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Airway and ventilation management during
cardiopulmonary resuscitation and after
successful resuscitation
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Abstract

After cardiac arrest a combination of basic and advanced airway and ventilation techniques are used during
cardiopulmonary resuscitation (CPR) and after a return of spontaneous circulation (ROSC). The optimal combination of
airway techniques, oxygenation and ventilation is uncertain. Current guidelines are based predominantly on evidence
from observational studies and expert consensus; recent and ongoing randomised controlled trials should provide further
information. This narrative review describes the current evidence, including the relative roles of basic and advanced
(supraglottic airways and tracheal intubation) airways, oxygenation and ventilation targets during CPR and after ROSC in
adults. Current evidence supports a stepwise approach to airway management based on patient factors, rescuer skills and
the stage of resuscitation. During CPR, rescuers should provide the maximum feasible inspired oxygen and use waveform
capnography once an advanced airway is in place. After ROSC, rescuers should titrate inspired oxygen and ventilation to
achieve normal oxygen and carbon dioxide targets.
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Background
Airway and ventilation interventions during cardiopulmo-
nary resuscitation (CPR) and in those with a return of a
spontaneous circulation (ROSC) follow a stepwise ap-
proach as the precise interventions are thought to depend
on patient factors, rescuer skills and the stage of the resus-
citation [1, 2]. Current guidelines for in-hospital cardiac
arrest (IHCA) and out-of-hospital cardiac arrest (OHCA)
are based primarily on evidence from observational studies
and expert consensus, and the optimal interventions
remain uncertain [3–5]. In addition, our knowledge of
airway management during IHCA is mainly extrapolated
from OHCA studies.

Do we need an airway, oxygenation and
ventilation during CPR?
Current guidelines recommend that, after a primary cardiac
arrest, restoring a circulation with chest compressions and,
if appropriate, attempted defibrillation to restart the heart
take priority over airway and ventilation interventions [2,

4]. The premise is that there is an adequate oxygen reser-
voir at the time of cardiac arrest and further oxygen is only
required after about 4 minutes. When cardiac arrest follows
airway and/or breathing problems (asphyxial cardiac arrest),
earlier interventions to restore adequate oxygenation to the
vital organs may be preferable.
Current guidelines for CPR [2–4, 6] emphasise chest

compressions for all cardiac arrests because:

� Chest compressions are easy to learn and do for
most rescuers and do not require special equipment.
Studies show that lay rescuer compression-only CPR
is better than no CPR [7].

� Sudden cardiac arrest, with an initial shockable
rhythm (ventricular fibrillation or pulseless
ventricular tachycardia [VF/pVT]) has good
outcomes with early CPR and early defibrillation [8].

� Survival after a non-cardiac cause of cardiac arrest,
such as asphyxial cardiac arrest and which more
commonly lead to an initial non-shockable cardiac
arrest rhythm (pulseless electrical activity (PEA) or
asystole), is relatively poor even if there is ROSC.
Patients often have severe brain injury associated
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with hypoxaemia and low blood flow preceding car-
diac arrest, a period of no or low flow during CPR
and reperfusion injury following ROSC.

� As VF/pVT has a better response to treatment, CPR
interventions prioritise treatment for VF/pVT at the
expense of those that may be helpful for PEA or
asystole.

Observational data suggest that early lay-bystander
compression-only CPR can improve survival after sudden
cardiac arrest [9]. This could be because of an increased like-
lihood of bystanders performing compression-only CPR ra-
ther than no CPR, or CPR with long pauses for probably
ineffective ventilation attempts. In addition, dispatch-assisted
compression-only CPR appears to give similar or improved
outcomes compared with dispatcher CPR instructions for
both compressions and ventilations [5]. Additional benefits
of CPR with compressions and ventilations are most likely
when delivered by rescuers trained in ventilation, when
emergency medical service (EMS) response times are long or
after an asphyxial cardiac arrest [2, 6].
Some EMS services deliver continuous high-quality

chest compressions with passive oxygenation with an
oropharyngeal airway and simple oxygen mask (minim-
ally interrupted cardiac resuscitation) and an advanced
airway is delayed until after 600 chest compressions for
witnessed OHCA with a shockable rhythm. Observa-
tional studies show improved survival to discharge for
all adult OHCAs, and improved survival with good
neurological outcome for witnessed cardiac arrest or if
the initial rhythm is shockable [10]. Whether chest
compressions generate a sufficient tidal volume for gas
exchange is uncertain and likely to vary over time.
Studies in late cardiac arrest (40–50 minutes) show that
the tidal volumes generated are less than the patient’s
estimated deadspace [11].

Steps for airway and ventilation management
during CPR and after ROSC
During CPR, airway interventions range from
compression-only CPR with or without airway

opening, mouth-to-mouth ventilation, mouth-to-mask
ventilation, bag-mask ventilation (with or without an
oropharyngeal airway) or advanced airways (supraglot-
tic airways (SGAs) and tracheal intubation using dir-
ect or video laryngoscopy) (Fig. 1). In a feasibility
study to inform a randomised controlled trial (RCT)
of OHCA, patients in the ‘usual’ airway management
group were observed to have both basic and advanced
airway interventions which changed according to the
skills of the rescuer present and the time-point during
resuscitation [12].
After ROSC for both IHCA and OHCA, most patients

have a post-cardiac arrest syndrome [13], are comatose
with impaired airway reflexes and ventilation and/or have
an indication for tracheal intubation based on their under-
lying condition [14, 15]. Patients who remain conscious
and do not require airway interventions tend to have an
initial shockable rhythm, are treated early with defibrillation
and have better outcomes. Tracheal intubation enables
controlled ventilation to facilitate onwards transportation
to the emergency department after OHCA, cardiac cath-
eterisation laboratory or intensive care unit. Drug-assisted
intubation by critical care teams for both IHCA and OHCA
patients with ROSC using a protocol-based approach (e.g.
with ketamine or midazolam, fentanyl and rocuronium)
can be safe and effective [16, 17].

Airway and ventilation techniques during CPR
Bag-mask ventilation
On arrival of trained rescuers, bag-mask ventilation with
supplemental oxygen is the most common initial ap-
proach and can be aided with an oropharyngeal or naso-
pharyngeal airway. During CPR, the bag-mask is used to
give two breaths after every 30 compressions. A large
RCT of bag-mask ventilation without pausing compres-
sions in OHCA found no difference in survival when
compared with pausing for ventilation after every 30
compressions [18]. A pre-specified per-protocol analysis
reported a significantly higher survival to discharge
among those who actually received conventional CPR

Fig. 1 Stepwise approach to airway management during cardiopulmonary resuscitation
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(30:2) compared with those who received continuous
compressions.

Supraglottic airways
Supraglottic airway (SGA) use has increased during CPR
as SGA insertion is easier to learn than tracheal intub-
ation and feasible with fewer and shorter interruptions
in chest compression [19]. Observational data show clas-
sic laryngeal airway mask (cLMA) use during CPR is as-
sociated with a lower incidence of regurgitation of
gastric contents than bag-mask ventilation [20].
Second-generation SGAs (e.g. i-gel and LMA Supreme
(LMAS)) have potential advantages over first-generation
SGAs, including improved pharyngeal seal pressure,
oesophageal drainage tubes and integrated bite blocks. A
pig study raised concerns that a supraglottic cuff com-
presses the internal and external carotid artery, decreas-
ing cerebral blood flow during CPR. A human
radiographic study did not, however, observe any evi-
dence of mechanical compression of the carotid arteries
[21, 22].

Tracheal intubation
Tracheal intubation enables chest compressions to con-
tinue uninterrupted while the lungs are ventilated,
avoids gastric insufflation and protects the lungs from
aspiration of gastric contents: an observational study,
however, showed one-third of OHCA patients had re-
gurgitation, and in two-thirds this occurred before EMS
arrival and in a quarter between EMS arrival and tra-
cheal intubation [23]. Studies suggest more than 50 suc-
cessful intubations are required to achieve an insertion
success rates of over 90% during CPR [24]. Current
European guidelines recommend a pause in compres-
sions of less than 5 s for tracheal tube insertion [1].
Videolaryngoscopy (VL) for tracheal intubation may

have a role in tracheal intubation during CPR [25], al-
though there are few studies of VL use during CPR. In
one study of experienced clinicians, VL was associated
with significantly fewer episodes of prolonged (> 10 s)
interruptions in chest compressions; the intubation suc-
cess rate was not significantly different [26]. In a further
study, VL use was associated with shorter pauses in
compressions compared with direct laryngoscopy when
initial tracheal intubation was not successful [27].

Comparisons between airway techniques during
CPR
Comparisons between airway techniques are difficult as
most patients have more than one airway technique during
CPR [12], airway interventions depend on patient and event
factors that are not reported (e.g. arrest location and access,
obesity), rescuer ability determines technique success and

early-ROSC patients are less likely to need an advanced
airway.

Basic versus advanced airways during CPR
Available evidence challenges the notion that ‘advanced’
(SGA or tracheal tube) interventions are better than
‘basic’ (bag-mask ventilation) interventions during CPR.
Meta-analysis of observational studies of OHCA esti-
mated an advanced airway was associated with a reduced
survival to hospital discharge/30 days (odds ratio 0.49
(95% confidence interval (CI) 0.37–0.65)) when com-
pared with bag-mask ventilation [28]. Observational
studies are likely to be confounded because, if ROSC oc-
curs early, an advanced airway during CPR may not be
required whereas patients with primary asphyxial cardiac
arrest or aspiration of gastric contents tend to get an ad-
vanced airway and have a poorer outcome.
The Cardiac Arrest Airway Management (CAAM)

multi-centre RCT randomised 2043 OHCA patients to
early tracheal intubation or bag-mask ventilation with
delayed post-ROSC tracheal intubation, delivered by a
physician-led prehospital care team [29]. Bag-mask com-
pared to tracheal tube use failed to show non-inferiority
or inferiority for favourable 28-day survival with neuro-
logical function (4.3 versus 4.2%). The authors report
this as an ‘inconclusive result’. The bag-mask group had
more airway complications: difficult airway management
(18.1 vs 13.4%, P = 0.004), failure (6.7 vs 2.1%, P < 0.001)
and regurgitation of gastric contents (15.2 vs 7.5%,
P < 0.001). Oesophageal intubation was recognised and
corrected in 10.2% of cases.
No large RCTs of airway management for IHCA have

been conducted. Time-dependent propensity analysis of
data from the American Heart Association Get With
The Guidelines IHCA registry showed tracheal intub-
ation during each of the first 15 minutes of resuscitation
compared with no intubation during that minute was as-
sociated with decreased survival to hospital discharge
[30]. This study using observational data could not cor-
rect for a number of confounders (e.g. skills and experi-
ence of rescuers, the cause of the cardiac arrest, CPR
quality and the indication for intubation) and confound-
ing by indication could influence the results. This study
raises the possibility that early tracheal intubation could
be harmful during CPR after IHCA and highlights the
need for RCTs of IHCA airway management.

Supraglottic airways versus tracheal intubation during
CPR
A meta-analysis of ten observational studies with 76,000
patients reported an association between tracheal intub-
ation and an increased rate of neurologically intact sur-
vival (OR 1.33, CI 1.09–1.61) compared with SGA use
[31]. A feasibility study of 615 OHCA patients to help
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inform a larger RCT randomised paramedics to use an
i-gel, LMAS or usual care (most commonly tracheal in-
tubation) [32]. This feasibility study, which is one of the
largest RCTs of advanced airway management during
CPR, found no difference in survival to discharge (i-gel
9.5%, LMA supreme 6.9%, usual care 8.6%) or 90 days (9.5%
vs 6.9%), neurocognitive function or quality of life between
groups, but was not powered to detect clinically signifi-
cant differences in these outcomes. Recruitment to the
LMAS group was stopped because on three occasions res-
cuers were contaminated as chest compressions caused
blood and vomit to be ejected forcefully from the LMAS
gastric drainage port. First attempt placement success
rates were 79% for the i-gel and 75% for the LMAS, and
the first attempt tracheal intubation rate was 85%. In an
observational study of OHCA, successful placement of the
laryngeal tube occurred in 85% of 344 patients [33].
A commonly cited reason against using a tracheal tube

during CPR is that insertion leads to prolonged and po-
tentially harmful interruptions in chest compression. In an
observational study of 100 pre-hospital intubations by
paramedics, tracheal intubation attempts during CPR
caused a median 110 s (IQR 54–198 s) of interruption,
and in a quarter of cases the interruptions were over 3 mi-
nutes [19]. More recent OHCA observational data (339
patients) suggest duration of the longest pauses, number
of pauses over 10 s and chest compression fraction (pro-
portion of time compressions being given) may be similar
with bag-mask, SGA and tracheal intubation [27]. In
addition, data from 2767 cases of OHCA suggest the chest
compression fraction is only slightly less with a tracheal
tube (72.4 vs 76.7%) [34].
Finally, the Pragmatic Airway Resuscitation Trial

(PART) cluster randomised trial comparing tracheal in-
tubation with laryngeal tube (LT) insertion in 3005 OHCA
patients has reported its initial results (presented at the
Society for Academic Emergency Medicine, 16 May 2018)
[35]. EMS were randomised in clusters with crossover at
3–5-month intervals. The primary end-point of 72-h sur-
vival was improved with LT compared with tracheal intub-
ation (18.2 vs 15.3%, adjusted difference 2.9% (95% CI
0.2–5.6%), P < 0.01), as were the secondary outcomes of
ROSC (27.9 vs 24.1%, P = 0.02), hospital survival (10.8 vs
8.0%, P = 0.01) and favourable neurological status at dis-
charge (7.0 vs 5.0%, P = 0.02). The full results of PART
and another large RCT that compares i-gel with tracheal
intubation during OHCA are awaited [36].

The role of waveform capnography during CPR
and after ROSC
Waveform capnography is recommended whenever an
advanced airway (SGA or tracheal tube) is used both
during CPR and after ROSC [1]. A SGA will provide re-
liable end-tidal carbon dioxide values (ETCO2) when

there is a good seal. The ETCO2 depends on a large
number of physiological variables (including cardiac out-
put, metabolic state, lung function). This will lead to
some limitations in the usefulness of ETCO2 monitoring
during CPR and after ROSC. Waveform capnography
has the following roles during CPR:

1. Confirms correct tracheal tube placement [4].
2. Helps guide rescuers to ventilate at the correct rate,

although chest compression artefacts may lead to a
falsely high ventilation rate [37].

3. Helps guide chest compression quality. A recent
study suggests an association between high-quality
chest compressions with a higher ETCO2 and
defibrillation success after OHCA [38].

4. Helps identify ROSC during CPR. An increase in
ETCO2 during CPR or a rising trend may indicate
ROSC [39].

5. Helps make decisions about stopping CPR. A
systematic review of 17 observational studies
observed an association between a low ETCO2 (<
10 mmHg at 20 minutes) with a low likelihood of
ROSC (< 0.5%) [40]. Given the large number of
factors that can influence the ETCO2, trends in
ETCO2 during CPR rather than single values may
be more important to guide decisions. In addition, a
multi-modal approach rather than the ETCO2 alone
should be used in prognostic decisions during CPR.

Waveform capnography helps guide ventilation rate and
correct tracheal tube placement after ROSC. Post-ROSC
patients often have a poor cardiac output and a large al-
veolar deadspace and this effects the correlation between
ETCO2 and arterial partial pressure of carbon oxygen
(PaCO2). In an arterial blood gas study, the median (inter-
quartile range) PaCO2 was 67 (34) mmHg and ETCO2 31
(25) mmHg during CPR, and after ROSC the PaCO2 was
58 (21) mmHg and ETCO2 37.5 (17) mmHg [41]. Data
from the TTM study show patients managed at 33 °C have
a lower ETCO2 than those at 36 °C. Observational studies
show an increased PaCO2 to ETCO2 gap both during CPR
and after ROSC is associated with decreased ROSC and
survival to hospital discharge, respectively [41, 42].

How much oxygen during CPR and after ROSC?
The optimal oxygen requirement for CPR and after
ROSC remains uncertain [43]—too little is harmful, too
much could be harmful, and what’s just right and how it
should be measured and targeted are uncertain.
Current guidelines recommend giving the maximum

feasible inspired oxygen during CPR based on the premise
that restoring depleted oxygen levels and correcting tissue
hypoxia improves survival. Observational data show an as-
sociation between higher arterial oxygen partial pressures
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during CPR and improved ROSC [1, 4, 41, 44]. Due to the
low flow cardiac output state, despite administration of a
high inspired fraction of oxygen, target tissue mitochon-
drial oxygen tension is unlikely to be high [45].
After ROSC, the inspired oxygen should be titrated to

achieve normal oxygen saturations (94–98%) once oxy-
genation can be reliably monitored with pulse oximetry
[4, 46]. Observational studies show that hypoxia after
ROSC is associated with a decrease in survival to hos-
pital discharge [47–49]. The effect of hyperoxia after
ROSC is less certain. Post-cardiac arrest syndrome in-
cludes reperfusion injury and oxidative stress, which can
lead to neuronal damage. Hyperoxia is thought to fur-
ther increase oxidative stress [45]. Animal studies show
that hyperoxia immediately after ROSC is associated
with a worse neurological outcome [50]. A small RCT of
28 OHCA patients showed a greater rise in
neuron-specific enolase (NSE), a serum marker for neur-
onal injury, in post-ROSC patients treated with 100% in-
spired oxygen compared with 30% inspired oxygen for
60 minutes after ROSC (neither group received any
temperature control) [51]. Several studies show an asso-
ciation between hyperoxia and worse outcome at hos-
pital discharge (overall survival, or survival with good
neurological function) when compared with normoxia,
while others report no association [4, 47, 49, 52–57].
These studies are difficult to interpret as a high inspired
oxygen may be a surrogate marker of illness severity, the
studies have not looked at oxygenation immediately after
ROSC (the time period where animal studies show
harm), the actual duration (‘dose’) of hyperoxia for an
individual patient is unknown and the impact of other
interventions (e.g. temperature control, carbon dioxide
target) is uncertain. A feasibility study of titrated oxygen
immediately after ROSC struggled to reliably measure
oxygen saturation to enable titration of inspired oxygen
using a bag-mask [58]. An RCT of titrating oxygen im-
mediately after ROSC is about to start (Table 1).

How much ventilation during CPR and after
ROSC?
In the absence of an advanced airway during CPR, current
guidelines based on very limited evidence recommend
two positive pressure breaths after every 30 chest com-
pressions. These breaths should be of an inspiratory time
of 1 s and produce a visible chest wall rise [59]. Observa-
tions in anesthetised adults show a visible chest rise oc-
curs with a mean tidal volume of 384 ml (95% CI 362 to
406 ml) [60]. Once an advanced airway is in place, a venti-
lation rate of 10 min− 1 without interrupting chest com-
pressions is recommended. Continuous uninterrupted
chest compressions are not always feasible with a SGA
and there may be a need to pause after every 30 chest
compressions in order to give two rescue breaths.

Our understanding of the optimal ventilation strategy
and its interaction with chest compressions to generate
adequate blood flow and oxygen delivery to vital organs
is limited [61]. The recommended ventilation rate of
10 min− 1 with a tracheal tube is based predominantly
on animal studies, which followed observations that
hyperventilation was common during human CPR [62].
A pig study showed a respiratory rate of 30 min− 1 com-
pared to 12 min− 1 caused increased intrathoracic pres-
sure, a decrease in coronary and cerebral perfusion and
decreased ROSC [63, 64]. Furthermore, the authors in-
cluded human observational data and reported no survi-
vors from cardiac arrest with an advanced airway when
the respiratory rate was greater than 10 min− 1 and the
inspiratory time greater than 1 s. A reduced ventilation
rate may be sufficient to maintain a normal ventilation
perfusion ratio during CPR as the cardiac output gener-
ated by chest compressions is also markedly reduced.
The interaction between the lungs and circulation dur-

ing CPR are complex [61]. Increasing ventilation rate or
tidal volume during CPR increases the mean intratho-
racic pressure and reduces venous return to the heart,
increases lung volume and pulmonary vascular resist-
ance, reduces cardiac output and decreases coronary
perfusion pressure and aortic blood pressure. Devices
designed to regulate intrathoracic pressure such as the
impedance threshold device (ITD) and active compres-
sion decompression CPR devices (ACD CPR) aim to
augment blood flow to the heart and brain during CPR.
Specifically, the ITD stops airflow into the lungs during
chest compression recoil or active decompression and
the negative resultant intrathoracic pressure increases
blood flow into the ventricles. Compared with standard
CPR, ITD CPR and ACD + ITD CPR augment cardiac
output for the next compression [61]. Despite the prom-
ising effects of ITD + ACD CPR in animal models, the
results from human trials are less convincing. Studies of
the ITD alone show no improvement in survival. The
International Liaison Committee on Resuscitation
(ILCOR) 2015 review of the science of ACD + ITD CPR
did not achieve consensus regarding its use, albeit a
large RCT had reported improved survival with good
neurological function [4].
Current guidelines for post-ROSC care recommend

using low tidal volume ventilation (6–8 ml kg− 1 IBW)
with titrated levels of PEEP and aiming for normocapnia
[46]. After ROSC, inadequate ventilation and resultant
hypercapnia will exacerbate any existing metabolic acid-
osis and potentially worsen any haemodynamic instabil-
ity. In addition, hypercapnia produces cerebral
vasodilatation if cerebrovascular reactivity is preserved:
whether this is detrimental or beneficial is not known.
Hypercapnia may lead to an elevation in intracranial
pressure and worsening of hyperaemia in a vulnerable
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brain, or increased blood flow may improve cerebral is-
chaemia and be neuroprotective. One observational study
showed improved survival to hospital discharge and
neurological outcomes associated with exposure to mild
hypercapnia compared to normocapnia or hypocapnia
[65], whereas another showed worse survival to discharge
with hypercapnia compared to normocapnia or hypocap-
nia [49]. In a small RCT of 86 post-cardiac arrest patients
there was a greater increase in NSE (a marker of neuronal
injury) in the first 72 h when normocapnia (35–45 mmHg,
4.67–6.0 kPa) was targeted compared to mild hypercapnia
(50–55 mmHg, 6.67–7.33 kPa) [66]. This study is being
followed up with a larger multi-centre RCT (The TAME
Cardiac Arrest trial). Hyperventilation and hypocapnia
may also cause cerebral ischaemia as a result of cerebral
vasoconstriction, cerebrospinal fluid alkalosis and in-
creased neuronal excitability due to increased excitatory
amino acid release [67]. A ten-patient study showed de-
creased cerebral tissue oxygenation monitored by near in-
frared spectroscopy when the target PaCO2 decreased
from 40 (5.33 kPa) to 30 mmHg (4.0 kPa) in post-ROSC
patients treated with hypothermia [68]. A study of 5258
patients (82 ICUs in the Netherlands) observed a
risk-adjusted increased mortality with hypocapnia com-
pared with normocapnia and hypercapnia [69].
A post-ROSC lung protective ventilation strategy is

based on guidance for acute lung injury ventilation. One
study comparing a tidal volume less than or greater than
8 ml kg− 1 in OHCA survivors observed a lower tidal
volume in the first 48 h post-ROSC was associated with
a favourable neurocognitive outcome, more ventilator
and shock-free days [70], whereas an IHCA study found
no association between a tidal volume of less or greater
than 8 ml kg− 1 in the first 6 or 48 h post-ROSC and sur-
vival to discharge and neurological outcome [71]. In the
TTM trial, the end of TTM median tidal volume was
7.7 ml kg− 1 predicted body weight, 60% of patients had
a tidal volume less than 8 ml kg− 1, median PEEP was 7.7
cmH2O (6.4–8.7), mean driving pressure was 14.6
cmH2O (± 4.3) and median FiO2 was 0.35 (0.30–0.45)
[72]. Non-survivors compared with survivors at 28 days
had worse oxygenation, higher respiratory rates, driving
pressures and plateau pressures and lower compliance
compared to survivors.
After ROSC, interventions for oxygenation and ventilation

in combination with a bundle of interventions that adjust
other physiological variables, including temperature, blood
pressure, glucose and seizure control, are probably required
for a good outcome [73]. The optimal targets and combina-
tions are uncertain and the subject of ongoing studies [74].

Randomised controlled trials in progress
There is clinical equipoise regarding the optimal airway,
ventilation and oxygenation strategy during CPR and

after ROSC. Several RCTs are currently in progress and
these studies are summarised in Table 1.

Conclusions
The optimal combination of airway techniques and oxy-
gen and ventilation targets during CPR and after ROSC
is uncertain. In the absence of evidence to favour a spe-
cific technique, rescuers should use the airway technique
they are most proficient in during CPR and give the
maximum feasible inspired oxygen concentration.
Patients usually receive a stepwise approach as expert
help arrives (Fig. 1). A compression to ventilation ratio
of 30:2 should be used until an advanced airway is
inserted, when a ventilation rate of 10 min− 1 should be
used without interrupting chest compressions. After
ROSC, oxygenation and ventilation should be titrated to
achieve normal values. Ongoing RCTs (Table 1) should
provide new insights.
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