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RNAs: dynamic and mutable

Mihaela Zavolan1*† and Brenton R. Graveley2*†
Why a Special Issue on RNA and Gene Regulation? Until
the late 1990s, it was thought that only a small number of
ribonucleic acids were stably expressed in every cell: riboso-
mal RNAs, transfer RNAs, small nuclear RNAs, and small
nucleolar RNAs. In contrast, the messenger RNA (mRNA)
population was known to be more dynamic and would
change in response to signals and cell state. Around two
decades ago, a much more diverse RNA world began to
emerge, populated with many different types of RNAs,
from very short to very long, very transient to very stable,
associating with different proteins and carrying out many
new functions. This Special Issue of Genome Biology is on a
specific, though still very broad aspect of this diverse land-
scape: RNA modification and its role in gene regulation.
The discovery of mRNA involved a long and fascinat-

ing struggle by many scientists [1]. Evidence that regula-
tory RNAs exist became apparent from the use of many
experimental systems [2]. Similarly, the multitude of
modifications that have been found on naturally occur-
ring ribonucleotides has been known for many years [3].
What then makes these research fields so active today?
One of the main reasons for the resurgence in these
fields is the breakthrough in technologies to probe cellu-
lar content on a global scale. Despite the still large
imprecision of individual measurements, patterns can be
readily distinguished. A second important factor is the
development of ingenious approaches to enrich specific
RNA populations. Many of the articles in this Special
Issue illustrate these points.
He and colleagues [4] review the far-reaching implica-

tions of RNA modification for cellular function. One of
the most common modifications is the deamination of
adenosine to inosine (A-to-I) in double-stranded RNA
(dsRNA). This modification renders RNAs unstable and
alters their base-pairing properties, which has implica-
tions for RNA processing and decoding into proteins,
reviewed here by Walkley and Li [5]. The adenosine
deaminating enzymes presumably evolved early in the
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metazoan lineage, and their functions have been sur-
veyed by Levanon and colleagues [6]. Park et al. [7]
describe that, as expected, there is much variation in A-
to-I editing between human individuals, but as yet the
consequences of this editing have been poorly character-
ized. Nevertheless, modulatory elements have been iden-
tified and some of these are described by Daniel et al.
[8]. However, the article by Heraud-Farlow et al. [9]
disputes the importance of A-to-I-mediated changes in
protein sequences for organism function, and empha-
sizes that the impact of this modification remains to be
fully understood.
The complexity of interactions and functions from rela-

tively simple sequence elements continues to unfold. The
study by Patel et al. [10] highlights a specific genetic muta-
tion that generates an AU-rich element with pathogenic
consequences. Understanding the tissue-dependent dy-
namics of individual mRNAs remains a challenge, as many
RNA binding proteins (RBPs) modulate these dynamics in
unexpected ways. Rissland et al. [11] bring an additional
piece to this puzzle, and describe how microRNAs
(miRNAs) modulate the interactions of RBPs with tar-
get mRNAs. How translation initiation changes in
response to stress is discussed by Costello et al. [12]
who studied eIF4F-mRNA interactions. Meyer et al.
[13] used crosslinking and immunoprecipitation to
map the binding sites of the plant clock-regulated
AtGRP7 protein.
Non-coding RNAs are a heterogeneous class of RNAs

in terms of transcription requirements, sequence length,
and localization, and their functions are correspondingly
diverse. An up-to-date review of the mechanisms of
non-coding RNAs is presented by Marchese, Raimondi,
and Huarte [14]. One of the earliest described functions
of long non-coding RNAs (lncRNAs) was in the regula-
tion of chromatin structure [15]. In this Special Issue,
Marín-Béjar et al. [16] identified a conserved sequence
element that mediates the interaction with polycomb
repressor complex 2 (PRC2), through which the LINC-
PINT lncRNA (long intergenic non-protein coding
RNA, p53 induced transcript) regulates tumor invasion.
A large number of non-coding, antisense transcripts
have been identified following the infection with Herpes
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simplex virus 1; induction of antisense transcription pro-
vides protection against apoptosis as described by Wyler
et al. [17].
Finally, two articles in this Special Issue contribute to

the current debate on the functions of alternatively
spliced transcript isoforms. Echoing earlier studies that
indicated a high degree of stochasticity in splice site
choice [18], Saudemont et al. [19] argue that observed
splicing patterns reflect the fitness cost of mis-splicing.
Finally, Schmitz et al. [20] evaluate the prevalence of
intron retention in vertebrates and suggest that this
mechanism enhances regulatory complexity, though the
evidence for this remains very limited.
More articles on these topics will be added in the

coming weeks. Collectively, the articles contained within
this Special Issue of Genome Biology touch on and pro-
vide new insight into many of the key issues in the broad
and exciting field of RNA regulation.
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