siRNA-mediated knock-down of
CFIm leads to increased processing at proximal sites,
and not to preferential processing of the “high-affinity”,
distal PAS. Here we have found that CFIm indeed pro-
motes the usage of distal PAS to which it binds, while
CFIm binding motifs are depleted at both the proximal
and the distal PAS of terminal exons whose processing is
insensitive to the level of CFIm. Therefore, the decreased
processing of distal PAS upon CFIm knock-down is not
explained by a decreased “affinity” of these sites. A
model that remains compatible with the observed pat-
tern of 3′ end processing is the so-called “kinetic”
model, whereby reducing the rate of processing at a dis-
tal, canonical site when the regulator is limiting, leaves
sufficient time for the processing of a suboptimal prox-
imal site [37]. Kinetic aspects of pre-mRNA processing
have started to be investigated in cell lines that express
slow and fast-transcribing RNA polymerase II (RNAPII)
[38]. Analyzing RNA-seq data from these cells, we found
that terminal exons that respond to CFIm knock-down
in our data underwent more pronounced shortening in
cells expressing the slow polymerase (Additional file 1:
Figure S7), in agreement with the kinetic model. Never-
theless, this effect was also apparent for exons in which
proximal and distal poly(A) sites were located far apart;
it was not limited to CFIm targets. Furthermore, the
changes in 3′ UTR length in a sample from the fast
RNAPII-expressing cell line were surprisingly similar to
the changes we observed for the slow polymerase. Thus,
current data do not provide unequivocal support to the
kinetic model underlying the relative increase in pro-
cessing of proximal PAS upon CFIm knock-down.
Generalized linear models have been widely used to un-

cover transcriptional regulators that implement gene ex-
pression programs in specific cell types [39, 40]. Similar
approaches have not been applied to 3′ end processing,
possibly because the genome-wide mapping of 3′ end pro-
cessing sites has been lagging behind the mapping of tran-
scription start sites. Here we demonstrate that the
modeling of PAS usage in terms of motifs in the vicinity
of PAS can reveal global regulators, while the recon-
structed position-dependent activity of their correspond-
ing motifs provides insights into their mechanisms.
Interestingly, some of the proteins that we touched upon
in our study are splicing factors. This underscores a gen-
eral coupling between splicing and polyadenylation that
has been long surmised (e.g., [17]), and for which evidence
has started to emerge [41]. Interestingly, the activities of
splicing factors on poly(A) site choice paralleled the activ-
ities of these factors on splice site selection. Specifically,
we found that both HNRNPC, which functions as an
“RNA nucleosome” in packing RNA and masking decoy
splice sites [24], and PTBP1, which has repressive activity
on exon inclusion [42], repress the processing of the PAS
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to which they bind. This unexpected concordance in ac-
tivities suggests that other splicing factors simultaneously
modulating 3′ end processing are to be uncovered. Spli-
cing is strongly perturbed in cancers [43], and the role of
splicing factors in the extensive change of the polyadeny-
lation landscape remains to be defined.
Sequencing of RNA 3′ ends has greatly facilitated the

study of 3′ end processing dynamics. However, such data
remain relatively uncommon, and many large-scale pro-
jects have already generated a wealth of RNA sequencing
data that could, in principle, be mined to uncover regula-
tors of CPA. We found a previously proposed method for
inferring the relative use of alternative PAS from RNA-seq
data, DaPars [11], to have limited reproducibility, possibly
because biases in read coverage along RNAs are difficult
to model. To overcome these limitations, we developed
PAQR, which makes use of a large catalog of PAS to seg-
ment the 3′ UTRs and infer the relative use of PAS from
RNA-seq data. We show that PAQR enables a more re-
producible as well as accurate inference of motif activities
in PAS choice compared to DaPars. PAQR strongly
broadens the domain of applicability of KAPAC to include
RNA sequencing data sets that have been obtained in a
wide range of systems, as we have illustrated in our study
of TCGA data. As single-cell transcriptome analyses cur-
rently employ protocols designed to capture RNA 3′ ends,
it will be especially interesting to apply our methods to
single-cell sequencing data.

Conclusions
In this study, we developed PAQR, a robust computa-
tional method for inferring relative poly(A) site use in
terminal exons from RNA sequencing data and KAPAC,
an approach to infer sequence motifs that are associated
with the processing of poly(A) sites in specific samples.
We demonstrate that these methods help uncover regu-
lators of polyadenylation in cancers and also shed light
on their mechanism of action. Our study further under-
scores the importance of assessing the quality of samples
used for high-throughput analyses, as this can have sub-
stantial impact on the estimates of gene expression.

Methods
Datasets
A-seq2 samples
3′ End sequencing data from HeLa cells that were
treated with either a control siRNA or siRNAs targeting
the CFIm 25 and the CFIm 68 transcripts were gener-
ated as follows. HeLa cells were cultured in DMEM
(#D5671, Sigma Aldrich) supplemented with L Glutam-
ine (#25030081, ThermoFisher Scientific) and 10% fetal
bovine serum (#7524, Sigma-Aldrich). For siRNA treat-
ment, cells were seeded in six-well polystyrene-coated
microplates and cultured to reach a confluence of ~50%.

Subsequently, the cells were separately transfected
with 150 picomoles of siRNA, either control (sense
strand sequence 5′ AGG UAG UGU AAU CGC CUU
GTT 3′), or directed against CFIm 25 (sense strand se-
quence 5′ GGU CAU UGA CGA UUG CAU UTT 3′)
or against CFIm 68 (sense strand sequence 5′ GAC
CGA GAU UAC AUG GAU ATT 3′), with Lipofecta-
mine RNAiMAX reagent (#13778030, ThermoFisher Sci-
entific). All siRNAs were obtained from Microsynth AG
and had dTdT overhangs. The cells were incubated with
the siRNA Lipofectamine RNAiMax mix for at least 48
h before cells were lysed. Cell lysis and polyadenylated
RNA selection was performed according to the manufac-
turer’s protocol (Dynabeads™ mRNA DIRECT™ Purifica-
tion Kit, #61011, Thermo Scientific). Polyadenylated
RNA was subsequently processed and libraries were
prepared for sequencing on the Illumina HiSeq 2500 plat-
form as described earlier [19]. Sequencing files were
processed according to Martin et al. [44] but without
using the random 4-mer at the start of the sequence to
remove duplicates. A-seq2 3′ end processing data from
control and si-HNRNPC-treated cells was obtained from
a prior study [19].

3′ End sequencing data pertaining to PCBP1
3′ End sequencing data from control and si-PCPB1-
treated cells were downloaded from SRA (accession
SRP022151) and converted to fastq format. Reverse
complemented and duplicate-collapsed reads were then
mapped to the human genome with segemehl version
0.1.7 [45]. We did not use STAR for these data sets be-
cause these libraries, generated by DRS (direct RNA se-
quencing) had a high fraction of short reads that STAR
did not map. From uniquely mapped reads for which at
least the last four nucleotides at the 3′ end perfectly
matched to the reference, the first position downstream
of the 3′ end of the alignment was considered as cleav-
age site and used for quantification of PAS use.

RNA-seq data from The Cancer Genome Atlas
BAM files for matching normal and tumor RNA-seq
samples (the number which is listed in Table S5 of
Additional file 1) were obtained from the Genomic Data
Commons (GDC) Data Portal [46] along with gene ex-
pression values counted with HTSeq and reported in
fragments per kilobase per million (FPKM).

Other RNA-seq data sets
Publicly available raw sequencing data were obtained
from NCBI’s Gene Expression Omnibus (GEO) [47] for
the studies of CFIm 25 knock-down in HeLa cells [11]
(accession number GSE42420), HNRNPC knock-down
in HEK293 cells [29] (GSE56010), PTBP1/2 knock-down
in HEK293 cells [30] (GSE69656), and for HEK293 cells
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expressing mutated versions of POLR2A that have over-
all different rates of RNAPII transcription elongation
[38] (GSE63375).

PTBP1 CLIP data
PTBP1-eCLIP data generated by the ENCODE consor-
tium [30] were obtained from the ENCODE Data Coord-
ination Center [48] (accession numbers for the IP and
control samples from K562 cells ENCSR981WKN and
ENCSR445FZX, and from HepG2 cells ENCSR384KAN
and ENCSR438NCK).

Processing of the sequencing data
Raw reads obtained from RNA-seq experiments were
mapped according to the RNA-seq pipeline for long RNAs
provided by the ENCODE Data Coordinating Center [49]
using the GENCODE version 24 human gene annotation.
Raw reads from the study conducted by Gueroussov et al.
[31] were additionally subjected to 3′ adapter trimming
with cutadapt, version 1.14 [50] prior to mapping. Raw
reads from eCLIP experiments carried out by the EN-
CODE consortium for the PTBP1 were first trimmed with
cutadapt version 1.9.1 [50], at both the 5′ and 3′ ends to
remove adapters. A second round of trimming guaranteed
that no double ligation events were further processed. The
reads were then mapped to the genome with STAR, ver-
sion 2.5.2a [51]. Detection and collapsing of PCR dupli-
cates were done with a custom python script similar to
that described by Van Nostrand et al. [27]. BAM files cor-
responding to biological replicates were then merged.

PAQR
Inputs
PAQR requires an alignment file in BAM format and a file
with all poly(A) sites mapped on the genome, in BED for-
mat. The assessment of RNA integrity (see below) also re-
quires the transcript annotation of the genome, in BED12
format.

Poly (A) sites
PAQR quantifies the relative use of poly(A) sites in indi-
vidual terminal exons. We started from the entire set of
poly(A) sites in the PolyAsite resource [19], but this set
can be exchanged or updated, and should be provided as a
BED-file to the tool. We converted the coordinates of the
poly(A) sites to the latest human genome assembly ver-
sion, GRCh38, with liftOver [52]. Terminal exons with
more than one poly(A) site (terminal exons with tandem
poly(A) sites, TETPS) and not overlapping with other an-
notated transcripts on the same strand were identified
based on version 24 of the GENCODE [53] annotation of
the genome. When analyzing RNA-seq data that were
generated with an unstranded protocol, PAQR does not

quantify poly(A) site usage in terminal exons that overlap
with annotated transcripts on the opposite strand.

Quantification of PAS usage
The main steps of the PAQR analysis are as follows: first,
the quality of the input RNA sequencing data is
assessed, to exclude samples with evidence of excessive
RNA degradation. Samples that satisfy a minimum qual-
ity threshold are then processed to quantify the read
coverage per base across all TETPS and poly(A) sites
with sufficient evidence of being processed are identi-
fied. These are called “used” poly(A) sites (uPAS). Fi-
nally, the relative use of the uPAS is calculated.

Assessment of sample integrity
The integrity of RNA samples is usually assessed based on
a fragment analyzer profile [54]. Alternatively, a post hoc
method, applicable to all RNA sequencing data sets, quan-
tifies the uniformity of read coverage along transcript bod-
ies in terms of a “transcript integrity number” (TIN) [55].
We implemented this approach in PAQR, calculating TIN
values for all transcripts containing TETPS. For the ana-
lysis of TCGA samples and of RNA-seq samples from cells
with different RNAPII transcription speeds, we only proc-
essed samples with a median TIN value of at least 70, as
recommended in the initial publication [55].

RNA-seq read coverage profiles
For each sample, nucleotide-wise read coverage profiles
along all TETPS were calculated based on read-to-
genome alignments (obtained as described above). In
processing paired-end sequencing data, PAQR ensured
unique counting of reads where the two mates overlap.
When the data were generated with an unstranded
protocol, all reads that mapped to the locus of a specific
TETPS were assumed to originate from that exon. The
locus of each TETPS was extended by 200 nt at the 3′
end, to ensure inclusion of the most distal poly(A) sites
(see below). To accurately quantify the usage of the most
proximal PAS, when poly(A) sites were located within
250 nt of the start of the terminal exon, the coverage
profile was first extended upstream of the PAS based on
the reads that mapped to the upstream exon(s). Specific-
ally, from the spliced reads, PAQR identified the up-
stream exon with most spliced reads into the TETPS
and computed its coverage. When the spliced reads that
covered the 5′ end of the TETPS provided evidence for
multiple splice events, the most supported exons located
even further upstream were also included (Additional
file 1: Figure S8).

Identification of the most distal poly(A) sites
From the read coverage profiles, PAQR attempted to
identify the poly(A) sites that show evidence of
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processing in individual samples as follows. First, to cir-
cumvent the issue of incomplete or incorrect annota-
tions of PAS in transcript databases, PAQR identified
the most distal PAS in each terminal exon that had evi-
dence of being used in the samples of interest. Thus,
alignment files were concatenated to compute a joint
read coverage profile from all samples of the study.
Then, the distal PAS was identified as the 3′-most PAS
in the TETPS for which: 1) the mean coverage in the
200-nt region downstream of the PAS was lower than
the mean coverage in a region twice the read length (to
improve the estimation of coverage, as it tends to de-
crease towards the poly(A) site) upstream of the poly(A)
site; and 2) the mean coverage in the 200-nt region
downstream of the PAS was at most 10% of the mean
coverage from the region at the exon start (the region
within one read length from the exon start) (Additional
file 1: Figure S9). For samples from TCGA, where read
length varied, we have used the maximum read length in
the data for each cancer type. After the distal PAS was
identified, PAQR considered for the relative quantifica-
tion of PAS usage only those TETPS with at least one
additional PAS internal to the TETPS and with a mean
raw read coverage computed over the region between
the exon start and distal PAS of more than five.

Identification of used poly(A) sites
PAQR infers the uPAS recursively, at each step identify-
ing the PAS that allows the best segmentation of a par-
ticular genomic region into upstream and downstream
regions of distinct coverage across all replicates of a
given condition (Fig. 3c). Initially, the genomic region is
the entire TETPS, and at subsequent steps genomic re-
gions are defined by previous segmentation steps. Given
a genomic region and annotated PAS within it, every
PAS is evaluated as follows. The mean squared error
(MSE) in read coverage relative to the mean is calculated
separately for the segments upstream (MSEu) and down-
stream (MSEd) of each PAS for which the mean coverage
in the downstream region is lower than the mean cover-
age in the upstream region. A minimum length of 100
nt is required for each segment, otherwise the candidate
PAS is not considered further. The sum of MSE in the
upstream and downstream segments is compared with
the MSE computed for the entire region (MSEt). If
(MSEu + MSEd)/MSEt ≤ 0.5 (see also below), the PAS is
considered “candidate used” in the corresponding sample.
When the data set contains at least two replicates for a
given condition, PAQR further enforces the consistency of
uPAS selection in replicate samples by requiring that the
PAS is considered used in at least two of the replicates
and, furthermore, for all PAS with evidence of being used
in a current genomic region, the one with the smallest
median MSE ratio computed over samples that support

the usage of the site is chosen in a given step of the seg-
mentation. The segmentation continues until no more
PAS have sufficient evidence of being used. If the data
consist of a single sample, the segmentation is done based
on the smallest MSE at each step.
To further minimize incorrect segmentations due to

PAS that are used in the samples of interest but not part
of the input set, an additional check is carried out for
each TETPS in each sample, to ensure that applying the
segmentation procedure considering all positions in the
TETPS rather than the annotated PAS recovers positions
that fall within at most 200 nt upstream of the uPAS
identified in previous steps for each individual sample
(Additional file 1: Figure S10). If this is not the case, the
data for the TETPS from the corresponding sample are
excluded from further analysis.

Treatment of closely spaced poly(A) sites
Occasionally, distinct PAS occur very close to each
other. While 3′ end sequencing may allow their inde-
pendent quantification, the RNA-seq data do not have
the resolution to distinguish between closely spaced
PAS. Therefore, in the steps described above, closely
spaced (within 200 nt of each other) PAS are handled
first, to identify one site of the cluster that provides the
best segmentation point. Only this site is then compared
with the more distantly spaced PAS.

Relative usage and library size normalized expression
calculation
Once used poly(A) sites have been identified, library size-
normalized expression levels and relative usage within in-
dividual terminal exons are calculated. Taking a single
exon in a single sample, the following steps are performed:
the mean coverage of the longest 3′ UTR is inferred from
the region starting at the most distal poly(A) site and ex-
tending upstream up to the next poly(A) site or to the
exon start. Mean coverage values are similarly calculated
in regions between consecutive poly(A) sites and then the
coverage of an individual 3′ UTR is determined by sub-
tracting from the mean coverage in the terminal region of
that 3′ UTR the mean coverage in the immediately down-
stream region. As some of the poly(A) sites are not identi-
fied in all samples, their usage in the samples with
insufficient evidence is calculated as for all other sites, but
setting the usage to 0 in cases in which the upstream
coverage in the specific sample was lower than the down-
stream coverage. The resulting values are taken as raw es-
timates of usage of individual poly(A) sites and usage
relative to the total from poly(A) sites in a given terminal
exon are obtained.
To obtain library size normalized expression counts,

raw expression values from all quantified sites of a given
sample are summed. Each raw count is divided by the
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summed counts (i.e., the library size) and multiplied by
106, resulting in expression estimates as reads per million
(RPM).

PAQR modules
PAQR is composed of three modules: 1) a script to infer
transcript integrity values based on the method de-
scribed in a previous study [55]—the script builds on the
published software which is distributed as part of the Py-
thon RSeQC package version 2.6.4 [56]; 2) a script to
create the coverage profiles for all considered terminal
exons—this script relies on the HTSeq package version
0.6.1 [57]; and 3) a script to obtain the relative usage to-
gether with the estimated expression of poly(A) sites
with sufficient evidence of usage.
All scripts, intermediate steps, and analysis of the

TCGA data sets were executed as workflows created
with snakemake version 3.13.0 [58].

KAPAC
KAPAC, standing for k-mer activity on polyadenylation
site choice, aims to identify k-mers that can explain the
change in PAS usage observed across samples. For this,
we model the relative change in PAS usage within ter-
minal exons (with respect to the mean across samples)
as a linear function of the occurrence of a specific k-mer
and the unknown “activity” of this k-mer. Note that by
modeling the relative usage of PAS within individual ter-
minal exons we will capture only the changes that are
due to alternative polyadenylation and not those that are
due to overall changes in transcription rate or to alterna-
tive splicing. We are considering k-mers of a length from
3 to 6 nt in order to match the expected length of RBP
binding sites [28].
KAPAC attempts to explain the change in the relative

use of a given PAS in terms of the motifs (k-mers) that
occur in its vicinity, each occurrence of a k-mer contrib-
uting a multiplicative constant to the site use. Thus, we
write the number of reads observed from PAS i in sam-
ple s as Ri,s = α ∗ exp(Ni,k ∗ Ak,s), where Ni,k is the count
of k-mer k around PAS i, Ak,s is the activity of the k-mer
in sample s, which determines how much the k-mer con-
tributes to the PAS use, and α is the overall level of tran-
scription at the corresponding locus. Then, for poly(A)
sites in the same terminal exon we can write their base
2 logarithm relative use log(Ui,s) as a function of the num-
ber of k-mer counts found in a defined window at a
specific distance from the site i and the activity of these

k-mers: logðUi;sÞ ¼ Ni;k � Ak;s−logð
PP

p¼1expðNp;k � Ak;sÞÞ
(see Supplementary methods of Additional file 1 for a de-
tailed derivation). By fitting the relative use of poly(A) sites
to the observed number of motifs around them, we can
obtain the activities Ak,s for each k-mer k in each sample s

and calculate mean activity difference z-scores across treat-
ment versus control pairs of samples (Fig. 1; Additional
file 1: Supplementary methods).

Parameters used for KAPAC analysis of 3′ end sequencing
data
We considered terminal exons with multiple poly(A) sites
within protein coding transcripts (hg38, GENCODE ver-
sion 24) whose expression, inferred as previously described
[19], was at least 1 RPM in at least one of the investigated
samples. To ensure that the position-dependent motif ac-
tivities could be correctly assigned, exons containing
expressed PAS that were closer than 400 nt from another
PAS were excluded from the analysis, as we applied
KAPAC to regions ± 200 nt around poly(A) sites. We ran-
domized the associations of changes in poly(A) site use
with k-mer counts 100 times in order to calculate p values
for mean activity difference z-scores (Additional file 1:
Supplementary methods).

Parameters used for KAPAC analysis of RNA-seq data
All KAPAC analyses for RNA-seq data sets considered
terminal exons with at least two PAS of any transcripts
from the GENCODE version 24 annotation of the hu-
man genome. Filtering of the closely spaced PAS, activity
inference, and randomization tests were done similar to
the processing of 3′ end sequencing libraries. No RPM
cutoff was applied as the used PAS are already deter-
mined by PAQR. In the case of TCGA data analysis,
mean activity difference z-scores were inferred based on
comparisons of tumor versus normal tissue. For the
KAPAC analysis of PTBP1/2 knock-down in HEK293
cells, double knock-down samples were considered as
control and the actual control samples as treatment,
since this comparison corresponds directly to that in the
GBM analysis (Fig. 5c; Additional file 1: Figure S11).

Average terminal exon length
An average terminal exon length can be calculated
over all transcripts expressing a variant of that ter-
minal exon as l ¼ ΣP

p¼1 fplp; where fp is the relative

frequency of use of PAS p in the terminal exon and
lp is the length of the terminal exon when PAS p is
used for CPA. To compare terminal exons with differ-
ent maximum lengths, we further normalize the aver-
age exon length to the maximum and express this
normalized value percentually. Thus, when the most
distal site is exclusively used the average terminal
exon length is 100, while when a very proximal site is
used exclusively, the average terminal exon length will
be close to 0 (Additional file 1: Figure S12).
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Average length difference
The difference in average length of a terminal exon be-
tween two samples is obtained by subtracting the average
length inferred from one sample from the average length
inferred from the second sample. 3′ UTR shortening is
reflected in negative average length differences, while 3′
UTR lengthening will lead to positive differences.

Definition of the best MSE ratio threshold
Two studies of HNRNPC yielded 3′ end sequencing [19]
and RNA sequencing [29] data of control and si-
HNRNPC-treated cells. We used these data to define a
PAQR parameter (the threshold MSE ratio) such as to
maximize the reproducibility of the results from the two
studies. MSE ratio values ranging from 0.2 to 1.0 were
tested (Additional file 1: Figure S13). Relative use of PAS
was calculated based on the A-seq2 data sets as de-
scribed before [19]. The RNA-seq data were processed
to infer PAS use with different MSE cutoffs, and we then
calculated average terminal exon lengths for individual
exons in individual samples and also differences in aver-
age exon lengths between samples. For the comparison
of the RNA-seq based PAS quantifications with those
from A-seq2, we considered both the overall number of
terminal exons quantified in replicate data sets as well as
the correlation of average length differences. As shown
in Additional file 1: Figure S13 stringent (low) cutoff
in MSE leads to few exons being quantified with high
reproducibility, but the number of quantified exons
has a peak relative to the MSE. At a threshold of 0.5
on MSE we are able to quantify the largest number
of exons with relatively good reproducibility, and we
therefore applied this value for all our subsequent ap-
plications of PAQR.

Selection of normal–tumor sample pairs for analysis of 3′
UTR shortening
For the analysis of motifs associated with 3′ UTR length
changes in cancers, we computed the distribution of 3′
UTR length differences in matched tumor–normal sam-
ples. We carried out hierarchical clustering of vectors of
3′ UTR length changes for each cancer type separately
(using Manhattan distance and complete linkage). We
then identified the subcluster in which the median
change in 3′ UTR length was negative for all samples
and that also contained the sample where the median
change over all transcripts was smallest over all samples.
Samples from these clusters were further analyzed with
KAPAC.

Selection of normal–tumor pairs from GBM data
From the six normal tissue samples that had a median
transcript integrity number > 70, five had similar average
exon length distributions (all of them being among the

samples with the highest median average length). We
used these five normal tissue samples and selected five
primary tumor samples with similarly high TIN and the
lowest median average exon length. We then generated
random pairs of normal–tumor tissue samples and ana-
lyzed them similarly to paired samples from other
cancers.

eCLIP data analysis
We predicted targets of the CU-repeat motif as de-
scribed in the Supplementary methods of Additional file
1 and obtained a total of 203 targets. We either used the
entire set or divided the set into the top half and bottom
half of targets. For each poly(A) site from a given set,
the read coverage profiles of the 400 nt region centered
on the poly(A) site were constructed from both the
protein-specific immunoprecipitation (IP) experiment
and the related size-matched control. At every position,
we computed the ratio of the library size normalized
read coverage (RPM) in the IP and in the background
sample (using a pseudo-count of 0.1 RPM) and then
average these ratios position-wise across all poly(A) sites
from a given set, considering any poly(A) site with at
least a single read support in either of both experiments.
For comparison, we carried out the same analysis for
1000 random sets of poly(A) sites with the same size as
the real set, and then inferred the mean and standard
deviation of the mean read ratios at each position.

Motif profiles
Motif profiles were generated by extracting the genomic
sequences (from the GRCh38 version of the human gen-
ome assembly) around poly(A) sites from a given set,
scanning these sequences and tabulating the start posi-
tions where the motif occurred. The range of motif oc-
currence variation at a given position was calculated as
the standard deviation of the mean, assuming a binomial
distribution with the probability of success given by the
empirical frequency (smoothened over 7 nt centered on
the position of interest) and the number of trials given
by the number of poly(A) sites in the set.

Selection of CFIm-sensitive and insensitive terminal exons
For terminal exons with exactly two quantified poly(A)
sites that were expressed with at least 3 RPM in all sam-
ples (1776 terminal exons) we calculated the proximal/
distal ratio. Next, we calculated the average (between
replicates) log10 fold change (in knock-down relative to
control) in proximal/distal ratio. The 750 terminal exons
with the largest average log10 fold change in the CFIm
25 and CFIm 68 knock-down experiments were selected
as CFIm sensitive, while the 750 with an average log10
fold change closest to zero were considered insensitive.
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Public License as published by the Free Software Foundation which permits
the free redistribution and/or modification of the code.
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