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Abstract

Natural-killer/T cell lymphoma (NKTCL) represents the most common subtype of extranodal lymphoma with aggressive
clinical behavior. Prevalent in Asians and South Americans, the pathogenesis of NKTCL remains to be fully elucidated.
Using system biology techniques including genomics, transcriptomics, epigenomics, and metabolomics, novel
biomarkers and therapeutic targets have been revealed in NKTCL. Whole-exome sequencing studies identify
recurrent somatic gene mutations, involving RNA helicases, tumor suppressors, JAK-STAT pathway molecules,
and epigenetic modifiers. Another genome-wide association study reports that single nucleotide polymorphisms
mapping to the class II MHC region on chromosome 6 contribute to lymphomagenesis. Alterations of oncogenic
signaling pathways janus kinase-signal transducer and activator of transcription (JAK-STAT), nuclear factor-κB (NF-κB),
mitogen-activated protein kinase (MAPK), WNT, and NOTCH, as well as epigenetic dysregulation of microRNA and long
non-coding RNAs, are also frequently observed in NKTCL. As for metabolomic profiling, abnormal amino acids
metabolism plays an important role on disease progression of NKTCL. Of note, through targeting multiple
omics aberrations, clinical outcome of NKTCL patients has been significantly improved by asparaginase-based
regimens, immune checkpoints inhibitors, and histone deacetylation inhibitors. Future investigations will be
emphasized on molecular classification of NKTCL using integrated analysis of system biology, so as to optimize targeted
therapeutic strategies of NKTCL in the era of precision medicine.
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Background
Natural-killer/T cell lymphoma (NKTCL) is a highly ag-
gressive subtype of non-Hodgkin’s lymphoma with ma-
lignant proliferation of CD56+/cytoCD3+ lymphocytes
[1, 2]. Epstein-Barr virus (EBV) is critically involved in
NKTCL and evidenced by in situ hybridization for
EBV-encoded small RNA [3]. As the most common
extranodal lymphoma, NKTCL occurs predominantly in
nasal/paranasal area (such as the nasal cavity, nasophar-
ynx, paranasal sinuses, tonsil, Waldeyer ring, and oro-
pharynx), with a geographic prevalence in Asian and
South American populations [2]. NK and T cells share a
common bi-potential T/NK progenitor [4]. Approxi-
mately 40% of NKTCL is identified as T cell-origin, char-
acterized by rearrangements of T cell receptor (TCR)

gene and expression of TCR protein [5]. As for other
cytogenetic and genetic alterations, deletion of chromo-
some 6q21, as well as mutations of oncogenes (KRAS,
NRAS, FAT4, and CTNNB) and tumor suppressor genes
(TP53), are frequently observed in NKTCL [6–9].
However, the driven changes of NKTCL pathogenesis
and their underlying mechanisms remain to be fully
elucidated.
System biology, consisting of genomics, transcripto-

mics, epigenomics, and metabolomics, is a group of hall-
mark techniques in current cancer research and
provides insights into the panorama view of biological
processes under malignant progression [10, 11]. These
omics methods have been successfully implicated not
only to elucidate pathogenesis of human diseases, but
also to identify prognostic and therapeutic biomarkers
[12, 13]. Here, the application of system biology on iden-
tification of multiple omics aberrations and their poten-
tial clinical rationales are reviewed in NKTCL.
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Genomic aberrations
The development of multiple omics studies on NKTCL
are illustrated in Fig. 1. Using whole-exome sequencing
and targeted sequencing, recurrent somatic gene muta-
tions are identified in NKTCL, mainly as RNA helicase
gene DDX3X, tumor suppressors (TP53, MGA, and
BCOR), janus kinase-signal transducer and activator of
transcription (JAK-STAT) pathway molecules (JAK3,
STAT3, and STAT5B), and epigenetic modifiers (MLL2,
ARID1A, EP300, and ASXL3) [9, 14]. Of note, DDX3X
mutants exhibit decreased RNA-unwinding activity, loss
of suppressive effects on cell-cycle progression in NK
cells, as well as transcriptional activation of nuclear
factor-κB (NF-κB) and mitogen-activated protein kinase
(MAPK) pathways. Patients with mutations in DDX3X
and TP53 have a poor response to anthracycline-based
chemotherapy [14]. Functioned as a tumor suppressor,
MGA gene inhibits MYC-dependent cell growth and
malignant transformation through binding with MAX
[15]. Somatic loss-of-function mutations of MGA have
been observed in solid tumors and may lead to tumor
development [16]. BCOR is also likely to play an import-
ant role as a tumor suppressor gene [17]. However, the
pathogenic mechanism of MGA and BCOR has not yet
been revealed in NKTCL. JAK3-activating mutations are
involved in cytokine-independent JAK-STAT signaling
pathway activation to enhance NKTCL cell proliferation
[18, 19]. STAT3 mutations are associated with STAT sig-
naling pathway activation, and confer high programed

death ligand 1 (PD-L1) expression, which may promote
tumor immune evasion [20, 21]. Mutations in genes re-
lated to epigenetic modification of NKTCL include his-
tone methylation (KMT2D), histone acetylation (EP300),
histone deubiquitination (ASXL3), and chromatin
remodeling (ARID1A) [22]. A case with extranodal
EBV-negative NKTCL is reported to harbor KDM6A
mutation, which is located on Xp11.2 and acts as an en-
zyme specifically demethylating H3K27 [23].
Through genome-wide association study, genetic vari-

ants affecting individual risk of NKTCL has been investi-
gated, showing that single nucleotide polymorphisms
mapping to the class II MHC region on chromosome 6,
with rs9277378 located in HLA-DPB1 is the strongest
contributor to lymphomagenesis (odds ratio 2.65) [24].
More recently, a hotspot mutation of ECSIT-V140A has
also been identified in NKTCL patients with lympho-
ma-ekassociated hemophagocytic syndrome and poor
prognosis [25].

Copy number variations (CNVs)
Accumulation of genomic imbalances is implicated in
hematological malignancies inducing the activation of
oncogenes or inactivation of tumor suppressor genes.
As revealed by comparative genomic hybridization,
6q21 is frequently deleted in NKTCL, leading to the
loss of tumor suppressor genes located in this region,
including PRDM1, ATG5, AIM1, FOXO3, and HACE1
[26, 27]. PRDM1 is required for NK-cell maturation

Fig. 1 Milestones of multiple omics studies on NKTCL. This timeline describes key discoveries of genomic (whole-exome sequencing, genome-wide
association study, and comparative genomic hybridization), transcriptomic (gene expression profile), epigenomic (miRNA expression profile
and global promoter methylation analysis), and metabolomics (LC/MS-based metabolomics profile) studies in NKTCL
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and proliferation [28]. Mutation or methylation in
PRDM1, ATG5, and AIM1 have been reported in
NKTCL cell lines [29], while another study indicates
that HACE1 is not directly related to NKTCL patho-
physiology [30].
Besides, recurrent CNVs are observed in other

regions of chromosomes, comprising of chromo-
somal losses (on 1p, 17p, and 12q) and gains (on 2q,
13q, and 10q) [31]. Involved chromosomal fragments
may include candidate genes related to malignant
transformation and invasion (S100A16, LAMB1,
LAMC1, COL1A2, and CTSB), cell-cycle progression
(CCND3), JAK-STAT (AKT3, IL6R, and CCL2), and
NF-κB (PRKCQ and TNFRSF21) signaling pathways
[32]. More recently, other molecular clusters have
been proposed, such as loss of 14q11.2 (TCRA loci),
gain of 1q32.1-q32.3, and loss of Xp22.33 [33].

Transcriptional profiling
Based on gene expression profiling, integrations of
JAK-STAT, NF-κB, and AKT signaling pathways contrib-
ute to genotoxic stress, angiogenesis, immunosuppres-
sion, and disease progression of NKTCL, as compared to
normal NK cells [32, 34]. Activation of WNT and
NOTCH signaling pathways are also enriched in NK-cell
malignancies [35]. In according with CNV findings,
downregulation of tumor suppressor genes in 6q21
(PRDM1, ATG5, AIM1) are confirmed by microarray
analysis [27, 32]. As for individual genes, it is noteworthy
that MYC induces upregulation of EZH2 and RUNX3,
both of which exert cascade effect of transcriptional acti-
vation during lymphomagenesis [36, 37]. Using RNA se-
quencing technology, overexpression of KIR2DL4 is
reported in malignant NK cells [38]. KIR2DL4 mediates
NK-cell activation via inducing proliferation and survival
pathways such as NF-κB and AKT, which may contrib-
ute to NKTCL pathogenesis [38].

Epigenetic signatures
In addition to mutations in epigenetic modifiers, differ-
ential expression of miRNAs plays a pathogenic role in
NKTCL, through targeting cell-cycle-related genes, P53
and MAPK signaling pathways [39, 40]. Loss of miR-26
and miR-101 contribute to the overexpression of EZH2,
while upregulation of miR-223 downregulates PRDM1
[36, 41]. EBV-encoded miRNAs have also been detected,
including miRs-BART 1 to 22 of BamHI-A region right-
ward transcript (BART) family, as well as miRs-
BHRF1-1, miRs-BHRF1-2, and miRs-BHRF1-3 of the
BamHI fragment H rightward open reading frame 1
(BHRF1) family [42, 43]. Viral miRNAs are relatively less
present in NKTCL than in nasopharyngeal carcinoma
(2.3% of the total miRNA reads vs 5–19% in nasopha-
ryngeal carcinoma) with unknown function [42, 44].

Meanwhile, NKTCL-associated dysregulated long
non-coding RNAs have been identified, such as SNHG5,
ZFAS1, and MIR155HG [45]. Among them, upregulation
of ZFAS1 is implicated in stabilization of TP53, alter-
ations of apoptosis and cell cycle, and activation of
NF-κB signaling, while MIR155HG is downregulated by
PRDM1 in NKTCL [45].
Promoter region hypermethylation has been investigated

by global methylation assays, locus-specific validation of
methylation, and methylation-specific polymerase chain re-
action, demonstrating increased methylation and decreased
gene expression with pathological and clinical significance,
including PRDM1, ATG5, AIM1, BCL2L11, DAPK1, TET2,
PTPN6, SOCS6, PTPRK, and ASNS [27, 46, 47]. Function-
ally, inactivation of TET2 may contribute to hypermethyla-
tion of global promoters in NKTCL [46]. PTPN6, SOCS6,
and PTPRK negatively regulate JAK-STAT, suggestive an al-
ternative mechanism responsible for activation of JAK-
STAT signaling pathway [46–49].

Metabolomics profiling
Serum metabolomic profile of NKTCL patients is
distinct from that of healthy volunteers [50]. Briefly,
115 significantly altered serum metabolites are iden-
tified, predominantly involving in pathways of amino
acid metabolism [50]. As depicted by alanine, aspar-
tate, and glutamate metabolism pathway in KEGG
(Kyoto Encyclopedia of Genes and Genomes), nine
of them are asparaginase-associated metabolites (ala-
nine, aspartic acid, malic acid, ornithine, glutamate,
glutamine, histidine, pantothenic acid, and succinic
acid) and differently expressed in patients with good
response to asparaginase, suggesting the reliance of
malignant NK cells on extracellular amino acids.
Based on serum metabolomics, our group has estab-
lished a prognostic asparaginase-associated metabolic
(AspM) score, including alanine, aspartate, glutam-
ate, and succinic acid [50]. As a prognostic score in-
dependent of International prognostic index, as well
as prognostic index of natural-killer lymphoma
(PINK) or PINK in combination with peripheral
blood EBV DNA, AspM score is easily attainable
from peripheral blood and efficiently predicts re-
sponse to asparaginase-based regimens [50].

Therapeutic strategies targeting multiple omics
alterations
Schematic description of NKTCL pathogenesis and tar-
geted therapeutic strategies are shown in Fig. 2. With
the understanding of multiple omics alterations, clinical
outcome of NKTCL has been significantly improved by
new therapeutic strategies.
Different from metabolomic fingerprints of T and B

cell lymphoma, NKTCL is characterized by dysregulated
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amino acid metabolism, mainly as alanine, aspartate, and
glutamate metabolism [50]. Asparaginase and metho-
trexate are the most commonly used anti-metabolite
agents, functioning through hydrolyzing extracellular as-
paragine or targeting folate, pyrimidine, and purine me-
tabolism, respectively [50, 51]. For localized NKTCL,
methotrexate, etoposide, dexamethasone, and peg-aspar-
aginase (MESA) sandwiched with radiotherapy achieved
complete remission (CR) rate of 89.5% in 38 patients.
The 2-year progression-free survival (PFS) and overall
survival (OS) rate are 89.1% and 92.0% [50]. These data
highlight the role of targeting metabolic vulnerability in
NKTCL.
Increased expression of cell cycle-related genes has

been reported in NKTCL [39]. Platinum, gemcitabine,
and etoposide are cell cycle-specific DNA damaging
agents [52–54], which are prevalently used in NKTCL
chemotherapy. For advanced or relapsed/refractory
NKTCL, CR rate of P-GEMOX (peg-asparaginase, gem-
citabine, and oxaliplatin) is 51.4% of 35 patients, with
2-year PFS and OS rate of 38.6% and 64.7% [55]. In a
randomized controlled, multicenter, and open-label clin-
ical trial, DDGP (dexamethasone, cisplatin, gemcitabine,
and peg-asparaginase) results in a CR rate of 71%, as

well as significant improvement in 2-year PFS and OS
rate to 86% and 74% [56]. Therefore, inhibition of
cell-cycle progression is another key target in treating
NKTCL [57].
Programmed death ligand 1 (PD-L1) is frequently up-

regulated in NKTCL [33]. Moreover, TP53 mutation, ac-
tivation of STAT3 signaling pathway, and EBV-driven
latent membrane protein-1 are all related to PD-L1 over-
expression [20, 58, 59]. Clinically, patients with NKTCL
relapsed or refractory from L-asparaginase-based regi-
mens and allogeneic hematopoietic stem-cell transplant-
ation respond well to the anti-programmed death-1
(PD-1) antibody pembrolizumab, with overall response
rate (ORR) as 100% [60]. Favorable responses to pem-
brolizumab are also observed in another independent
study with ORR as 57% (4 out of 7 relapsed/refractory
NKTCL) [61], indicating that PD-1 blockade is an im-
portant immunotherapy for NKTCL resistant to anti--
metabolic and cytotoxic agents.
Histone deacetylase inhibitors serve as promising epi-

genetic agents, and phase II trials have been carried out
in T cell lymphoma (including NKTCL), showing that 1
out of 2 enrolled NKTCL cases responds to Belinostat,
while 3 out of 16 cases respond to Chidamide [62, 63].

Fig. 2 Schematic description of NKTCL pathogenesis and targeted therapeutic strategies. This illustration encompasses six hallmark mechanisms
involved in NKTCL pathogenesis, which are closely related to targeted therapeutic strategies
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Since promoter region hypermethylation is present in
NKTCL, in vitro studies indicate that reversal of methy-
lation by decitabine induces expression of key candidate
genes involved in tumor suppressor (PRDM1), pro-
apoptosis (BIM and SAPK), JAK-STAT pathway
(SOCS6, ZFHX3, and PTPN6), and cell growth inhib-
ition (CD300A) etc., leading to increased NK-cell death
[27, 46].
ECSIT-V140A is associated with activation of NF-κB

pathway, transcription, and secretion of pro-inflamma-
tory cytokines. The immunomodulatory agent thalido-
mide prevents NF-κB from binding to the promoters of
its target genes (including TNF and IFNG), and com-
bined treatment of thalidomide and dexamethasone ex-
tends disease-free survival of two NKTCL patients with
hemophagocytic syndrome who express ECSIT-V140A
for longer than 3 years [25]. Lenalidomide has also suc-
cessfully been used in a patient with relapsed NKTCL
after autologous hematopoietic stem-cell transplantation
[64].
Novel bio-agents are currently under pre-clinical stud-

ies. High-throughput drug sensitivity and resistance test-
ing identify JAK inhibitor ruxolitinib to be highly
effective across NKTCL cell lines [65]. Therapeutic effect
of a novel selective JAK3 inhibitor PRN371 has been re-
cently confirmed in xenograft model harboring JAK3 ac-
tivating mutation [66]. As mechanism of action, JAK3
inhibitors inhibit NKTCL cell growth in an EZH2
phosphorylation-dependent manner, which functions as
a transcriptional activator of NKTCL. STAT3 inhibitor
tofacitinib is active against STAT3-mutant NKTCL cell
lines [18], while JAK1/2 inhibitor partially against STAT3
and STAT5B mutations [21]. STAT3 activation confers
PD-L1 overexpression, which can be downregulated by
STAT3 inhibitors, alone or combined with PD-1/PD-L1
antibodies [20]. Combined treatment of LEE011 and
ruxolitinib synergistically inhibit NKTCL cell growth,
suggesting that targeting of both CDK4/6 and JAK1/2
are promising treatment alternatives for NKTCL [67].

Perspectives
Multiple omics analysis reveals genetic, epigenetic, tran-
scriptomic and metabolic aberrations, which are not
only associated with disease progression, but also re-
sponse to clinical management. In the future, integration
of system biology techniques should be further carried
out to classify disease into subtypes of distinct molecular
fingerprints, paving way for the implication of
mechanism-based targeted therapy in NKTCL.
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