Efroni and Birnbaum Genome Biology (2016) 17:65
DOI 10.1186/513059-016-0931-2

Genome Biology

OPINION Open Access

The potential of single-cell profiling in

plants

Idan Efroni'? and Kenneth D. Birnbaum'™

Abstract

Single-cell transcriptomics has been employed in a
growing number of animal studies, but the technique
has yet to be widely used in plants. Nonetheless, early
studies indicate that single-cell RNA-seq protocols
developed for animal cells produce informative datasets
in plants. We argue that single-cell transcriptomics has
the potential to provide a new perspective on plant
problems, such as the nature of the stem cells or initials,
the plasticity of plant cells, and the extent of localized
cellular responses to environmental inputs. Single-cell
experimental outputs require different analytical
approaches compared with pooled cell profiles and
new tools tailored to single-cell assays are being
developed. Here, we highlight promising new
single-cell profiling approaches, their limitations as
applied to plants, and their potential to address
fundamental questions in plant biology.

Introduction
Many of the distinguishing features of plants are attrib-
utable to the functions of highly specialized cells.
Transcriptomic analysis of these specialized cells has
significantly advanced our understanding of key events
in plant development, such as tissue specification in the
root [1, 2] and shoot [3] or stomatal maturation [4].
Tissue-specific profiling has also shown that environ-
mental conditions lead to dramatically different re-
sponses in various cell types [5, 6]. These advances rely
on fluorescent protein markers that have enabled the
tracking and isolation of cell populations of particular
identity.

However, the markers used to profile cells were
largely chosen for their ability to represent anatomical
features and many fundamental questions would benefit
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from an unbiased view of cellular organization. For ex-
ample, physiology can call for cellular specialization
where anatomy does not. In addition, the full extent of
cellular variation in response to biotic and abiotic
stresses is not well characterized, as different cells
clearly respond differently, for example, to pathogen
attacks [7, 8]. In some cases, we simply lack good
markers for crucial cell populations. For example, no
single reporter uniquely marks the root initials and
the signals that regulate stem cell activity remain
poorly understood [9]. Furthermore, while develop-
ment is a dynamic process, most of the current cell-
type profiles confound multiple developmental stages.
A continuous progression of cell states from birth to
differentiation is required to reveal how cells regulate
their maturation [10].

In this Opinion, we focus on how single-cell RNA-
seq can be used to dissect plant tissue organization,
developmental dynamics, and physiological responses
(Table 1). Based on early studies, single-cell RNA-seq
protocols developed for animal systems have produced
high-quality profiles in plant cells [11, 12], as we detail
below. We first address cell isolation issues that are
specific to plants. For mRNA amplification and library
preparation methods common to plants and animals,
we refer the readers to a recent comprehensive review
[13]. We then focus our discussion on three analytical
topics that are of central importance in mining single-
cell data in plant studies—discriminating technical
versus biological noise, detecting distinct cell types,
and ordering developmental trajectories.

Isolation of single cells from plants

Plant cells are immobilized in a rigid cell wall matrix
that must be removed or penetrated. External cells are
more accessible and early studies at the single-cell level
used microcapillaries to manually extract their proto-
plasm (e.g., [14]). However, in order to profile a large
numbers of cells or cells from internal tissue, the most
feasible method is enzymatic cell wall digestion. This is
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Table 1 Questions in plant biology to which single cell profiling could be applied: analytical problems and algorithmic solutions

Biological problem or plant-specific
question

Analytical problems for single-cell
data

Potential approaches

Distinguish genes that show true
biological variation

What genes vary among physiologically
distinct cells of seemingly homogenous
tissues?

Identify transcriptional signature of rare
cell types

What is the transcriptional profile of
root initials?

Find subsets of cells with a unique
environmental response

What is the early response of pathogen-
susceptible vs. pathogen-resistant cells
of the leaf epidermis?

Assemble dissociated cells into a
developmental sequence

What is the ordered profile of specific
cell types from initial to differentiated
cells?

Follow identity transitions during wound
repair or in vitro regeneration

Do plant cells follow a course of de- or

Significant technical noise is present

Profiles have no replicates and exhibit
zero-biased expression distribution, so
traditional statistical methods are
inappropriate

Linear dimensionality reduction can
obscure close relationships and
produce misleading clusters

Clustering methods might miss small
sets of cells

Separation of a continuous cell
expression space into types is
subjective

Missing data-points exist owing to
false negatives and misleading false
positives

Variation in individual plants can
create artificial groupings

Detecting transitional and multiple
identities must be robust in single-cell
data with many false positives and

Hypothesis testing based on identification
of variation that exceeds empirical
estimations of technical noise [11]

Model-driven deconvolution of biological
variation using estimations of technical
noise [20]

Non-linear t-SNE to minimize joint
probability distribution distance and draw
similar cells together [29]

backSPIN to impose an order and partition
data [31, 32]

RacelD to identify new cell types by detecting
a significant number of biological gene
outliers [30]

De novo trajectory reconstruction to order
cells using Monocle [39] or diffusion-like
dynamics [40]

Seurat to map cells using a priori data and
imputation of missing data-points [41]

ICl to map cells to known reference types
using many markers [12, 38]

ICl to classify cells using a priori knowledge
of identity markers for detecting mixed or
diminished cell identity [12, 38]

. o ) ) false negatives
trans- differentiation during regeneration? 9

ICl index of cell identity, t-SNE t-distributed stochastic neighbor embedding

routinely achieved by incubating plant tissues in
cellulases and other cell-wall-degrading enzymes for as
little as one hour, releasing individual protoplasts into
solution [15, 16].

In order to isolate fluorescently labeled cells, two
recent plant studies have used glass micropipettes to as-
pirate single fluorescently labeled cells under a stereo-
microscope with epifluorescence [11, 12]. However, this
method is very labor intensive and is only practical for
profiling of, at the most, a few dozen cells. For higher-
throughput studies, fluorescence-activated cell sorting
(FACS) is currently the most commonly used method
for single-cell isolation. FACS can distribute individual
cells into 96- or 384-well plates and we do not anticipate
major problems with this technique in plants, as pooled
sorting of plant protoplasts works well. Recently,
higher-throughput microfluidics-based methods that
can process tens- to hundreds-of-thousands of cells
were developed for animal cells [17, 18]. These
methods are promising for widespread use, although
they have not yet been tested on plant cells and are
not currently commercially available.

The cell walls of some plant tissues are particularly re-
calcitrant to cell wall digestion, including more-mature

tissues with secondary cell walls. An approach that
could address this problem is the isolation of nuclei
from internal tissue, for example, by tissue chopping
[19]. The profiling of pooled nuclei from specific
cell types has been performed in plants and appears
to reflect known cell-specific expression [20]. In
principle, techniques for RNA-seq from single nuclei
developed in animals [21] could be applied to
plants with little or no modification. However, as
nuclei were shown to contain only ~10 % of the
cellular RNA [20], one open technical issue is how
much the lower RNA vyield would affect technical
sampling noise (see below).

Biological versus technical variability

One of the goals of transcriptional profiling is the
identification of differentially expressed genes between
samples. Traditional statistical models rely on the use
of replicates to identify differentially expressed genes.
In the typical experimental design of single cell tran-
scriptomics, however, all cells are considered inde-
pendent biological samples, creating the need for
methods tailored to single-cell outputs. The lack of
true replicates is of special concern as low initial
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mRNA molecule number produces considerable tech-
nical noise. This is apparent by the high dispersion of
gene expression, especially at low levels, when com-
paring two similar cells (Fig. 1a) [11, 22-25]. The
technical variability stems mainly from the inefficient
process of cDNA synthesis [25], resulting in sequen-
cing libraries that represent only about 10 % of the
original mRNA population in the cell [23]. The sam-
pling process introduces Poisson-distributed noise
that dominates low expression levels (Fig. 1a). In par-
ticular, transcripts with low copy number are often
omitted, producing zero biased expression-level distri-
butions, which are greatly different from the positive
mean tendencies of pooled cells (Fig. 1b). The zero-
based property will affect background null distribu-
tions for statistical analysis. Despite the technical
noise, however, many functional cell-specific markers,
including those in plants, appear to be expressed at
high enough levels to show robust expression, with
relatively low rates of observed false negatives or false
positives (Fig. 1c) [12].

Two general approaches have been used to estimate
technical noise and deconvolute true biological
variability in gene expression among single cells.
Brennecke and colleagues [11] used both plant and
animal single-cell profiles to model technical noise
based on spike-in RNA, which they use to produce a
p value for each gene that addresses the hypothesis
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that the biological variability of a gene in a popula-
tion of cells exceeds the predicted technical noise
[11]. In a different approach, Griin and co-workers
[23] modeled gene expression distributions, account-
ing for both sampling noise and global cell-to-cell
variability. This group used spike-in data to fit a for-
mal model of noise based on commonly used distri-
butions [23]. This method could also be used on
plant single-cell profiles as technical noise has charac-
teristics identical to those of animal cells (e.g., Fig. 1a)
[23]. One lesson learned from these early studies is
that a denser RNA spike-in, such as total RNA from
a distantly related organism [11], can provide a more
accurate noise estimation than the standard set of 92
spike ins [23].

Application of such methods to isolated root cells
has led to the identification of many genes whose ex-
pression varied among single cells, even from seem-
ingly uniform tissues [11]. However, in order to
understand the biological meaning of such variability,
the resulting gene list has to be cross-referenced with
other databases. Arabidopsis has rich gene expression
resources that can be used to identify markers for bio-
logical processes. For example, a repository of tissue-
specific gene expression data was used to translate
changes in gene expression to changes in cell identity
during plant regeneration [12]. Analysis of cis-regula-
tory data is also a useful tool in identification of
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Fig. 1 Single-cell transcriptomic profiles in plants. a The technical noise profile between two single cells of the same cell type, showing high
dispersion for transcripts expressed at a low level. The axes are read-counts representing gene expression levels on a log2 scale. As most genes
are expected to be expressed at similar levels, the two axes evaluate replication and show that, at these scales, genes expressed at higher levels
show the potential to distinguish biological from technical noise. b (upper) The expression distribution of a gene among pooled samples typically
shows a peak frequency on a positive expression value. (lower) Gene expression among single-cell samples typically shows a peak frequency at
zero, with a subset of cells showing a second peak of positive read counts in a subset of samples. Density represents the frequency of cells
showing a given expression level (read count). ¢ Several gold-standard markers in single-cell profiles of cells with known tissue origins. These
functional markers are expressed at higher levels (e.g., more replicable expression in a and non-zero expression in b (lower). In these real samples
collected from plant cells, markers for the quiescent center (QC), stele, and epidermis all show detectable expression in target cells and are largely
absent in non-target cells, with some false-positive and false-negative expression
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common modules and potential regulators, as evi-
denced by the identification of novel muscle differenti-
ation regulators in human cells [26]. However,
profiling of DNAse-hypersensitivity data in plants is
currently sparse (but see [27]).

Discovery of unique cell states

While anatomy has been the traditional guide to cell-
type classification, single-cell transcriptomics can, in
principle, provide an unbiased approach to identify
cell types or subtypes. This could be applied, for ex-
ample, to sampling meristematic cells in search of a
stem cell signature or cells of an infected leaf in order
to detect differential cellular responses to pathogen
attacks.

One common approach to cellular classification is
mapping cells with high-dimensional transcriptional
readouts in a low-dimensional space to identify coherent
clusters. The most commonly used visualization tech-
nique for this approach is principal components analysis
(PCA) [28]. Applied to cell grouping, the technique gen-
erates a cell-by-cell correlation matrix and then extracts
axes, in order of explained variance, that capture gene
expression patterns that best separate cell states.
Another technique for dimension reduction—multi-
dimensional scaling (MDS) [29]—finds a low-dimension
(typically two) projection that will preserve as much as
possible the distance between cells in the original high-
dimension space. Several recent animal studies have used
PCA or MDS followed by gene discovery [30, 31], for ex-
ample, to identify new markers for cancer subtypes in
glioblastoma [30].

Both of these dimensionality-reduction techniques use
linear metrics, which can have the undesirable quality of
spreading apart relatively similar cells in the transform-
ation to lower dimensions [32]. We have observed, for
example, that single-cell profiles from highly localized
plant quiescent center (QC) cells are relatively dispersed
in the first two axes of a PCA [12]. A non-linear
dimensionality-reduction technique called t-distributed
stochastic neighbor embedding (t-SNE [32]) has been
used extensively in single-cell studies [17, 33, 34]. t-SNE
converts gene expression differences between any two
cells to a conditional probability that gene x is the near-
est neighbor of gene y. The program makes the trans-
formation from multiple to two or three dimensions by
minimizing the joint probability distributions from high-
to low-dimensional space, allowing adjustments in the
transformation that, for example, lead to greater attrac-
tion of similar cells. Considering the differential re-
sponse to plant cell infection, all sampled cells might
share the same identity, giving them a highly similar
background expression. If similar cells are dispersed in a
low-dimensional space, a divergent subgroup might be
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hard to distinguish. A tight grouping of the non-
responsive subset (for example, using t-SNE) could help
distinguish the responsive group.

The methods above typically rely on a subjective
definition of a cluster or cell type by visual inspection
of the low-dimensional cell space. In the example
above, partitioning the responsive and non-responsive
cell groups by eye could introduce the potential for
bias. More objective approaches to clustering and
partitioning cells have also been developed. For ex-
ample, the “sorting points into neighborhoods” (SPIN)
method has been used to create a global ordering of
cells. The technique builds a cell-by-cell correlation
matrix and orders cells to form a pattern of high cor-
relations along a continuous diagonal in the matrix
[35]. A mouse study used the approach on 3005 cells
from the brain using SPIN to order cells and then find
breakpoints that divided cells into highly correlated
subgroups along the ordered matrix (backSPIN [34]).
In plants, this technique could be used on cells that
form a developmental trajectory that exhibit discrete
states, such as phase changes. For example, backSPIN
could be used to partition cells into the meristematic,
elongation, and differentiation zones. While these
methods provide a formal way to cluster cells, they
still require subjective cutoffs. In addition, more-
standard techniques for partitioning clusters, such as
gap statistics, have also been used to identify single-
cell clusters [33].

Another problem is that subpopulations become in-
creasingly difficult to detect from neighboring popula-
tions when they are rare. This is likely to be the case for
plant stem cells, which can represent a small proportion
of cells marked by cell-identity reporters. Thus, distin-
guishing a potential unique stem cell signature distinct
from the neighboring cells will be challenging. In
principle, a cell should only be called unique if it dis-
plays true biological variation from nearby cell states
that exceeds the expected technical noise. Using such an
approach, Griin and colleagues [33] extended their tech-
nical noise-deconvolution approach (see above [23]) to
cell-type identification. The method, called RacelD,
groups cells into clusters and then identifies genes
whose expression in given cells of the cluster exceeds
the technical noise [33]. Cells that had a significant
number of outlier genes were deemed a novel subtype.
This approach or more-empirical approaches to model-
ing technical noise (e.g., [11]) and identifying marker
transcripts could prove useful for distinguishing a small
group of candidate stem cell states in the meristem.
Nevertheless, statistical power to distinguish differential
expression will obviously improve with greater numbers
of cells. Empirically, we have found differential expres-
sion to agree well with gold-standard markers when at
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least five cells of a given type are identified, but this
number will vary according to the experimental set-up.

In some cases, the differential response of a group of
cells might be a given, but it is their similarity to
known states that is the crucial question. For example,
a plant cell can rapidly change its identity in response
to local [36] or extensive injury [37-39]. Whether
plant cells do this through dedifferentiation or trans-
differentiation or through novel states is an open
question [40]. Resolving such questions requires an
accounting of known cell fates among regenerating
cells. One approach to this problem is to use many
markers of known cell states to ‘vote’ on the identity
of a cell in question. Thus, the first task is to quantify
the specificity of a comprehensive set of cell-type- and
developmental-stage-specific markers (e.g., [41]). We
have developed an information-based approach to
identify markers from known tissue-specific profiles
[12]. We then used these markers to quantify cell
identity [“index of cell identity” (ICI)] over back-
ground noise. The large number of markers reduced
batch effects, was robust to noise, and permitted the
detection of mixed identity. The method was used to
show a transient loss of vascular identity in regenerat-
ing roots [12]. Overall, ICI represents a highly “super-
vised” alternative to cell-state discovery.

Constructing developmental trajectories

In the plant meristem, cells are often arranged in matur-
ation gradients in which their spatial position often cor-
relates with developmental stage. Single cell mRNA-seq
analysis provides an opportunity to assemble these de-
velopmental trajectories in fine detail. During the
process of tissue disassociation, however, knowledge of
the original position of a cell is lost, requiring bioinfor-
matic inference of the development stage of the cell.

One set of methods to reconstruct developmental tra-
jectories from single cells relies on the assumption that
neighboring stages show similarity of gene expression.
One such method, Monocle, employs dimensionality re-
duction to plot cells on two axes and then charts a path
through the cell space that represents a pseudo-time
series using a minimal spanning tree (Fig. 2, Method 1)
[26]. Alternatively, differentiation trajectories have been
modeled using non-linear diffusion-like dynamics in a
high-dimensional transcriptional space [42].

These approaches assume that developmental stage is
the dominant signal in single-cell profiles. This might
present a problem because plants are highly tuned to
their microenvironment and even tightly controlled
growth conditions will yield plant-to-plant differences in
gene expression. Such plant-specific effects could create
artifacts in a completely unguided de novo assembly of
cell states, such as those above. Approaches that guide
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the assembly of cell states with some prior knowledge of
cell states would help address this issue.

Seurat is a software package that uses a priori spatial
information from the expression of a small number of
known marker genes to deduce the position of cells in
the original tissue [43]. In order to handle the technical
sampling noise, Seurat uses clustering and machine-
learning techniques to estimate, or “impute”, the expres-
sion level of what it infers to be missing markers (Fig. 2,
Method 2). While the method was developed and cus-
tomized for the analysis of the zebrafish embryo, a simi-
lar approach could be used for cells in plant meristems
using a priori knowledge of the spatial expression of
multiple markers, as is available for Arabidopsis, maize,
rice, and a growing number of plant species. Alterna-
tively, sets of genes that vote on the specific develop-
mental stages of a cell can be used as a score for
developmental stage, as could be implemented in the
ICI approach [12]. Such a method could, for example, be
used to place cells along a trajectory from stem cell to
differentiated cell (Fig. 2, Method 2). One could envision
using these protocols to describe a stem cell state and
the discrete steps of differentiation that proceed it.

Concluding remarks

Single-cell RNA-seq works as efficiently in plant cells as in
animal cells. Noise profiles are well understood and an
early set of analytical approaches is now capable of
extracting information not previously possible in pooled
samples. The biggest technical challenges to adapting
single-cell protocols to plants will be dissociating cells
from the appropriate tissues and obtaining high numbers
of cells for high-throughput analysis. In addition, the tech-
nical noise associated with single-cell assays and the lack
of true biological replicates pose a challenge in distin-
guishing differences in gene expression between single
cells. The unsupervised grouping of cells before statistical
analysis has been used to create de facto replicate samples,
but researchers need to be cautious of batch effects that
can dominate unsupervised clustering. Nonetheless, most
of these problems are not unique to single-cell analysis
and the ability to profile large numbers of cells can be lev-
eraged to address noise and identify replicate cell states.
Towards that end, multiple bioinformatic tools for the
analysis of single-cell transcriptomes have been developed
and successfully applied. Single-cell analysis of whole
organs has the potential to identify highly localized re-
sponses to stress and environmental inputs, map develop-
mental trajectories, and rapidly profile emerging models
where specific fluorescent markers are not yet available
(Table 1). Thus, in addition to the specific questions dis-
cussed herein, single-cell analysis holds the potential to
generate datasets that could rapidly accelerate compara-
tive developmental genomics at the cell level.
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Fig. 2 Hypothetical example showing the pseudo-time ordering of cells collected from the root meristem. (upper) The green-colored cells
represent a reporter marking the endodermis and quiescent center (QC). The color gradient represents a continuum of cellular maturation
from birth (at bottom) to differentiation (towards the top). Cells are dissociated and isolated using fluorescence-activated cell sorting
(FACS), whereupon ordering information is lost. At the right, single-cell expression profiles are used to infer a pseudo-ordering as cells in
an approximate sequence. (lower) Two general methods of pseudo-time ordering are shown. Method 1 is unsupervised, using dimensionality
reduction to position cells in a hypothetical space and then imposing an optimal path that infers the developmental progression of cells (e.g.,
Monocle). Method 2 uses markers to place cells in a specific location or developmental zone, with specific approaches differing in the way
they adapt to false negatives and false positives. Seurat infers the expression of missing “gold-standard” markers based on coexpressed genes.
Index of cell identity (/ICl) employs many markers that “vote” on cell localization, where misleading diagnostic markers from false positives and
false negatives are overcome by a majority of true positives. (Schematic by Ramin Rahni)
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