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Abstract

inhibitors.

Cellular homeostasis requires the proper nuclear-cytoplasmic partitioning of large molecules, which is often
deregulated in cancer. XPO1 is an export receptor responsible for the nuclear-cytoplasmic transport of hundreds of
proteins and multiple RNA species. XPO1 is frequently overexpressed and/or mutated in human cancers and
functions as an oncogenic driver. Suppression of XPO1-mediated nuclear export, therefore, presents a unique
therapeutic strategy. In this review, we summarize the physiological functions of XPO1 as well as the development
of various XPO1 inhibitors and provide an update on the recent clinical trials of the SINE compounds. We also
discuss potential future research directions on the molecular function of XPO1 and the clinical application of XPO1
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Background

Eukaryotic cells have well-separated nuclear and cytoplas-
mic compartments. Proper cellular functions require the
exchange of large molecules through the nuclear pore
complex (NPC). Small molecules can passively diffuse
through the NPC, whereas the transport of larger cargoes,
including RNAs and proteins, requires various transport
receptors of the importin beta superfamily [1, 2]. XPO1 is
a major transport receptor, responsible for exporting pro-
teins and multiple RNA species. Originally named as
CRM1 (chromosomal region maintenance 1), XPO1 was
identified in Schizosaccharomyces pombe as a gene re-
quired for maintaining higher-order chromosome struc-
ture [3]. Subsequently, it was shown to function as a
shuttling protein, mediating the nuclear export of proteins
and mRNAs in Saccharomyces cerevisiae and renamed as
XPOL1 (exportin 1) [4].
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Physiological functions of XPO1/CRM1

XPOL1 is a nuclear export receptor with a pleiotropic role
in transporting a plethora of proteins and RNA species,
including rRNAs, snRNAs, mRNA, microRNAs, and
tRNAs [5] (Fig. 1). XPO1 functions together with RAN
GTPase, which provides the energy for transport and en-
sures the directionality of nuclear export [6]. In the nu-
cleus, XPO1 binds to the nuclear export signal (NES) on
its target proteins and to RAN in its active GTP-bound
form (RAN-GTP). The complex is subsequently docked
to NPC and passes through the nuclear membrane into
the cytoplasm. Hydrolysis of RAN-GTP to RAN-GDP
causes the disassembly of the complex and release of
cargoes in the cytoplasm. The directionality of XPO1-
mediated export is determined by the concentration gra-
dient of RAN-GTP, which is predominantly confined to
the nucleus [7] (Fig. 1). In addition to its role in nuclear-
cytoplasmic transport during the interphase of cell cycle,
XPO1/RAN regulates mitosis.

Protein export
XPOL1 is involved in the export of nearly 220 proteins
bearing NESs [8]. Among these proteins, several tumor
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Fig. 1 XPO1 mediates the nuclear export of hundreds of proteins and multiple RNA species
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suppressors, including p53, BRCA1/2, and p27, have
been extensively studied. Nuclear export blockade of
tumor suppressor proteins has been postulated as
the primary mechanism of action (MOA) for XPO1
inhibitors [9, 10]. However, many known oncopro-
teins, such as SNAIL, cyclins, TERT/telomerase,
SURVIVIN, DNA topoisomerases, c-ABL, and YAPI,
are also exported by XPO1 [8, 11]. The indiscrimin-
ate export of tumor suppressors and oncogenes by
XPO1 argues against nuclear retention of tumor sup-
pressors as the major MOA for XPO1 inhibitors. In-
deed, XPO1 inhibitors have been demonstrated to
exhibit antitumor activities independent of the func-
tion of key tumor suppressor proteins, including RB,
p53, and p21 [12-14]. The number of proteins
exported by XPO1 may have been remarkably under-
estimated by earlier studies. A recent deep proteomic
characterization of XPO1 protein cargoes has identi-
fied > 700 export substrates from S. cerevisiae, >
1000 from Xenopus oocytes, and > 1050 from human
cells. The protein partitioning data suggest broad
XPO1 functions in the regulation of vesicle coat-
assembly, centrosomes, autophagy, peroxisome
biogenesis, cytoskeleton, ribosome maturation, trans-
lation, and mRNA degradation [15]. This study
concludes that XPOIl-mediated protein export is
general and promiscuous and that the impaired
export of tumor suppressors may be one of the mul-
tiple potential mechanisms of action for XPO1
inhibitors.

RNA export

XPOL1 has a major role in the nuclear export of multiple
RNA species. First, XPO1 mediates the export of 40s
and 60s ribonucleoprotein (RNP) complex in lieu of the
naked ribosomal RNAs (rRNAs). Biogenesis of ribosomal
subunits involves the synthesis of structural rRNAs and
ribosomal proteins; their assembly into pre-ribosomal
subunits in the nucleolus, export by XPO1; and further
processing before gaining translational competency [16].
Second, XPOL1 is critical for mRNA splicing by regulat-
ing the maturation of small nuclear RNAs (snRNAs).
Following transcription in the nucleus, U snRNAs inter-
act with the adaptor protein PHAX, RAN-GTP, and
XPOL1 to form an export-competent assembly. Exported
U snRNAs are released in the cytoplasm, modified, and
assembled into U snRNPs, before being shuttled back
into the nucleus for further assembly into spliceosomes
[17]. Third, XPOL1 is involved in the export of other
small non-coding RNAs, including microRNAs and
tRNAs. microRNA and tRNA precursors are primarily
exported by exportin 5 (XPO5) and exportin t (XPOT),
respectively. However, XPO1 can mediate the alternative
export of both microRNAs and tRNAs [18-22]. Fourth,
XPOL1 also exports mRNAs. mRNA is exported through
either the bulk NXF1-mediated or the selective XPO1-
mediated pathway [23, 24]. In particular, XPO1 and add-
itional adaptor proteins with RNA binding properties,
including LRPPRC, eIF4E, NXF3, and HuR, can prefer-
entially export a subset of mRNAs encoding oncopro-
teins [25-28]. The diversity of the RNA species exported
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by XPO1 indicates that the inhibition of XPO1 may have
a profound impact on different aspects of RNA
metabolism.

Export-independent function

XPO1/RAN complex carries out nuclear export function
during interphase, with an intact nuclear membrane.
Equally important, however, is the export-independent
function of XPO1/RAN during mitosis [29, 30]. XPO1
was originally identified as CRM1, with an essential role
in regulating mitosis and chromosomal structure. XPO1
has been shown to localize to mitotic kinetochores [31]
and is required for microtubule nucleation [32]. It is also
present at centrosomes during cell cycle and may be in-
volved in the recruitment of centrosomal scaffold pro-
teins and assembly of mitotic spindles [33]. The
transport-independent function is not limited to XPO1/
RAN, as other members of the importin beta family and
nucleoporins also play a role in regulating spindle as-
sembly and kinetochore function [29, 30].

XPO1/CRM1 as an oncogenic driver and
therapeutic target in cancer

XPO1 overexpression is a common feature among many
human cancer types, including pancreatic, ovarian, gli-
oma, lung, gastric, prostate, and colorectal cancers, and
is associated with poor prognosis [34—40]. While ampli-
fied copy number may explain the XPO1 overexpression
in some leukemia and lymphoma subtypes [41], for the
majority of human cancers, the mechanism of XPO1
overexpression remains unknown. Genetic studies dem-
onstrate a converse role for MYC and P53 in regulating
XPO1 transcription [42]. The MYC overexpression and/
or P53 loss of function observed in most human cancers
are likely responsible for the widespread XPO1 overex-
pression. Interestingly, several XPO1 binding partners
and/or adaptor proteins involved in nuclear export,
namely RAN, HuR, eIF4E, LRPPRC, and NXF3, are also
frequently overexpressed in human cancers and correlate
with poor prognosis [24, 43—47], pointing to the aberra-
tions of nuclear export machinery as a major hallmark
of tumorigenesis. In addition to overexpression, XPO1
mutations have been found in 0.5-2.9% of solid and
hematopoietic tumors, with the highest incidence in
lymphomas [48]. A recent large-scale analysis of whole-
exome and genome sequencing data from 42,793 pa-
tients has identified highly recurrent mutations of XPO1
(E571, R749, and D624) specifically in B cell malignan-
cies. The E571K mutation is enriched in primary medi-
astinal B cell lymphoma (33%), classic Hodgkin
lymphoma (14%), diffuse large B cell lymphoma
(DLBCL) (2%), and chronic lymphocytic leukemia (CLL)
(3%) [49]. Furthermore, XPO1E"* mutation has been
shown to cooperate with MYC and BCL2 in promoting
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lymphomagenesis. These observations suggest that gain-
of-function mutations convert XPO1 to an oncogenic
driver, particularly in B cell malignancies. The exclusive
presence of XPOl mutations in B cell malignancies is
largely unknown but is likely related to somatic hyper-
mutations of immunoglobulin genes, where the error-
prone polymerase n may introduce a high frequency of
A > T and C > G transversions [50—52]. Due to frequent
deregulation in cancers, XPO1 has been identified as a
therapeutic target in many tumor types. Recent CRISPR
library and RNAi screens have validated XPOl as a
therapeutic target in sarcoma, DLBCL, multiple mye-
loma, and KRAS-mutant lung cancer [9, 53-55]. Specific
XPOL1 inhibitors have been extensively tested and dem-
onstrated efficacy in a broad range of cancer types in
preclinical studies.

Development and preclinical study of XPO1/CRM1

inhibitors

The development of XPO1/CRM1 inhibitors dates back to
early 1980s with the discovery of multiple classes of com-
pounds and has been elegantly summarized in another re-
view [56]. The first characterized XPO1 inhibitor,
leptomycin B, was isolated from a strain of Streptomyces as
an antifungal agent [57, 58]. Shortly following isolation and
purification, its antitumor efficacy was examined in murine
transplantation tumor models and demonstrated survival
benefits [59]. However, a phase 1 trial of leptomycin B car-
ried out in a small cohort of patients with various advanced
cancers demonstrated marked malaise and anorexia, with
no partial response [60]. Further clinical development of
leptomycin B was therefore halted following the failed trial.
XPO1/CRM1 was subsequently identified as the molecular
target of leptomycin B with covalent binding at Cys528
[61]. Leptomycin B analogs, including ratjadones, anguino-
mycins, and KOS2464, also covalently bind to XPO1/
CRM1 [62-64]. In particular, the semisynthetic KOS2464
has demonstrated significant therapeutic efficacy in several
solid and hematopoietic tumor types with much reduced
toxicity compared to leptomycin B [64].

In recent years, synthetic inhibitors of XPO1/CRM1,
including PKF050-638, CBS9106, and selective inhibitors
of nuclear export (SINE), have been developed. CBS9106
was shown to bind XPO1/CRM1, suppress its nuclear
export activities, and induce XPO1/CRM1 protein deg-
radation [65, 66]. Treatment with CBS9106 induces cell
cycle arrest and apoptosis in a broad spectrum of cancer
cells. Oral administration of CBS9106 significantly sup-
presses tumor growth and prolongs survival without a
significant loss of body weight in a xenograft mouse
model of multiple myeloma [65]. PKF050-638 originally
identified as an inhibitor of HIV Rev protein also inter-
feres with XPO1/CRM1 function [67]. Its N-
azolylacrylate scaffold was later adopted by the SINE
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compounds, a series of structurally related small mol-
ecule inhibitors, including KPT-185, KPT-276, KPT-335,
KPT-330 (selinexor), KPT-8602 (eltanexor), and SL-801
(felezonexor) [68, 69]. SINE compounds specifically bind
to Cys528 in the cargo-binding groove of XPO1/CRMI.
In contrast to leptomycin B, the covalent binding of SINE
compounds to XPO1/CRM1 is slowly reversible, poten-
tially explaining SINEs’ relatively low toxicity [63, 68]. The
development of SINEs has enabled the translational appli-
cation of nuclear export inhibitors as novel therapeutic
agents. A number of SINE compounds have been tested
extensively in preclinical settings, exhibiting efficacy in
solid tumors [14, 70-74] and hematopoietic malignancies
[75-79]. Among the investigated SINEs, KPT-330, KPT-
8602, and SL-80 have been advanced to clinical trials.
KPT-330 (selinexor) in particular has been evaluated in
the majority of the trials and recently received FDA ap-
proval for resistant and relapsed multiple myeloma [80].

Clinical trials of XPO1/CRM1 inhibitors

Solid tumors

Single-agent selinexor has shown limited potential in clin-
ical trials for the treatment of solid tumors. A phase 1
study of 189 patients with advanced solid tumors evalu-
ated the safety and efficacy of selinexor (NCT01607905)
[81]. Among the 157 evaluable patients, only one
complete and six partial responses were observed (4%).
Several phase 2 trials further tested single-agent selinexor
for the treatment of specific solid tumors. A phase 2 study
of selinexor in 56 patients with advanced de-differentiated
liposarcoma did not find a significant difference in
progression-free survival (PFS) (NCT02606461) [82]. In
another phase 2 study of 14 patients with metastatic
castration-resistant prostate cancer, single-agent treat-
ment with selinexor led to > 50% reduction in PSA in only
two patients. Of the eight patients with a measurable dis-
ease at baseline, two had a partial response and four had
stable disease as their best radiographic response
(NCT02215161). Notably, selinexor treatment was associ-
ated with significant toxicities, which limited future clin-
ical application of selinexor in this patient population [83].
Single-agent selinexor was also tested in metastatic triple-
negative breast cancer in a phase 2 trial (NCT02402764)
with ten heavily pretreated patients. Although fairly well
tolerated in these patients, selinexor treatment did not re-
sult in objective responses (OR) [84]. In this light, further
clinical trials of selinexor and potentially other SINEs in
solid tumors should focus on combination therapies. In-
deed, several current clinical trials are evaluating com-
bined application of selinexor and other drugs, such as
ixazomib (a proteasome inhibitor) in advanced sarcoma
(NCT03880123), paclitaxel and carboplatin in advanced
ovarian and endometrial cancers (NCT02269293), gemci-
tabine and nab-paclitaxel in pancreatic cancer
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(NCT02178436), and several standard chemotherapy regi-
mens for treatment of various advanced solid tumors
(NCT02419495).

In contrast to the limited efficacy in solid tumors, seli-
nexor as a single-agent or part of drug combinations has
shown promising efficacy in clinical trials of
hematopoietic cancers, including acute myeloid leukemia
(AML), multiple myeloma, and non-Hodgkin lymphoma
(NHL) (summarized in Table 1). Notably, selinexor in
combination with several standard therapies has demon-
strated superior efficacy in relapsed or refractory mul-
tiple myeloma, leading to a recent FDA approval of the
selinexor/dexamethasone combination.

Acute myeloid leukemia

Selinexor has been tested in several clinical trials of AML.
A phase 1 dose-escalation study examined the safety and
efficacy of selinexor in 95 patients with relapsed or refrac-
tory (RR) AML (NCT01607892) [85]. Overall, 14% of the
patients achieved an OR and 31% showed > 50% decrease
in bone marrow blasts. More commonly, however, seli-
nexor has been tested in combination with other cytotoxic
or targeted agents. A phase 1 study of selinexor combined
with mitoxantrone, etoposide, and cytarabine in 21 pa-
tients with RR AML showed an overall response rate
(ORR) of 39%, including 4 complete remissions (CR) and
2 complete remissions with incomplete hematologic re-
covery (CRi) (NCT02299518) [86]. Another phase 1 trial
evaluated selinexor in combination with high-dose cytara-
bine and mitoxantrone for remission induction in 20 pa-
tients with either newly diagnosed or RR AML
(NCT02573363) [87]. An ORR of 70% was observed, with
10 CR, 3 CRj, and 1 PR. In a phase 1b/2 clinical trial of
FLT3-mutated refractory AML, selinexor was combined
with sorafenib to target XPO1l and FLT3, respectively
(NCT02530476). Selinexor/sorafenib combination in-
duced CR or PR in six of 14 patients [88]. Selinexor was
also combined with fludarabine and cytarabine for the
treatment of pediatric RR acute leukemias and myelodys-
plastic syndrome (MDS) (NCT02212561). Seven of the 15
evaluable patients achieved CR or CRj, including five with
no detectable minimal residual disease [89].

Non-Hodgkin lymphoma

Based on promising preclinical findings, selinexor was
also evaluated in clinical trials of NHLs. A phase 1 trial
(NCT01607892) tested single-agent selinexor in 79 pa-
tients from various NHL subtypes, including DLBCL,
Richter’s transformation, mantle cell lymphoma, follicu-
lar lymphoma, CLL, and double/triple-hit lymphomas
[90]. Twenty-two (31%) of the 70 evaluable patients had
an OR, including 4 CR and 18 PR, across all NHL sub-
types. These findings suggest that single-agent selinexor
has encouraging therapeutic efficacy in patients with RR
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Table 1 Clinical trials of selinexor and eltanexor in hematological malignancies

Diseases Drug(s) Study phase No. of patients Outcome (ORR) NCT number
RR AML Selinexor I 95 14% NCT01607892
RR AML Selinexor/MEC | 21 39% NCT02299518
AML Selinexor/cytarabine/mitoxantrone I 20 70% NCT02573363
FLT3-mutated AML Selinexor/sorafenib 1B/II 14 43% NCT02530476
Pediatric RR leukemia Selinexor/fludarabine/cytarabine I 18 47% NCT02212561
RR NHL Selinexor I 79 31% NCT01607892
RR DLBCL Selinexor 1B 129 Ongoing NCT02227251
RR DLBCL Selinexor/RICE | 23 Ongoing NCT02471911
Advanced NHL Selinexor/R-CHOP 1B/l 44 Ongoing NCT03147885
RR CLL/NHL Selinexor/ibrutinib I 92 Ongoing NCT02303392
DLBCL/AML Selinexor/venetoclax I 78 Ongoing NCT03955783
RR MM Selinexor/dexamethasone I 59 50% vs 4% NCT01607892
RR MM Selinexor/dexamethasone 1B 202 26% NCT02336815
RR MM Selinexor/dexamethasone/bortezomib /1 42 63% NCT02343042
RR MM Selinexor/dexamethasone/bortezomib 1 402 13.93 vs 946 months (PFS) NCT03110562
RR MM/MDS Eltanexor (KPT-8602) I/l 119 Ongoing NCT02649790

Abbreviations: MEC mitoxantrone, etoposide, and cytarabine; RICE rituximab, ifosfamide, carboplatin, and etoposide; R-CHOP rituximab, cyclophosphamide,

doxorubicin, vincristine, and prednisone

NHL. A phase 2b study of single-agent selinexor is in
progress in 129  patients with RR DLBCL
(NCT02227251). In addition to single-agent use, seli-
nexor is currently investigated in clinical trials for the
treatment of advanced NHLs, in combination with other
agents including RICE (rituximab, ifosfamide, carbopla-
tin, and etoposide) (NCT02471911), R-CHOP (rituxi-
mab, cyclophosphamide, doxorubicin, vincristine, and
prednisone) (NCT03147885), ibrutinib (NCT02303392),
and venetoclax (NCT03955783).

Multiple myeloma

Selinexor has been most extensively tested in multiple
myeloma and recently received FDA approval. In an
early phase 1 study, selinexor was tested either as a
single-agent or in combination with dexamethasone in a
cohort of heavily pretreated multiple myeloma patients
(NCT01607892) [91]. Single-agent selinexor showed
modest efficacy with an ORR of 4%. However, the drug
combination was well tolerated with an ORR of 50% (1
CR and 5 PR in 12 patients). Thus, selinexor/dexametha-
sone combination is active in heavily pretreated multiple
myeloma. The combination therapy was further evalu-
ated in a phase 2b trial in a large cohort of heavily pre-
treated patient (NCT02336815) [92, 93]. These patients
had previous exposure to bortezomib, carfilzomib, lenali-
domide, pomalidomide, daratumumab, and an alkylating
agent and had disease refractory to at least one prote-
asome inhibitor, one immunomodulatory agent, and dar-
atumumab (triple-class refractory). A partial or better

response was observed in 26% of the 122 patients, in-
cluding two CR. Following the phase 2b trial, selinexor
was approved by FDA in combination with dexametha-
sone, for the treatment of patients with RR multiple
myeloma who had received at least four prior therapies
and whose disease was refractory to at least two prote-
asome inhibitors, at least two immunomodulatory
agents, and an anti-CD38 monoclonal antibody.

A large phase 1/2 trial of selinexor/dexamethasone
combination plus other backbone treatments for MM is
currently in progress for RR and newly diagnosed pa-
tients (NCT02343042). In this trial, the combination of
selinexor/dexamethasone/bortezomib has led to an ORR
of 63% in a cohort of 42 patients [94]. This preliminary
finding has been further extended to a large phase 3
study including 402 RR patients (NCT03110562). Pa-
tients in the selinexor/bortezomib/dexamethasone arm
had a median PFS of 13.93 months, compared to 9.46
months in patients in the bortezomib plus dexametha-
sone arm.

Adverse effects in clinical trials

As XPOL1 is widely expressed in normal tissues/cells and
is required for mitosis, administration of XPO1 inhibi-
tors is expected to cause systemic toxicities. Due to the
reversible nature of the XPO1-SINE binding, selinexor is
relatively well tolerated in most reported clinical trials.
The most common non-hematological adverse events
(AEs) are gastrointestinal disturbances, which are pri-
marily grade 1 or 2 but can also be grade 3 [83, 93].
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Additionally, asymptomatic hyponatremia and hypokalemia
have also been commonly observed. The most common grade
3 or 4 AEs are hematologic, including thrombocytopenia,
anemia, and neutropenia. Thrombocytopenia, in particular, is
a distinct AE of selinexor due to the impaired thrombopoietin
signaling and differentiation of stem cells into megakaryocytes
[95]. One SINE compound, KPT-8602, has shown reduced
general toxicity in preclinical studies due to limited penetra-
tion through the blood-brain barrier [96]. An ongoing clinical
trial will determine whether KPT-8602 has equivalent thera-
peutic efficacy and/or better tolerability in cancer patients
(NCT02649790).

Conclusion and future directions

An important aspect of normal cell function, nuclear-
cytoplasmic export, is often deregulated in cancers, pro-
viding a unique therapeutic opportunity. The recent
EDA approval of selinexor for the treatment of RR mul-
tiple myeloma lends credence to this therapeutic strat-
egy. Future expansion of the clinical indications of
selinexor is contingent upon the success of additional
clinical trials. More SINE compounds with improved ef-
ficacy and reduced adverse events will be tested and po-
tentially approved for clinical use. In this light, extensive
genetic and preclinical studies and well-designed clinical
trials are the prerequisite to exploiting the full potential
of XPO1 inhibitors in cancer treatment.

Biological functions of XPO1

Identifying the MOA of XPO1 inhibitors is a constantly
evolving process. Blockade of nuclear export of tumor
suppressor proteins has been postulated as the major
MOA. However, recent studies on the diversity and
breadth of XPO1 cargoes outline a more complex view.
Future endeavors to study the MOA rely on a compre-
hensive biochemical and genetic characterization of
XPO1.

First, XPOL1 is frequently overexpressed in human can-
cers, while XPO1 suppression has been shown to reduce
the protein levels of driver oncogenes, such as MYC and
EGEFR, in multiple cancer types [97-100]. The detailed
mechanisms of reciprocal regulation between XPO1 and
driver oncogenes can be dissected using traditional gen-
etic approaches [42]. Second, XPO1 is known to physic-
ally interact with hundreds of proteins, many of which
may potentially influence its nuclear export activity
[101]. Large-scale proteomic experiments coupled with
loss-of-function genetic studies can illuminate the roles
of the interacting proteins in regulating XPO1 nuclear
export activity. Third, the recent deep proteomic study
identifying > 1000 proteins exported by XPO1 [15] has
significantly broadened our current perspective on
XPO1 function. As RNAs have been increasingly recog-
nized as the key XPOl substrates, high-resolution
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transcriptomic studies should be carried out in a similar
fashion to identify the multiple classes of RNA cargoes.
This approach will provide a comprehensive view of
XPO1 molecular function. Further comparison of car-
goes associated with the wild-type and XPO1 mutant,
such as XPO1¥”!, XPO®"*, and XPOP***, will reveal
novel gain of function in the mutants, potentially
explaining their oncogenic activities, particularly in driv-
ing B cell malignancies. These genetic studies of XPO1
will lead to a better understanding of its role in tumori-
genesis and the MOA of XPO1 inhibitors.

Mechanisms of drug resistance

With FDA approval of selinexor for the treatment of
multiple myeloma, there is an urgent need to investigate
the mechanisms of drug resistance. Recurrent genomic
mutations detected in patients’ tumors following treat-
ment are associated with resistance. Investigating the
causal roles of such mutations in drug resistance re-
quires validation and further examination in cell culture
and animal models. Additionally, the mechanisms of re-
sistance can be more broadly studied through CRISPR-
based genome-wide library screening [102]. CRISPR
screens will identify a comprehensive list of candidate
genes causally associated with drug resistance. Potential
genetic or epigenetic mechanisms of resistance can be
investigated in cell lines and animal models. The clinical
relevance of identified candidates will be further exam-
ined in human tumor samples.

Synergistic drug combinations

XPO1/CRM1 inhibitors are a unique class of drugs.
Thus, their mechanisms of resistance may not be shared
by other chemotherapeutic agents. This will provide vast
opportunities to combine SINE compounds with other
therapeutic modalities. Current clinical development of
drug combinations typically relies on empirical testing,
which only explores a small fraction of the potential
combinations. High-throughput combinatorial screening
using drug and/or genetic libraries, on the other hand,
can examine millions of combinations in an unbiased
manner [103]. As an example, small-molecule combin-
ation matrix screens can test XPO1 inhibitors in com-
bination with hundreds of known drugs for systematic
identification of synergistic, additive, and antagonistic in-
teractions. Similarly, CRISPR genome-wide library
screens can effectively identify potential drug synergies
by simultaneous interrogation of thousands of drug tar-
gets [104]. Subsequently, therapeutic combinations dis-
covered by such drug/genetic screens may be directly
investigated in preclinical animal models and validated
in clinical trials. While current preclinical and clinical
studies have mainly focused on combining selinexor
with existing standard treatments to ensure the timely
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translation of the findings to clinical applications, future
efforts should focus on drug combinations with novel
agents, including targeted and immunotherapeutic
agents, to improve the efficacy and tolerability.

Biomarkers of therapeutic responses and toxicity

Each human cancer type comprises a highly heteroge-
neous group of disease. Similar to what has been shown in
targeted and immunotherapies, detailed tumor stratifica-
tion based on genomic, pathohistological, and/or im-
munological characteristics can help delineate the specific
subset of tumors responsive to XPO1 inhibitors. These
biomarkers can be identified in preclinical genetic studies
and clinical trials and subsequently used in the general pa-
tient population to prognosticate the subpopulations most
likely to benefit from the therapy. In addition to the
tumor-centric approach, pharmacogenomic studies of the
patients on their therapeutic response and adverse events
will pinpoint major genetic variants associated with inter-
individual differences in drug metabolism and response
[105, 106]. The availability of biomarkers predictive of
therapeutic responses and toxicity will help identify the
target patient population and exploit the full potential of
XPOL1 inhibitors in cancer treatment.
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