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Hepatocellular carcinoma (HCC) is one of the most common malignancies today. Patients suffer from HCC since its
high malignancy and limited treatment means. With the development of genetic research, new therapeutic
strategy comes up in the way of gene editing. Clustered regularly interspaced short palindromic repeat/CRISPR-
associated nuclease 9 (CRISPR/Cas9) was discovered as an immune sequence in bacteria and archaea. After artificial
transformation and follow-up research, it is widely used as a gene editing tool. In this review, the development of
CRISPR/Cas9 is summarized in retrospect. Through the evaluation of novel research in HCC, it is concluded that
CRISPR/Cas9 would promote cancer research and provide a new tool for genetic treatment in prospect.
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Background

Liver cancer is one of the most common malignancies in
the world, whose global incidence ranks seventh among
malignant tumors [1]. The histopathological types of
liver cancer mostly are hepatocellular carcinoma and
intrahepatic cholangiocarcinoma, of which hepatocellular
carcinoma (HCC) accounts for more than 90% of the total
cases [2, 3]. It has been confirmed that HCC is closely re-
lated to Hepatitis B virus (HBV) infection, hepatitis C
virus (HCV) infection, alcoholic cirrhosis and non-
alcoholic fatty liver [4, 5]. To date, the treatment of HCC
has made little improvement. According to the clinical
stage and patient’s own physical condition, surgeons
would choose appropriate therapeutic schemes, including
liver resection, liver transplantation, radiofrequency abla-
tion, transcatheter arterial chemoembolization (TACE), or
take molecular targeting drugs such as sorafenib, levabi-
nib, etc. [6, 7]. Though treatment strategy seems various,
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the mortality rate of HCC still ranks second among malig-
nancies due to its high recurrent rate and lack of early
diagnosis [1]. It is necessary to improve the diagnosis and
treatment of HCC in current situation.

In recent years, scientists made great progress on gen-
etic research. More potential oncogenes and antionco-
genes were identified in HCC [8]. Diagnosis might also
improve in the near future since the reported bio-
markers showed better specificity than alpha-fetoprotein
(AFP) which is widely used in HCC [9, 10]. At present,
different genetic experiments of HCC achieve valuable
results in vitro or in vivo [11, 12]. Therefore, genetic
therapy presents a cheerful prospect in HCC treatment
other than the existing traditional strategies.

Gene editing tool is crucial in cancer research and
opens up new ideas for the treatment of HCC since gene
knock-out and knock-in are widely used in gene function
research. The clustered regularly interspaced short palin-
dromic repeat/CRISPR-associated nuclease 9 (CRISPR/
Cas9) system derives from CRISPR family which is a com-
plex immune system existing in microorganisms [13, 14].
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After modification, it becomes a versatile technology and
gradually replaces former tools to edit gene due to its con-
venient, low-cost design and broad applications [15].

In this review, the development of CRISPR/Cas9 is
summarized based on the analysis of its mechanism, ad-
vantages and defects. Besides, we conclude its applica-
tion in HCC through the assessment of related research
in current situation. Learning from some breakthrough
of other cancer research, we predict the broadening ap-
plication of CRISPR/Cas9 in HCC treatment.

Mechanism of CRISPR/Cas9 technology
Figure 1 illustrates the gene editing mechanism of
CRISPR/Cas9 through three major steps.

First, exogenous gene should be integrated into CRISPR
array.

Once exogenous gene is injected from phage into host,
it would be processed into several DNA fragments, or
called protospacers. This requires the involvement of
Casl,Cas2 and Csn2 proteins, which are ubiquitous in
the CRISPR system [16]. The protospacers would be se-
lected and integrated as new spacers flanked by repeat
sequences to form CRISPR array. The selection of proto-
spacers is mostly determined by the short sequences lo-
cated adjacent to the target sequences within exogenous
genome called protospacer adjacent motifs (PAMs) [17].
PAMs are specific to each CRISPR/Cas subtype and rec-
ognized as a signal of non-self gene sequence. This inte-
gration offers a way to recognize further similar invasion
from exogenous gene.

Second, CRISPR locus would produce tracrRNA-
crRNA complex.

As shown in Fig. 1, typical CRISPR locus consists of
trans-activating CRISPR RNA (tracrRNA) sequence, sev-
eral Cas genes, leader sequence and CRISPR array.
CRISPR system transcribes trans-activating CRISPR
RNA (tracrRNA) which is complementary to the repeat
sequence from CRISPR array. Meanwhile, CRISPR array
transcribes repeats and spacers sequences to produce
crRNA precursor (pre-crRNA) complementary to the
target sequences within exogenous gene. The pre-crRNA
combines tracrRNA, and forms mature tractRNA-crRNA
complex processed by RNase III and other nucleases [18].
This complex would combine with Cas9 protein for later
recognition and cleavage of exogenous gene.

Finally, CRISPR/Cas9 system would interfere the inva-
sion of exogenous genome.

Cas9 protein activates nucleases with the combination
of tracrRNA and crRNA [15, 19]. When exogenous gene
invades again, the Cas9 protein would screen exogenous
gene to find specific PAMs as described above. When
the PAMs are identified, the 20-nt crRNA would use the
spacer sequence to recognize specific target sequence,
while double-stranded DNA would be cleaved at 3 nt
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upstream of the PAMs [20]. Each strand is cleaved by a
distinct Cas9 nuclease domain (HNH or RuvC) [21].
The interference protects organism from invasion of ex-
ogenous genome and also gives a chance for gene editing
since typical CRISPR/Cas9 system brings a break of
double-stranded DNA.

For eukaryotes, the damaged gene sequence can be
repaired by homology-directed repair (HDR) and non-
homologous end joining (NHE]) after cleavage. NHE] is
the main repairment method for most mammalian cells
and tissues. This repairment may cause the insertion or
loss of base, which brings frameshift mutation and loss
of the gene function, to achieve the aim of knocking out
or knocking in target gene [22]. HDR can introduce gene
of interest into the genome through the recombination
of exogenous DNA donor template with target site [23].

Brief summary of CRISPR/Cas9 technology
development

As shown in Fig. 2, CRISPR was first discovered by
Japanese scientists in 1987, with its function unknown
[13]. In 2007, researchers gradually found that CRISPR
was a complex immune system formed by microorgan-
isms themselves to defend invasion of exogenous gene.
It integrates exogenous gene fragment into palindromic
repeat and generates a RNA-mediated nuclease to cleave
exogenous gene [14, 24]. After further research, CRISPR
family could be divided into five or six categories by classi-
fying the sequences which encode CRISPR-related pro-
teins [25, 26].

In 2012, CRISPR/Cas9 was employed as a useful gene
editing tool (Fig. 2) for the first time. Jinek et al. successfully
integrated the double-stranded complex of tracrRNA and
crRNA into a single-stranded RNA called single-guide
RNA (sgRNA), which could also recognize target gene and
activate Cas9 protein to cut double-stranded DNA [15].

Through further research, scientists made several re-
markable development in CRISPR/Cas9 technology. De-
tailed content would be described below.

Advantages of CRISPR/Cas9

Zinc-finger nucleases (ZFN) and transcription activator-
like effector nucleases (TALEN) were widely used as gene
editing tools before the artificial transformation of the
CRISPR/Cas9 system. Each tool binds the non-specific
endonuclease Fokl with zinc finger proteins or transcrip-
tion activator-like effector factors, which could recognize
and bind several to tens of specific bases [27, 28].

The modified CRISPR/Cas9 technology shows advan-
tage over both mentioned above, such as the quick, con-
venient, and low cost of sgRNA construction contrast to
the de novo synthesis of guiding protein in ZEN or
TALEN. In addition, CRISPR/Cas9 can accomplish
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Fig. 1 Mechanism of CRISPR/Cas9 gene editing tool. Viral or plasmid DNA would be processed into protospacers and integrated into repeat
sequences to form the CRISPR array through Cas1,Cas2 and Csn2. Typical CRISPR locus (from Streptococcus pyogenes) consists of tracrRNA
sequence, several Cas genes, leader sequence and CRISPR array. CRISPR array transcribes into pre-crRNA. The tracrRNA combines pre-crRNA to
form a mature tracrRNA-crRNA complex processed by nucleases. During exogenous gene interference, this complex activates Cas9 endonuclease
and recognizes a 20-nt crRNA complementary sequence within exogenous gene, while Cas9 finds PAMs. The double-stranded DNA would be
cleaved at 3 nt upstream of the PAMs ultimately by Cas9 endonuclease. Abbreviations: crRNA, CRISPR RNA; tracrRNA, trans-activating crRNA; pre-
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multiplex gene editing through construction of multiple
sgRNAs targeting different genomic loci [29].
Meanwhile, the efficiency of CRISPR/Cas9 is higher
than that of ZFN and TALEN. Ding et al. conducted an
experiment to compare the efficiency of CRISPR/Cas9
with that of TALEN. They constructed plasmids con-
taining the sequence of Cas9 protein and transfected
into human pluripotent stem cells. Then they designed
corresponding TALEN and sgRNA sequences and
imported into stem cells by electroporation. Results

showed that CRISPR/Cas9 had higher efficiency in mu-
tation of target gene [30].

Defects of original CRISPR/Cas9

Defects gradually emerge with the use of CRISPR/Cas9
system, the most notable of which is off-target effect.
Most researchers believe that the recognition of target
gene mainly depends on the guide sequence comple-
mentary to 20 nt upstream of PAMs in CRISPR/Cas9
system [31]. However, the designed sgRNA may not fully
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Fig. 2 Time shaft of CRISPR/Cas9 development. CRISPR system discovered in 1987 and became gene editing tool in 2012 after the creation of
sgRNA. Scientists made several improvements or enhancements in Cas9 technology from different aspects. Abbreviations: sgRNA, single strand

pair with target sequence within billions of base pairs,
followed by off-target effect and low efficiency of gene
editing.

As expected, the length of sgRNA is highly correlated
with specificity. Since sgRNA contains only 20 comple-
mentary nucleotides, non-specific complementary se-
quence and off target effect is more likely to occur in
CRISPR/Cas9 compared with TALEN, whose designed
sequence contains 30 to 40 nucleotides [32]. However, it
is not optimistic to directly prolong the length of com-
plementary sequence in sgRNA, because it is confirmed
that only gene sequence of 14 nucleotides which is com-
posed of 12 nucleotides of sgRNA and 2 nucleotides of
PAMs could determine where Cas9 nuclease target for
[33]. Further results demonstrated that longer sgRNA
and extension of complementary region could only reduce
on-target editing efficiency [34, 35]. On the contrary, trun-
cated sgRNA reduced off-target effect without sacrificing
gene editing efficiency [36]. Genome-wide homology se-
quencing is the most straightforward method to examine
the presence of non-specific binding with designed
sgRNA, but it is not applicable in fundamental research if
this technology cannot be simplified due to its defects of
time-consuming and high input [37].

In addition, the application of Cas9 protein is also re-
stricted by the recognition of PAMs with specific se-
quence. For example, S. pyogenes Cas9 (SpCas9) must
recognize PAMs with NGG nucleotides [38]. Although
the repeat frequency of NGG sequence is extremely high
in the human genome, it still limits the application of
CRISPR/Cas9 [29].

Improvements of CRISPR/Cas9

In response to the dominating defect of off-target effect,
scientists made improvement in CRISPR/Cas9 from vari-
ous aspects. Ran et al. made remarkable achievements in
the Cas9 protein mutations in 2013 (mentioned in Fig. 2).
They mutated the Cas9 protein domains HNH or RuvC to
harvest a Cas9 nickase illustrated in Fig. 3. Under the

guidance of sgRNA, the Cas9 nickase cleaves a single
strand of DNA, and provides a good repair template for
the subsequent HDR process. If an experiment requires
cleavage of double-stranded DNA, two designed sgRNA
strands could comparatively increase the length of effect-
ive complementary sequence and lead to the higher speci-
ficity [35].

In 2019, Kleinstiver et al. developed high fidelity SpCas9
(SpCas9-HF1), whose off-target rate cannot be measured
by the whole genome sequencing, to perform non-
repetitive sequence gene editing in human cell lines (men-
tioned in Fig. 2). Compared to wild-type SpCas9, it did
better in editing 85% of sgRNAs tested in the paper [39].

Another limitation derived from recognition of specific
PAMs sequence was overcomed in 2018. Researchers
designed xCas9 by modifying SpCas9 (mentioned in
Fig. 2), which could recognize PAMs sites of NG,
GAA, and GAT, to expand the recognition range of
Cas9, and reduce the off-target probability of design
products [40].

Scientists also made unremitting efforts to improve
efficiency of CRISPR/Cas9. Researchers from Korea dis-
covered the smallest Cas9 protein in Campylobacter
jejuni, which consists of 984 amino acids [41]. The
smaller protein volume facilitates the construction and
transport of vectors.

In summary, designing appropriate sgRNA and select-
ing suitable CRISPR/Cas9 technology are the best way to
improve gene editing efficiency and reduce the mis-
match rate.

Enhanced function of CRISPR/Cas9

At present, the function of CRISPR/Cas9 technology is
far beyond gene knockout. After the modification of the
Cas9 protein domain HNH and RuvC, scientists created
an inactivated Cas9 protein named dead Cas9 (dCas9)
that still specifically recognized the sgRNA binding with-
out nuclease activity in 2013 (mentioned in Fig. 2), [42].
As shown in Fig. 4a, the designed dCas9 could promote
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or inhibit the transcription of the gene of interest
through combination with activating domains such as
VP16, VP64, NF-KB etc. or inhibitory domains such as
KRAB, MIX1 etc. [43, 44].

In 2016, Komor et al. proposed DNA single-base edit-
ing technology, which consisted of a fusion of dCas9 and
a cytidine deaminase-encoding gene (Fig. 4b). This com-
plex could catalyze the conversion of cytosine to uracil
in the target gene sequence instead by deaminase activity
without break of double-stranded DNA, which leads to
base substitution without HDR or NHE] processes dur-
ing DNA replication or repair [45].

Besides, Perez-Pinera et al. added VP16 to the N-
terminus and C-terminus of dCas9 protein and im-
proved the efficiency of multi-gene editing [46]. Bikard
et al. constructed and transfected plasmids for editing
multiple target genes successfully when studying the
drug resistance of the gene aph-3 in Staphylococcus aur-
eus [47]. These work provided experimental references
for CRISPR/Cas9 to edit different types of cells through
one type of medium, or to affect multiple target genes in
the same cell simultaneously.

In addition, researchers developed CRISPR/Cas9 tools
with various advantages. Perli SD et al. created a self-
target guided RNA (stgRNA) that characterizes the time
and intensity of gene mutations by the degree of differ-
ences between the DNA sequence encoding stgRNA and
original sequence [48].

Research team led by Feng Zhang from MIT found a
protease Cpfl in bacteria that protected against viral in-
vasion. It had an endogenous RNase domain that could
process pre-ctrRNA and recognize T-base-rich sequences
of PAMs. It performed a lower mismatch rate with
shorter sgRNA since it didn’t require tracrRNA coding
sequence and showed better edit effect than the Cas9
nickase described above [49, 50]. This discovery indi-
cates that the traditional CRISPR/Cas9 system is not
fixed and other CRISPR members might be ignored.

In general, the CRISPR/Cas9 system is constantly im-
proving and new innovation may emerge in CRISPR/
Cas9. The enhanced function allows CRISPR/Cas9 to in-
volve in wider range of applications including genetic
treatment on cancer.

Application of CRISPR/Cas9 in the treatment of
hepatocellular carcinoma

Carcinoma gene therapy has always been a hot spot of
medical research. However, the fact that cancer pos-
sesses polygenic and heterogeneous characters reveals
the limitation of gene therapy [51]. Besides, carcinoma
gene therapy requires high edit efficiency in case that es-
caped cells still possess malignancy. Compared with the
former technology, CRISPR/Cas9 is more frequently
used in experiments, given that it can create indels,
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point mutation, abundant knock-out, abundant knock-in
and chromosomal rearrangements [52]. Table 1 briefly
summarizes the CRISPR/Cas9 applications or potential
use in HCC. Detailed information will be introduced
below.

CRISPR/Cas9 technology applications for HBV

Chronic persistent infection of HBV is a major cause of
hepatocellular carcinoma [69]. About 30-40% of HBV
carriers suffer from hepatocellular carcinoma eventually
[70]. At present, there is no antiviral drug that could
eliminate HBV [71]. Therefore, gene therapy of HBV
would become an effective measure to reduce the num-
ber of hepatocellular carcinoma cases.

HBV replication is closely related to covalently closed
circular DNA (cccDNA). HBV enters hepatocyte and
double-stranded DNA migrates into nucleus to integrate
with host chromosome or form cccDNA as transcription
template. During the transcription and translation of
cccDNA, the core (HBcAg), polymerase, surface
(HBsAg) and hepatitis B virus X (HBxAg) protein are
generated to produce progeny virus while some tran-
scription production returns to supplement cccDNA
[72, 73]. Based on the previous study using TALEN and
ZFN, inhibition or elimination of HBV could be
achieved with obvious advantages mentioned before by
means of CRISPR/Cas9 [74-76].

In 2014, Lin et al. first demonstrated that CRISPR/
Cas9 technology could cleave specific sequence in HBV
and reduce surface antigen level [53]. Results showed
the decrease of HBcAg and HBsAg expression in vitro
or in vivo and higher treatment efficiency by multiplex
sgRNAs utilization. Other research also confirmed this
genetic strategy effective [54—57]. Besides, targeting con-
served gene sequence in the HBV genotype could also
decrease the replication of HBV, which coincided with
other research [58]. Knock-out of HBcAg encoding se-
quence might eliminate HBV in hepatocytes.

The knockout of HBsAg gene sequence resulted in the
decrease of cccDNA copies, HBsAg secretion, tumori-
genesis and proliferative ability of HBV-associated hepa-
tocellular carcinoma [59, 77]. On the contrary, HBsAg
accumulation would enhance the invasive ability of
HBV-associated hepatocellular carcinoma [78].

In 2019, Dash et al. cleared HIV virus successfully in
specific experimental group in artificial HIV-infected
mouse model [60]. They proposed sequential long-acting
slow-effective release antiviral therapy (LASER ART)
with the combination of CRISPR/Cas9 gene editing ther-
apy and eliminated HIV in some of the experimental
mice. The current situation of HBV treatment, long-
term use of antiviral drugs to control viral infection, is
similar to treatment of HIV. This study provided new
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Table 1 Overview of CRISPR/Cas9 applications or potential use in HCC treatment
Category Description of CRISPR/Cas9 function Reference
Interference in HBV Edit coding sequence in cccDNA [53-57]
Edit conserved region [53, 58]
Edit HBsAg protein coding sequence [59]
Participate in combination therapy [60]
Manipulate cancer genome Knock out or insert specific sequence [11,61]
Create hepatocarcinoma mouse model Knock out specific gene [62]
Edit genome in mouse embryonic cells [63]
Enhance immunotherapy Modify PD-1 of immune cell [64, 65]
Modify CAR-T cell [66]
Induce differentiation of iPSCs [67]
Create potential tool applied in human body Form delivery agent containing target sgRNA [68]
Establish CRISPR/Cas9 libraries Integrate experimental data and prepare for gene screen [12]

Abbreviations: HBV hepatitis B virus, cccDNA covalently closed circular DNA, HBsAg hepatitis B virus surface antigen, PD-1 programmed death 1, CAR-T chimeric
antigen receptor-modified T, iPSCs induced pluripotent stem cells, sgRNA single strand RNA

strategy combining antiviral drugs with CRISPR/Cas9
gene therapy for the complete elimination of HBV.

With the deepening research on HBV, more gene se-
quence will become targets of gene therapy for HBV
infection or treatment of hepatocellular carcinoma.
CRISPR/Cas9 may also be used in the preparation of
vaccines to prevent HBV infection [79]. Nonetheless, ef-
ficient delivery of constructed Cas9 plasmids in vivo re-
mains a challenge. Further research should be conducted
to to transport Cas9 and sgRNA into target cell of
human body and to ensure bio-safety need.

Manipulation of cancer genome by CRISPR/Cas9

As a versatile tool in gene editing, CRISPR/Cas9 offers
scientists a decent choice to manipulate genome of dif-
ferent types of cancer.

Researchers reported that the knockout of hypoxia in-
ducible factor-la (HIF-1a) by CRISPR/Cas9 improved
the therapeutic effect of transarterial embolization
(TAE) in cell lines and prolonged the survival of HCC-
bearing mice [61]. Based on the evidence that dysregula-
tion of nuclear receptor binding SET domain-containing
protein 1 (NSD1) may be related with tumorigenesis in
HCC, another paper showed that knockout of NSD1 se-
quence inhibited proliferation, migration and invasion
abilities in HCC cell lines via an inactivation of the Wnt/
[-catenin signaling pathway [80].

Besides, scientists employ CRISPR/Cas9 in the thera-
peutic strategy which inserts target sequence of anti-
tumor medicine in HCC to improve drug susceptibility.
Chen et al. utilized CRISPR/Cas9 to insert herpes sim-
plex virus type 1 thymidine kinase (HSV1-tk), into the
genome of HCC cells. HSV1-tk could phosphorylate
ganciclovir and help the synthesis of ganciclovir triphos-
phate to block genomic replication. HCC cells harboring

introduction of HSV1-tk were treated with ganciclovir
and mostly went to necrosis in cell culture. In hepato-
carcinoma xenografted mice, a reduction of tumor size
and mortality was observed [11].

In the future, more and more potential oncogenes
would be identified in HCC. More research should be
conducted to investigate which oncogene is most suit-
able for gene therapy and how to avoid the escape of
cancer cells.

Specific construction of hepatocarcinoma mouse model
CRISPR/Cas9 technology is not restricted by different
species, and it has been successfully applied in mice, rats,
cynomolgus monkeys, domestic pigs, zebrafish and other
species [63, 81-84]. For hepatocellular carcinoma,
CRISPR/Cas9 technology can help researchers construct
mouse models with knockout of target gene, and con-
struct specific gene editing mouse models as well.

In 2014, researchers reported that they used CRISPR/
Cas9 to construct a liver cancer mouse model for the
first time [62]. Authors transported plasmids containing
Cas9 coding sequence and sgRNA targeting the tumor
suppressor genes Pten and pS53 separately into mice by
hydrodynamic tail vein injection and successfully con-
structed hepatocarcinoma model. On the one hand, this
experiment demonstrated hydrodynamic tail vein injec-
tion as a method for constructing liver cancer mouse
model, and on the other, it created a new experimental
scheme to verify specific gene function of liver cancer in
animal model [85]. In addition, it is also beneficial to as-
sess potential biosafety hazard in CRISPR/Cas9-medi-
ated treatment of hepatocellular carcinoma by observing
growth situation of mice. At present, this method has
been used in several cancer research [61, 86, 87].
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Hepatocytes can receive gene editing probability up to
40 percentage by hydrodynamic tail vein injection to
construct a mouse model of hepatocellular carcinoma
[88]. Compared to this method, it would be more thor-
ough to edit mouse embryonic cells when experiments
need conventional knockout mice. In 2013, Wang et al.
achieved multi-gene knockout of multicellular organisms
by injecting Cas9 coding sequence and designed sgRNA
into mouse fertilized eggs [63]. Now CRISPR/Cas9 tech-
nology is used in embryonic cell engineering. The edited
embryonic cells can develop into mature heterozygous
animals, whose experimental periods are shorter than
those of the ZFN or TALEN-edited embryonic cells.
However, compared with the hydrodynamic tail vein in-
jection, this construction method for hepatocellular car-
cinoma takes more time and costs more. Besides, the
volume production is inefficient.

Enhanced immunotherapy with CRISPR/Cas9

Gene editing of PD-L1 or PD-1 and modification of
CAR-T cells become feasible solutions for recent cancer
immunotherapy [89, 90]. Immune cells like T cells and
B cells express programmed death 1 (PD-1) meanwhile
some tumor tissue highly expresses PD-L1. The combin-
ation of PD-L1 and PD-1 would disturb autoimmune
regulation and weaken tumor killing effect [91, 92].
Chimeric antigen receptor-modified T cells (CAR-T) uti-
lizes specific extracellular single-chain variable fragments
(ScFv) to recognize and bind with tumor-associated anti-
gens, thereby recognizing tumor cells and producing im-
mune response [93].

In October 2016, team of Professor You Lu took the
lead in the initiation of a tumor treatment trial on the
PD-1 gene of immune cell in humans with the help of
CRISPR/Cas9 tool. Gene sequence encoding PD-1 of im-
mune cells extracted from metastatic non-small cell lung
cancer (NSCLC) patients would be inactivated by
CRISPR/Cas9. After expansion in vitro, modified im-
mune cells would be injected back into patients to
achieve an enhanced immune response to cancer cells
[64]. It offered a template for the similar treatment of
HCC. The fundamental study of PD-L1 in hepatocellular
carcinoma also achieved relevant results. Guo et al.
investigated the effects of chimeric antigen receptor-
modified T cells (CAR-T) on the growth of hepatocellu-
lar carcinoma and confirmed that CAR-T cells interfered
with PD-1 expression have much longer anti-tumor ef-
fect. This research indicated that treatment of hepatocel-
lular carcinoma with CAR-T cells could be enhanced by
PD-1 modification [65]. It further demonstrated the im-
portant role of the PD-L1 and PD-1 in hepatocellular
carcinoma treatment.

As for CAR-T therapy in HCC, CRISPR/Cas9 can help
CAR-T enhance the immune response to tumors by
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knocking out genes coding signal molecules or inhibiting
immune response receptors. In addition, CRISPR/Cas9
can eliminate the xenografts rejection of T cell by knock-
ing out gene fragments expressing human leukocyte anti-
gen I (HLA I) on T cells. It could make it possible to use
universal CAR-T Cells to treat multi-patient and improve
utilization efficiency [66].

CRISPR/Cas9 can also process gene engineering in hu-
man stem cell or induced pluripotent stem cells (iPSCs).
Pluripotent stem cells processed by CRISPR/Cas9 still pos-
sess pluripotency through the observation of organ-like
formations in cell culture [94]. Therefore patient-derived
iPSCs can be modified and induced to differentiation of de-
sired cells in vitro. This theory has been confirmed effective
both in iPSCs from f-thalassemia patients and DMD pa-
tients [95, 96]. In the treatment of HCC, CRISPR/Cas9 can
genetically edit human pluripotent stem cells and promote
the differentiation of pluripotent stem cells into immune
cells such as natural killer cells. Combined with CAR-T
gene therapy, it will enhance the immune killing effect on
tumor cells after autologous transplantation. Besides, Yin
et al. discovered the partial potential of liver cancer stem
cells in some CD133-positive cells [67]. CRISPR/Cas9 can
also explore gene function by editing target gene in liver
cancer stem cells and find ways to reduce the activity of
liver cancer stem cells.

New progress of CRISPR/Cas9 application

The delivery system of CRISPR/Cas9 applied in human
body remains a challenge. The development of new ma-
terials could solve this problem that the hydrodynamic
tail vein injection cannot be applied to human body suc-
cessfully. Wang et al. compressed the Cas9 sequence
and sgRNA plasmids into gold nanoparticles and encap-
sulated the lipid shell to perform a mature delivery of
plasmid, PEG-lipid/AuNPs/Cas9-sgPlk-1 (LACP). This
delivery agent could be targeted by the thermoelectric
effect of laser and release Cas9 sequence and sgRNA
into cell nucleus [68]. Though it was still tested in pre-
clinical stage and delivery efficiency needed assessment,
this experiment made it possible to transport CRISPR/
Cas9 into target tumor cells in human body.

At present, CRISPR/Cas9 technology expands its appli-
cation since the construction of sgRNAs libraries. Due to
the evolvement of dCas9 described above, CRISPR/Cas9
becomes a versatile tool stronger than RNAi to inhibit or
even knockout target sequence [97]. CRISPR/Cas9 librar-
ies have been used to predict specific gene function in
tumor proliferation, migration and drug resistance in sev-
eral aspects [98—100]. Recently, the research team of Renji
Hospital in Shanghai proposed a new treatment plan for
hepatocellular carcinoma with TP53 mutation. In the ini-
tial stage of the study, researchers used sgRNAs sample
bank to screen hepatoma cell lines and found that DNA-
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replication kinase CDC7 acted as an inhibitory site to
induce senescence of TP53-mutant hepatoma cell lines se-
lectively. Therefore they induced senescence of hepatoma
cell lines with TP53 mutation by inhibiting CDC7. And
then they screened for high-throughput compounds to
induce apoptosis in senescent liver cancer cells. This
“one-two punch” treatment mode illuminates that it is
feasible for HCC patients with specific gene mutation
to receive drug-targeted treatment [12]. It also demon-
strates that the growing of CRISPR/Cas9 technology
can improve CRISPR/Cas9 libraries and promote the
treatment of hepatocellular carcinoma.

Conclusion

The CRISPR/Cas9 gene editing technology is favored by
researchers because of its remarkable work efficiency,
simple construction method and low experimental cost.
Accompanied with the extended range of application,
CRISPR/Cas9 is more frequently employed in cancer
research since the original off-target effect has been
weakened during its transformation and innovation.
Hepatocellular carcinoma is highly malignant and has
limited treatment options. The CRISPR/Cas9 technology
provides a new tool for genetic treatment of hepatocellu-
lar carcinoma from a different aspect. Although most of
gene therapies related with CRISPR/Cas9 still remain in
the experimental phase, the novel treatment of hepato-
cellular carcinoma can be expected with the break-
through of CRISPR/Cas9 technology.
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